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EXTENDED ABSTRACT
Uno dei parametri geomeccanici più importanti nella meccanica delle rocce, è la fragilità che ha un grande impatto sui processi di rottura 

e sulle attività di perforazione. In generale, la fragilità è funzione della resistenza della roccia alla deformazione in campo elastico. I metodi 
per valutare la fragilità delle rocce sono principalmente divisi in tre categorie: (1) basati su moduli elastici, (2) misurazioni dirette di sforzo-
deformazione in laboratorio e (3) contenuto di minerali. L’indice di fragilità dinamica BIdyn è ottenuto dai parametri del modulo di Young 
dinamico e del rapporto di Poisson dinamico. L’indice di fragilità statica BIst può essere ottenuto dalla resistenza alla compressione uniassiale 
e dalla resistenza alla trazione calcolate in laboratorio. La resistenza alla trazione è generalmente considerata pari a 0.1 della resistenza alla 
compressione uniassiale. Inoltre, è possibile determinare l’indice di fragilità dei minerali BIlit e in questo campo sono state proproste varie 
relazioni empiriche.

In questo articolo, erano disponibili i dati dei log SGR, CGR, DT, RHOB, RT, NPHI, CALIPER, Vp, PEF per determinare il BI dinamico 
e statico utilizzando algoritmi di deep learning. Per selezionare le caratteristiche effettive e gli input adeguati agli algoritmi, il coefficiente 
di correlazione delle caratteristiche dovrebbe essere controllato con il BI. Uno dei metodi per selezionare i parametri è l Auto-encoder deep 
network, in cui i registri Vp, RHOB, CALIPER, PEF e CGR sono stati selezionati come input degli algoritmi.

In questo studio erano disponibili 16330 dati nell’intervallo di profondità compreso tra 3551 e 3799 metri. Inizialmente, il 24% di questi dati 
sono stati separati dalla fine del dataset come dati ciechi e dgli altri 12330 dati, l’80% è stato selezionato come dati di addestramento e il 20% 
come dati di test. E per evitare un adattamento eccessivo, è stata considerata una suddivisione di convalida dello 0.1 dei dati di addestramento. 
Nella fase successiva, è stata eseguita la normalizzazione dei dati per ottenere una maggiore precisione attraverso la funzione di normalizzazione 
Min-Max, che regola i dati disponibili tra zero e uno. Di seguito, per l’ottimizzazione è stata utilizzata la funzione Adam Optimizer. Per valutare 
il modello e confrontare i risultati degli algoritmi di deep learning, sono stati utilizzati MAPE, MAE, MSE, RMSE, NMSRE e R2.

Per stimare BIdyn, i valori di errore per i dati ciechi sono uguali a MSEMLP=5.1687, MSELSTM=1.7135,  MSECNN=1.0292  e  i val-
ori  R2 sono uguali a R2

MLP=0.9199, RLSTM =0,9734, R2
CNN=0,9841. Secondo i risultati dell’R2, per i dati ciechi in tre algoritmi, si può 

concludere che il metodo più robusto e migliore di previsione del BIdyn è l’algoritmo CNN mentre il più debole è l’algoritmo MLP.
Continuando, il BIdyn viene convertito in BIst, con errori e accuratezza basati sui dati ciechi. Per stimare il BIst, i valori di errore per i dati ciechi 
sono uguali a MSEMLP=1.4823, MSELSTM=0.9425, MSECNN=0.8444 e i valori R2 sono uguali a R2

MLP=0.9457, R2
LSTM=0,9655, R2

CNN=0,9691. In 
base ai risultati e considerando gli errori di previsione e l’R2, per i dati ciechi in tre algoritmi, si può concludere che il metodo più robusto 
e migliore per il BIdyn, poi convertito per la predizione del BIst, è l’algoritmo CNN e il più debole in questo caso è legato all’algoritmo MLP.

Per stimare BIst, i valori di errore per i dati ciechi sono uguali a MSEMLP=1.2071, MSELSTM=0.9076, MSECNN=0.6719 e i valori dei coef-
ficienti di determinazione sono uguali a R2

MLP=0.9557, R2
LSTM=0,9667, R2

CNN=0,9754. In base ai risultati e considerando gli errori di previsione 
e l’R2, per i dati ciechi in tre algoritmi, si può concludere che il metodo più robusto e migliore di previsione del BIst è l’algoritmo CNN e le 
prestazioni più deboli in questo caso correlate, invece, all’algoritmo MLP.

Di seguito sono stati confrontati tutti i BIdyn misurati e tutti i BIdyn previsti. Inoltre, sono stati confrontati tutti i dati BIst previsti e i dati fon-
damentali e ampliato il confronto tra campioni fondamentali e dati BI previsti e poi con il BI ottenuto dalla percentuale in volume di minerali. 
I risultati mostrano che le varietà di arenaria hanno un BI più elevato rispetto ai carbonati. Secondo i risultati, c’è un’ottima corrispondenza tra 
i dati principali e il BIst previsto. Anche secondo il confronto tra il BI ricavato dalla percentuale in volume di minerali e i BIdyn e BIst ottenuti, 
c’è una buona corrispondenza. Inoltre, secondo il BI calcolato dalla litologia, si può affermare che in ambiente carbonatico, nelle aree in cui la 
litologia è calcarea e dolomitica, si ha un BI inferiore rispetto alle aree in cui la litologia è arenaria.

Il confronto dei risultati ottenuti da questi tre algoritmi, mostra che gli algoritmi LSTM e CNN hanno prestazioni adeguate per prevedere 
il BI, che può essere utilizzato semplicemente disponendo di log regolari, perché l’errore ottenuto e l’R2 hanno valori accettabili sia per i dati 
di test che ciechi. Quindi, in generale, si può dire che gli algoritmi di deep learning sono un metodo efficiente per prevedere il BIdyn e il BIst.
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ABSTRACT
Brittleness index is one of the most important Geomechanical 

parameters, which has a great impact on the rock breaking process 
and drilling activities. The methods of evaluating brittleness of 
rocks are mainly divided into three categories: (1) direct laboratory, 
(2) mineral content, and (3) based on elastic moduli. one of the 
efficient methods for brittleness index predicting is use of intelligent 
methods, which are low-cost and accurate methods, and it is possible 
to predict the brittleness index using log and lithology data. In this 
study, dynamic and static brittleness index values are predicted 
using deep learning (DL) algorithms and lithology data in carbonate 
environment in one of the hydrocarbon fields in southern part of 
Iran. In this paper, the effective features were selected using the deep 
learning algorithm of the Auto-encoder, and the dynamic and static 
brittleness index was estimated using the MLP, LSM, and CNN 
algorithms. As 12 laboratory core samples were available, at first 
the brittleness index were calculated by relevant empirical relations 
and data of some available well logs in order to generalize these core 
results to the entire target depth range of 3551.07 to 3799.78 meters. 
Then a set of relationship between the well’s logs derived dynamic 
and static brittleness index and laboratory results was determined for 
the depths where the laboratory samples were recorded. Following 
that, an Auto-encoders deep network was used to select the effective 
features in predicting the brittleness index, and finally by using MLP, 
LSTM and CNN networks the value of dynamic and static brittleness 
index was predicted. Here, the goal is to obtain the brittleness 
index values with high accuracy wherein there no core data. The 
performance of the three algorithms prediction models is tested by 
blind data sets that the models have not seen before. Furthermore, the 
results were checked and evaluated by set of statistical measures like 
MAE, MAPE, MSE, RMSE, NRMSE and R2 values that calculated 
for train, test and blind dataset. At first, dynamic brittleness index 
estimate using log data and three algorithms and R2 for blind data 
equal to R2

MLP=0.91, R2
LSTM=0.97, R2

CNN=0.98, in the following, 
using MLP, LSTM and CNN the dynamic brittleness index has been 
converted into a static brittleness index and R2 for blind data equal 
to R2

MLP=0.94, R2
LSTM=0.96, R2

CNN=0.96. Finally, the static brittleness 
index has been estimated directly from the log data without the 
relation of dynamic to static transformation and R2 for blind data 
equal to R2

MLP=0.95, R2
LSTM=0.96, R2

CNN=0.97. Finally, the dynamic 
and static brittleness index was compared with the brittleness index 
obtained from lithology, and there is a good match between them. 
The results show that the deep learning algorithm is a novel method, 
robustness and accurate method in estimating the dynamic and 
static brittleness index using conventional logs. The results show 
used CNN and LSTM networks as new deep learning algorithms to 
predict brittleness index.

Keywords: dynamic and static brittleness index, log data, deep learning 
algorithm, geomechanical parameters

INTRODUCTION
One of the important Geomechanical parameters is 

brittleness and it is one of the most important characteristics of 
rock mechanics, which has a great impact on the rock breaking 
process and drilling activities. In general, the rock with more 
brittleness properties shows lower plastic deformation values 
at the time of failure compared to softer rocks (Morley, 1954). 
In other words, in rock mechanics, brittleness refers to a type of 
fracture during which there is no permanent deformation (Ramzi, 
1976). Morley (1954) expressed brittleness as the absence of 
ductility (elastic state under the influence of stress). Hetni (1966) 
defined brittleness as lack of ductility (opposite of ductility). 
Ramzi (1967) expressed one of the most important definitions 
for the brittleness index based on adhesion. In this definition, 
when the internal adhesion of rock materials that deform in the 
elastic range decreases or disappears, it is said that the rock has 
a brittle behavior. Obert and Duval (1967) called materials such 
as cast iron and many rocks, which usually break in tension or 
only shortly after tension, as brittle materials. In other words, 
brittleness can be defined as one of the properties of materials 
that break tensile with some flow or without using flow. Huka 
and Das (1974) stated that the concept of Brittleness is not 
precisely stated, but with these interpretations, what was obtained 
for rocks with a high Brittleness value is: low elasticity, tensile 
failure, high ratio Compressive strength to tensile strength, high 
elasticity, high internal friction angle. Altindag (2003) defined 
the tendency of rock to break along with the lack of ductility that 
can be seen at low stresses as brittleness. In general, the property 
of brittleness has a significant effect on the process of breaking 
rocks. Xie et alii (2008) suggested that the deformation and failure 
behavior of rock is the destabilizing phenomenon accompanied 
by the storage, dissipation, transformation, and release of energy. 
Brittleness index and compressive strength of rock are effective 
parameters in the operation of the device during drilling. Rocks 
exhibit brittle behavior under compression and tension, therefore 
determining rock brittleness is of great importance in practical 
projects of rock mechanics, underground structures and nuclear 
waste tanks (Yagiz, 2009). In general, brittleness is a function of 
strength and indicates the resistance of rock against deformation 
in the elastic range (Altindag, 2010). However, there is no 
direct and standard method for measuring brittleness, but it can 
be indirectly used to determine the concept of fragility by using 
some relations about rock, such as different ratios of compressive 
and tensile strength of rock (Guktan, 1991; Lawn & Marshall, 
1979). Consequently, the brittleness index is largely a function of 
rock properties and freeze-thaw cycles in cold regions; therefore, 
its measurement based on these factors is highly crucial. Rock 
brittleness is closely influenced by the mineral composition 
(Zhang et alii, 2017), physical properties (Qian et alii, 2017), 
loading condition (Xiao et alii, 2020), micro-fracture (Wang et 
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alii. 2021), and mechanical characteristics (Li et alii, 2020; Xu 
et alii, 2021). The methods of evaluating brittleness of rocks are 
mainly divided into three categories: (1) based on elastic moduli, 
(2) direct laboratory stress-strain measurements, and (3) mineral 
content. The dynamic brittleness index (BIdyn) is obtained from 
the parameters of dynamic Young’s modulus (Edyn) and dynamic 
Poisson’s ratio (υdyn), which are shown in relation 3, respectively 
dynamic brittleness index (Valin & Antia, 2020).

						      (1)

The static brittleness index (BIst) can be obtained from the 
uniaxial compressive strength (σc) and tensile strength (σt) that are 
calculated in the laboratory. Tensile strength is usually considered 
0.1 uniaxial compressive strength. Equation 2 shows the static 
brittleness index (Altindag, 2010).

						      (2)

Also, the brittleness index of minerals (BIlit) can be 
determined, and in this field, various relations have been 
presented, one of which is shown in relationship 3, which is 
related to the parameters of quartz volume (Vsand), clay volume 
(Vcl), and carbonate volume (Vca) (Jarvie, 2007).

						      (3)

Today, machine learning and deep learning are widely used 
in earth sciences such as seismology (Mohebian et alii, 2017), 
petrophysics (Mohebian et alii, 2019, 2021) and geothermal 
(Kelishami et alii, 2022). In recent years, rock brittleness has been 
extensively studied by many researchers in the geo-mechanics 
filed. However, the definitions of brittleness are still ambiguous, 
an agreement of the measurement standards of brittleness has not 
yet been reached (Kahramana, 2002; Altindag, 2003; Goktan 
& Yilmaz, 2005; Wang & Gale, 2009; Wang et alii, 2015; 
Zhang et alii, 2016). Jarvie et alii (2007) propose a brittleness 
equation based on the amount of quartz, calcite, and clay minerals, 
in which quartz is considered to be the brittle mineral. Rickman 
et alii. (2008) propose an average brittleness equation based on 
the elastic parameters of Poisson’s ratio and Young’s modulus. 
Perez (2013) compare the brittleness index (BI) estimated from 
mineral content and brittleness average estimated from elastic 
parameters. Da Silva (2013) finds that the BI computed from 
mineral content is positively correlated to μρ and negatively 
correlated to λρ. Jin et alii (2014) review brittleness estimation 
from geomechanical and petrophysics consideration. Zhang et 
alii (2014b) find that inverted results from conditioned gathers 
have better resolution and higher correlation coefficients with 
well logs. Shi et alii (2016) estimated the brittleness index using 

machine learning extreme and back propagation artificial neural 
network. Ghobadi and Naseri (2016) predicted the brittleness 
index using artificial neural network and Multiple Regression 
Models. Quian et alii (2019) investigated the brittleness index 
of shale using the average weight-day hill. Ore and Gao (2021) 
predicted the brittleness index using artificial neural network 
and support vector regression. Zhang et alii (2022) doing Rock 
Brittleness Evaluation Index based on Ultimate Elastic Strain. 
Energy. In the research of Ghobadi et alii (2023) relationship 
between rock brittleness is investigated by using the ratio of 
point index to porosity (PMP) in the sandstones of the Qom 
Formation. In addition, the available estimation methods for the 
rock brittleness index are summarized and their application is 
briefly discussed. Wang et alii (2023) a digital drilling method 
are proposed to evaluate the mechanical anisotropy of rock 
and the anisotropic effect on cutter wear. In considering critical 
friction, the cutting efficiency and contact stress were determined 
from the revised drilling model in order to characterize the 
drilling process. Wang et alii (2023) analyzes the three types of 
brittleness indices in detail, A stress–strain curve-based brittleness 
index would be appropriate for the evaluation of brittleness if the 
parameters represented unique and certain stress–strain curves. 
Therefore, a new brittleness index is proposed. It consists of two 
components: the stress variation index and the strain variation 
index, which reflects the strain ratio of the stress drop and the 
relationship between elastic and post-peak strains, combining 
the stress variation and strain variation in the pre- and post-
peak phases. In the research of Rahimi Shahid et alii (2023) the 
uniaxial compressive strength values of zone 38 (western Iran) 
were extracted and analyzed. Then, dry and saturated brittleness 
index were determined using existing experimental relationships 
and dry and saturated uniaxial compressive strength. Wang et 
alii (2023) proposed a new method for evaluating rock brittleness 
using a digital drilling approach. A cutting model was established 
to describe the relationship between the energy characteristics 
and mechanical parameters of the rock during the drilling 
process, accounting for the effects of friction and drilling fluid. 
Zhang et alii (2024) used the reflection coefficient equation 
for the direct inversion of the brittleness index considering the 
cumulative error in the indirect inversion. This article introduces 
a time-frequency mixed domain inversion (TFDI) method, 
considering that the frequency domain inversion (FDI) method 
has excellent resolution and the time domain inversion (TDI) 
method has good noise immunity. Asemi et alii (2024) introduced 
new index for describing rock brittleness using crack initiation 
and crack damage stress thresholds for rocks with Class I stress-
strain curves. Uniaxial compressive strength (UCS) tests were 
conducted on fine-grained, medium-grained, and coarse-grained 
dolomite rock specimens in order to evaluate the performance 
of this index on describing brittleness. Fang et alii (2024) 
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introduced a multi-mineral composition equivalent model for 
complex lithologies that enables the accurate calculation of Vp 
and Vs These ratios serve as the foundation for pre-stack elastic 
parameter predictions, which include Poisson’s ratio and Young’s 
modulus. By comparing the predicted parameters with well-
logging measurements.

Considering the high importance of brittleness index in 
geomechanical modeling and hydraulic fracturing, a method 
that can predict brittleness index with high accuracy is very 
important. One of the methods used are intelligence methods. 
According to previous researches, many methods have been 
performed to estimate geomechanical parameters and brittleness 
index. But because accurate estimation of these parameters 
is very important for modeling and geomechanical studies, 
this study try to introduce a new algorithm for estimating this 
parameter using deep learning algorithm and well log data with 
high accuracy and low cost. On this basis, three algorithms are 
used to predict brittleness index (multilayer perceptron network 
(MLP), transformed convolutional neural network (CNN) and 
one kind of recurrent neural network named as LSTM). It aims to 
establish a model that can be used to estimate dynamic and static 
brittleness index according to conventional petrophysical well 
logs. In this paper, dynamic and static brittleness index values 
are predicted using deep learning (DL) algorithms and lithology 
data in carbonate environment in one of the hydrocarbon fields in 
southern part of Iran. The effective features were selected using 
the deep learning algorithm of the Auto-encoder, and the dynamic 
and static brittleness index was estimated using the MLP, LSM, 
and CNN algorithms. In the first step, the Auto-encoders deep 
network was used to select the effective features. Subsequently, 
the selected logs were utilized as input parameters of the model 
to predict the brittleness index using three MLP, LSTM and 
CNN algorithms. Finally, the results of the three algorithms were 
compared with each other. In three separate steps, the brittleness 
index has been estimated using the deep learning algorithm. First, 
the dynamic brittleness index is estimated with deep learning 
algorithm. In the following, the dynamic brittleness index has 
been converted into a static brittleness index with deep learning 
algorithms. In the end step, the static brittleness index is estimated 
using deep learning algorithms directly with conventional logs 
and finally, the dynamic and static brittleness index was compared 
with the brittleness index obtained from lithology. The obtained 
results show the effective use of deep learning algorithms (CNN 
and LSTM), in predicting brittleness index.

 
METHODS
Multi-layer perceptron neural network

The multi-layer perceptron neural network is one of the 
feedforward artificial neural networks. In a multilayer perceptron 
neural network, there will be at least three layers of nodes: input 

layer, hidden layer, output layer. Neural network nodes are the 
computing units in a neural network. In this neural network, 
the outputs of the first layer (input) are used as the inputs of the 
next (hidden) layer; This work continues in this way, until, after 
a certain number of layers, the outputs of the last hidden layer 
are used as the inputs of the output layer. The input and output 
layer are called the hidden layer (Alavi et alii, 2010). Multi-layer 
perceptron networks also contain a set of weights that must be 
adjusted for neural network training and learning.  

Recurrent neural network
The recurrent neural network is a neural network in which 

the output of each cell is not only related to the previous 
layers, the output of each cell also feeds its own input; In 
other words, the recursive network by using a recursive loop 
makes it possible for the information obtained (last state) by 
the network at the end of each calculation to be used for future 
calculations. One of the problems of recurrent neural networks 
is their inability to learn long-term dependence. To solve this 
problem, Hochreiter et alii (1997) proposed an architecture 
for recurrent neural networks, which became known as the 
long-short-term memory (LSTM) architecture, and was able 
to compensate for the mentioned shortcoming (Hochreiter 
& Schmidhuber, 1997). Since the introduction of LSTM, 
improvements have been made to increase its efficiency. Figure 
1 shows the structure of an LSTM block, which includes three 
inputs, output and forget gates. The output of the LSTM block 
is recursively connected to the input of the block and the input 
of the three mentioned gates. Activation functions in input 
and output gates are usually hyperbolic tangent function and 
activation function in forgetting gate is sigmoid function.

Convolutional neural network
Two This method was introduced in the 1980s and 1990s. 

Although the convolutional neural network was forgotten for 
a while, however, since 2012 and with the modification of the 
convolutional neural network (CNN or ConvNet), it has made 
great progress in the machine field and is expanding rapidly 

Fig. 1 - 	 Structure of an LSTM block (Greff  et alii, 2017)
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(Guo et alii, 2015). One of the advantages of the CNN method 
is the reduction of the number of weight parameters with the 
help of the concept of weight sharing. Also, in the generation 
of features in this method, the neighborhoods of a pixel are 
considered, which is compatible with the assumption that the 
statistical properties of the pixels of a part in the images are 
the same (Guo et alii, 2015). In multi-layer perceptron neural 
networks, the neurons are fully connected to each other, and 
with the increase in the dimensions of the images, the number 
of connections and free parameters will increase greatly, and 
as a result, large training data will be required. Therefore, 
during training, the problem of overfitting may occur due to 
the inappropriate number of training samples (Lecun et alii, 
1998). Also, perceptron multilayer neural networks do not 
show resistance against noise. One of the most important 
weaknesses of MLP neural networks is not providing a 
mechanism for automatic feature generation. According to MLP 
problems, CNN methods have been presented. CNN consists 
of three layers: convolution, pooling and full connection. The 
convolution layer is created from the convolution of the input 
image with the help of local receiving areas, and in this layer, 
the concept of being hierarchical and approaching the object 
is realized. The movement of the filter or filters on the input 
bands is in the form of Toggle Movement (Gu et alii, 2018). 
Determining the number of filter banks and convolution layers 
and adjusting its parameters is one of the existing challenges. 
In the pooling layer, the image size is reduced. The main 
reason for applying this operator is to reduce the volume of 
calculations and Invariant of the features with respect to the 
image size (Yoo, 2015). In addition to the above advantage, the 
non-linearity of the features produced in the convolution stage 
is done with the help of the activation function in the pooling 
layer. The pooling operation reduces the size along the spatial 
dimensions, the result of which will be a mass with a smaller 
size. Basically, it is through this operation that a score vector 
is created at the end of the convolution network. Because this 
operation is applied to all slices, the output dimension is the 
same as the input dimension to the pooling layer and does not 
change. There are various methods for applying pooling, but 
the methods of averaging and choosing the maximum with the 
reduction of the ratio of two and the Relu activation function are 
among the most common methods. After the pooling stage, the 
two-dimensional features created in the fully connection stage 
are converted into a one-dimensional vector. This layer, like the 
MLP neural network, provides the possibility of implementing 
feed-forward training for CNN (Benigo et alii, 2013). There are 
different types of activation functions. Some examples of the 
most famous activation functions are the sigmoid function, the 
hyperbolic tangent function, the Relu linear rectifier function, 
the exponential linear function, and the softmax function. Figure 

2 shows an example of image processing by convolutional 
neural network.

 Computing environment
All training and evaluation stages were completed using 

Python version 3.9.17 (https://www.python.org) with the 
TensorFlow (version 2.6) (Abadi et alii, 2016), tensorflow-
keras backend (version 2.6) (Chollet, 2015), Scikit-learn 
(version 1.3.0) (Pedregosa et alii, 2011), NumPy (version 
1.23) (Oliphant, 2006) and Matplotlib (version 3.7.1) 
(Hunter, 2007) libraries.  The deep learning frameworks were 
implemented using the CPU of a Quadro 2000M model with a 
2.4 GHz Intel Core i7 x64-based processor and 16 GB of RAM, 
running the 64-bit operating system.

DATA PREPARATION
The data used is related to the well of one of the hydrocarbon 

fields in the southwest of Iran. This field is one of the largest oil 
fields in the Zagros basin, which is located in the eastern part 
of the structural area of Dezful embayment (Dezful embayment 
is a part of Zagros where most of Iran’s oil fields are located. 
This embayment is a part of the folded Zagros, where the Asmari 
formation and older layers do not have a surface outcrop. In the 
formation of this embayment, the combined action of Qatar-
Kazron right-handed fault and Balaroud left-handed fault played 
a major role). This field is extended with a northwest-southeast 
trend in the western to central part and a northeast-southwest 
trend in the eastern part. The surface outcrop of this field is 
the Aghajari formation. the Asmari formation, the Bangestan 
and Khami groups are the hydrocarbon reservoirs in this field. 
Asmari Formation is the most important reservoir rock of this 
field, which is divided into 6 reservoir layers. Reservoir layers 
one, two, three are mainly composed of dolomitic carbonates, so 
the density of fractures (especially in layer one) (90% dolomite) 
is higher. In the fourth, fifth and sixth reservoir layers of this 
field, due to the increase of shale and marl layers, as well as the 
decrease in fragility, the density of fractures decreases. The total 
available data are 16330, which are located in the depth range of 

Fig. 2 - 	 Schematic of CNN algorithm (Benigo et alii, 2013)
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Feature selection to reduce dimension
The relations between brittleness index with conventional 

logs is a very complex nonlinear system problem, which is the 
result of the interaction of many elements in the earth system, 
that makes it difficult for us to analyze and predict brittleness 
index. Choosing to use the best sensitive logs instead of all 
available conventional logs for model training and prediction 
can reduce the amount of data processing and improve the 
processing speed and efficiency of the model (Anemangely 
et alii, 2018). Moreover, feature selection also increases the 
prediction precision and universal applicability of the model. In 
other words, if all the characteristic factors are taken into account, 
there will be a lot of variables input into the model, which will not 
only complicate the structure of the network, but also reduce the 
precision of the estimation results. Therefore, in order to simplify 
the model structure, improve the modeling ability, enhance the 
model prediction efficiency, and alleviate the interference of 
the non-main parameter variables of the model to the prediction 
results it is necessary to select the feature. In this paper, by using 
Auto-encoder deep learning algorithm, the effective features and 
effective logs were determined to predict brittleness index. The 
data of SGR, CGR, DT, RHOB, RT, NPHI, CALIPER, Vp, Vs 

and PEF logs were determined by applying Auto-encoder’s deep 
learning algorithm to the main features, and logs, Vp, RHOB, 
CALIPER, PEF and CGR were determined as inputs for MLP, 
LSTM and CNN models for brittleness index, because choosing 
other logs would increase the error and decrease the accuracy 
of the model. Also, because the shear wave velocity log is not 
recorded in most wells, this log is not used as an input parameter 
of the algorithms, and the parameters of brittleness index is 
predicted with common logs that are recorded in all wells. Figure 
5 shows the workflow of feature selection using deep learning 
Auto-encoder algorithm.

Dataset splits
Prediction reliability is one of the main concerns in the 

performance evaluation of supervised deep learning algorithms 
(Consonni et alii, 2010; Alsina et alii, 2017). In this study, 
16330 data were available in the depth range of 3551.07 to 
3799.78 meters. At first, 24% of these data were separated from 
the end of dataset as blind data and from the other 12330 data, 
80% were selected as training data and 20% as test data. and 
to avoid overfitting, validation split 0.1 of the training data is 
considered. 

Data normalization
For reduce the prediction error result from the difference 

of order of magnitude between the input data, the original 
data need to be preprocessed in the experiment. In this paper, 
the Min-Max Normalization method is used to normalize 

3551.07 to 3799.78 meters and 12 laboratory samples have been 
available. Figure 3 shows a schematic of the oil field. Available 
well logs are sum gamma ray (SGR), clean gamma ray (CGR), 
sonic transient time (DT), density (RHOB), resistivity (LL7) 
neutron porosity (NPHI), CALIPER, primary (p) and secondary 
(shear) velocity (Vp, Vs) and photo electric (PEF). Figure 4 shows 
a logs and Table 1 shows core samples. According to Figure 4 
and the lithology column, the lithology is mainly carbonate with 
anhydrite, sandstone and shale lithologies.

Fig. 3 - 	 Scheme of the oil field

Tab. 1 - 	 Values of laboratory samples of UCS

Fig. 4 - 		  Logs in the well. from left to right: Depth, Caliper, SGR, 
CGR, RHOB, NPHI, RT, DT, Vp, Vs, PEF, Lithology
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the original data to [0,1] range, in order to eliminate the 
dimensional difference.

Adam algorithm
Adam optimization algorithm is an adaptive learning rate 

optimization algorithm based on gradient stochastic objective 
function optimization (King & Ba, 2014). Adam combines the 
advantages of two popular optimization methods: AdaGrad 
(Duchi et alii, 2011) for sparse gradient problems and RMSProp 
(Tieleman & Hinton, 2012) for nonlinear and non-fixed 
optimization problems. The parameter update size of Adam 
algorithm is constant for gradient rescaling. It not only doesn’t 
need fixed optimization objectives and is suitable for sparse 
gradient, but also performs step-size backtracking naturally. It 
has the advantages of simple implementation, with the memory 
required is small, high computational efficiency, etc., and is 
very suitable for the problems of more optimization parameters 
and large amount of data. Therefore, this study chooses Adam 
optimization algorithm to optimize deep learning algorithms.

Dynamic brittleness index using deep learning method
In the introduction, the relation of BIdyn is introduced 

(equation 3). To estimate elastic moduli, shear wave velocity 
is needed, and since shear wave velocity logs are not recorded 
in most wells, estimating the BIdyn from conventional logs is 
very important. BIdyn was estimated with the conventional data 
logs of Vp, RHOB, CALIPER, PEF and CGR (the effective 
features were determined using Auto-encoder’s deep learning 
algorithm) and using MLP, LSTM and CNN algorithms The 
log data for each case was divided into three parts, training, 
test and blind, according to the procedure described in dataset 

splits. Figure 6 shows the BIdyn estimation flowchart.
The key parameters for building the MLP network in this 

experiment were set as follows: Batch size = 50, Learning rate 
= 0.01, Number of iterations = 400, Hidden layers = 2 layers, 
Nodes in the first hidden layer = 500, Nodes in the second 
hidden layer = 100, Dense layer = 1, Activation function = 
Relu, Optimization algorithm = Adam.

For building the LSTM network: Batch size = 256, Learning 
rate = 0.001, Number of iterations = 400, Hidden layers = 
2 layers, Nodes in the first hidden layer = 200, Nodes in the 
second hidden layer = 100, Dense layer = 1, Optimization 

algorithm = Adam.
Several hyperparameters were set for developing the CNN 

model in this study to predict the dynamic brittleness index:
Batch size = 256, Learning rate = 0.0001, Number of 

iterations = 100, Layers = 2 layers, Number of filters in the 
first layer = 128, Number of filters in the second layer = 256, 
Kernel size (convolutional window length) = 3, Padding = 
same, Strides = 1, Neurons in the dense layer = 1, Activation 
function = Relu, Optimization algorithm = Adam.

Dynamic brittleness index converts to static brittleness 
index using deep learning

In the following, using three algorithms, show the flowchart 
the BIdyn converted to BIst (Fig. 7). The workflow shows the 
transformation of BIdyn to BIst using three algorithms (MLP, 
LSTM and CNN).

Table 2 shows the parameters used in each of the algorithms 

Fig. 5 - 	 Display the workflow of feature selection using Auto-encoder 
technique

Fig. 6 - 	 Workflow schematic for BIdyn prediction using DL algorithms
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with the conventional data logs of Vp, RHOB, CALIPER, PEF 
and CGR (the effective features were determined using Auto-
encoder’s deep learning algorithm) and using MLP, LSTM and 
CNN algorithms. It has been done, that the training parameters 
of each of these algorithms are given below. Table 3 shows the 
parameters used in each of the algorithms of the deep learning 
algorithm (MLP, LSTM and CNN) for BIst prediction using log 
data. At first, 24% of the data were separated from the end as 
blind data, and then, from the other data, 80% were selected 
as training data and 20% as test data and validation split was 
selected as 0.1.

MODEL EVALUATION
The performance of the deep learning models for brittleness 

index prediction are conducted by calculating widely used 
statistical measures as expressed in equations. 4, 5, 6, 7, 8 
and 9. Here, mean absolute percentage error (MAPE), mean 
absolute error (MAE), Mean Squared Error (MSE), root mean 
square error (RMSE), Normalized Root Mean Squared Error 
(NMSRE), and coefficient of determination (R2) were used to 
evaluate the performance of model prediction. 

						      (4)
			 
						      (5)
						    
						      (6)
		
						      (7)
		
						      (8)
		
						      (9)

of the deep learning method (MLP, LSTM and CNN) for convert 
BIdyn to BIst. At first, 24% of the data were separated from the end 
as blind data, and then, from the other data, 80% were selected 
as training data and 20% as test data and validation split was 
selected as 0.1.

Static brittleness index using log data and deep learning 
algorithm

The Empirical relations are usually used to calculate the BIst. 
In this research, in the previous stage, BIst  was estimated from 
BIdyn  using deep learning method. Further, the goal is to estimate 
the BIst  directly from conventional logs. In the introduction, 
the relation of BIst is introduced (equation 4). BIst was estimated 

Fig. 7 - 	 Workflow schematic for the transformation of BIdyn to BIst  
using three algorithms

Tab. 2 - 	 The same parameters used in each of the algorithms for convert BIdyn to BIst



RESULTS AND DISCUSSION
Dynamic brittleness index using deep learning method

Tables 4, display BIdyn prediction with log data and deep 
learning algorithms based on the training (80%) subsets. 
According to Table 4, for BIdyn training data, three algorithms have 
a low error, where the MSE values are equal to MSEMLP=1.3720, 
MSELSTM=1.7972, MSECNN=1.5102, and MAE values are 
equal to MAEMLP=0.5835, MAELSTM=0.6721, MAECNN=0.6002, 
and RMSEMLP=1.1713, RMSELSTM=1.3406, RMSECNN=1.2289 
respectively.

Table 5 displays the BIdyn  prediction errors (EP) and coefficient 
of determination based on the test (20%) subset for three 
algorithms. Figures 8 provide a comparison for BIdynmeasured and 
BIdyn predicted using three algorithms for train and test data. (Fig. 
8a), comparison of BIdyn measured and BIdyn predicted for train and 
test data using MLP algorithm. (Fig. 8b), BIdyn prediction using 
LSTM algorithm. (Fig. 8c), BIdyn prediction using CNN algorithm. 
Blue log (measured BIdyn for training (original data)), orange log 
(predicted BIdyn for training data), green log (measured BIdyn for 
test data (original data)), red log (predicted BIdyn for test data). 
According to Fig. 8 and Table 4 and 5, for BIdyn train and test data, 
three algorithms MLP, LSTM and CNN have a low error and high 
coefficient of determination, where the R2 values for train data are 
equal to R2

MLP=0.9755, R2
LSTM=0.9679, R2

CNN=0.9730, and for test 
data MSE values are equal to MSEMLP=0.8867, MSELSTM=0.4438, 
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MSECNN=0.2052, and MAE values are equal to MAEMLP=0.7463, 
MAELSTM=0.5479, MAECNN=0.3428, and RMSEMLP=0.9416, 
RMSELSTM=0.6620, RMSECNN=0.4530, and R2 values are equal to 
R2

MLP=0.9828, R2
LSTM=0.9914, R2

CNN=0.9960,  respectively. 

To validate the algorithms, a part of the data was separated 
from the beginning called blind data. At this stage, the validation 
of the algorithms has been applied to previously unknown data. 
Table 6 depicts the predicted BIdyn errors and coefficient of 
determination based on the blind subsets of data, selected from 
the 400 data records. To estimate BIdyn, error values for blind data 
are equal to MSEMLP=5.1687, MSELSTM=1.7135, MSECNN=1.0292 
and MSEMLP=1.1713, RMSELSTM=1.3406, RMSECNN=1.2289 
and RMSEMLP=2.2735, RMSELSTM=1.3090, RMSECNN=1.0144, 
determination coefficient values are equal to R2

MLP=0.9199, 
R2

LSTM=0.9734, R2
CNN=0.9841. Figure 9 shows a comparison of 

the predicted BIdyn using three algorithms with the measured BIdyn 
values for blind data. (Fig. 9a), comparison of BIdyn measured and 
BIdyn predicted for blind data using MLP algorithm. (Fig. 9b), 
BIdyn prediction using LSTM algorithm. (Fig. 9c), BIdyn prediction 
using CNN algorithm (Blue log (BIdyn measured), orange log (BIdyn 
predicted)). According to the values of table 6 and considering the 
prediction errors and the coefficient of determination, for blind 
data in three algorithms, it can be concluded that the most robust 
and best method of BIdyn prediction is the CNN algorithm and the 
weakest performance for this case related to the MLP algorithm.

Tab. 3 - 	 The same parameters used in each of the algorithms for BIst prediction with log data and three algorithms

Tab. 4 - 	 BIdyn Prediction errors for training data records using three 
algorithms

Tab. 5 - 	 BIdyn  Prediction errors and coefficient of determination for 
test data
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Dynamic brittleness index converts to static brittleness 
index using deep learning

In the next step, the BIdyn  is converted to the BIst  using the 
deep learning algorithms. BIst is calculated from equation 4. 
The tensile strength is assumed to be 0.1 uniaxial compressive 
strength. In this research, 12 laboratory samples of UCS have 
been available (Table 1). In order to generalize these samples 
to the entire target range, we first calculate the UCS with the 
Christaras (Christaras et alii, 1997) relations (equation 12) at 
the depths where the laboratory samples of UCS were recorded, 
and then the regression between the UCS obtained from the log 
and we determine the UCS calculated in the laboratory, and the 
obtained regression is equal to 0.98 with a 2nd degree equation 
and we generalize it to the entire depth range. Figure 10 shows 
the regression and equation obtained between the uniaxial 

Fig. 8 - 	 Comparison of the predicted BIdyn using three algorithms with 
the measured BIdyn for train and test data. (a), MLP algorithm. 
(b), LSTM algorithm. (c), CNN algorithm. Blue log (measured 
BIdyn for training (original data)), orange log (predicted BIdyn 
for training data), green log (measured BIdyn for test data 
(original data)), red log (predicted BIdyn for test data)

Tab. 6 - 	 BIdyn  prediction errors for blind data records using three 
algorithms

Fig. 9 - 	 Comparison of the predicted BIdyn values using three (MLP, 
LSTM and CNN) deep learning algorithms with the measured 
BIdyn values of the blind dataset. (a), BIdyn prediction using 
MLP. (b), BIdyn prediction using LSTM. (c), BIdyn prediction 
using CNN
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compressive strength of the log and the uniaxial compressive 
strength of the laboratory samples.

					                               (10)

Tables 7, display the model evaluation parameters, the 
transformation of the BIdyn to the BIst  for the training data. 
According to Table 7, for the transformation of the BIdyn to the 
BIst training data, three algorithms have a low error, where the 
MSE and values are equal to MSEMLP=1.0031, MSELSTM=0.8393, 
MSECNN=0.8855, and MAE values are equal to MAEMLP=0.6482, 
MAELSTM=0.5409, MAECNN=0.5716, and RMSEMLP=1.0015, 
RMSELSTM=0.9161, RMSECNN=0.9410 respectively.

Table 8 display the model evaluation parameters, the 
transformation of the BIdyn to the BIst  for the test (20%) subset with 
three algorithms. According to Table 8, for the transformation 
of the BIdyn to the BIst training data, three algorithms have a low 
error, where the MSE and values are equal to MSEMLP=0.8909, 
MSELSTM=0.8351, MSECNN=0.4273, and MAE values are equal 
to MAEMLP=0.6891, MAELSTM=0.6658, MAECNN=0.5560, and 
RMSE values are equal to RMSEMLP=0.9439, RMSELSTM=0.9138, 
RMSECNN=0.6537 respectively. Figures 11 provide a comparison 
for BIst measured and BIst predicted using three algorithms for 
train and test data. (Fig. 11a), comparison of BIst measured 

Tab. 7 - 	 Model evaluation parameters, BIdyn  convert to BIst for training 
data

Fig. 10 - 	Workflow schematic for the transformation of BIdyn to BIst  
using three algorithms

Tab. 8 - 	 Model evaluation parameters, BIdyn  convert to BIst for test 
data

Fig. 11 - 	 Display of BIst prediction from BIdyn with three algorithms for 
train and test data. (a), BIst  prediction with MLP algorithm. 
(b), BIst  prediction with LSTM. (c), BIst  prediction with CNN. 
Blue log (BIst  measured for training (original data)), orange 
log (BIst  predicted for training data), green log (BIst measured 
for test data (original data)), red log (BIst  predicted for test 
data)
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MSE and values are equal to MSEMLP=0.0340, MSELSTM=0.0102, 
MSECNN=0.0007 and MAE values are equal to MAEMLP=0.1177, 
MAELSTM=0.0685, MAECNN=0.0187, and RMSEMLP=0.1845, 

and BIst predicted for train and test data using MLP algorithm. 
(Fig. 11b), BIst prediction using LSTM algorithm. (Fig.  11c), 
BIst prediction using CNN algorithm. Blue log (measured BIst 
for training (original data)), orange log (predicted BIst for 
training data), green log (measured BIst for test data (original 
data)), red log (predicted BIdyn for test data). According to 
Fig. 11 and Table 7 and 8, for BIst train and test data, three 
algorithms MLP, LSTM and CNN have a low error and high 
coefficient of determination, where the R2 values for train data 
are equal to R2

MLP=0.9755, R2
LSTM=0.9644, R2

CNN=0.9652, and R2 
values for test data are equal to R2

MLP=0.9713, R2
LSTM=0.9731, 

R2
CNN=0.9797,  respectively.

Table 9, depicts the transformation of the BIdyn to the BIst  
errors and coefficient of determination based on the blind 
subsets of data, selected from the 400 data records. To estimate 
BIst, error values for blind data are equal to MSEMLP=1.4823, 
MSELSTM=0.9425, MSECNN=0.8444, and MAE values are equal 
to MAEMLP=1.0832, MAELSTM=0.7598, MAECNN=0.7746, and 
RMSE values are equal to RMSEMLP=1.2175, RMSELSTM=0.9708, 
RMSECNN=0.9189, and determination coefficient values are 
equal to R2

MLP=0.9457, R2
LSTM=0.9655, R2

CNN=0.9691. Figure 12 
shows a comparison of the BIst prediction from BIdyn and BIst  
measured for blind data for blind data. (Fig. 12a), comparison 
of BIst  measured and BIst  predicted for blind data using MLP 
algorithm. (Fig. 12b), BIdyn prediction using LSTM algorithm. 
(Fig. 12c), BIst prediction using CNN algorithm (Blue log 
(BIst measured), orange log (BIst predicted)). According to the 
values of Table 9 and considering the prediction errors and the 
coefficient of determination, for blind data in three algorithms, 
it can be concluded that the most robust and best method of 
BIdyn  is converted to the BIst prediction is the CNN algorithm 
and the weakest performance for this case related to the MLP 
algorithm. 

Static brittleness index using log data and deep learning 
algorithm

Table 10, displays BIst prediction errors respectively based 
on the training (80%) subsets. According to Table 10, for BIst 
training data, three algorithms have a low error, where the 

Tab. 10 - 	BIst Prediction errors and accuracy for training data records 
with three algorithms

Tab. 9 - 	 Model evaluation parameters, BIdyn convert to BIst for blind 
data

Fig. 12 - 	Display of BIst prediction from BIdyn with three algorithms 
for blind data. (a), BIst  prediction for blind data with MLP 
algorithm. (b), BIst  prediction with LSTM. (c), BIst  prediction 
with CNN. Blue log (BIst measured), orange log (BIst predicted)



61Italian Journal of Engineering Geology and Environment, 1 (2024)		  www.ijege.uniroma1.it    

ESTIMATION BRITTLENESS INDEX IN CARBONATE ENVIRONMENTS USING LOG AND LITHOLOGY DATA AND DEEP LEARNING TECHNIQUES

RMSELSTM=0.1010, RMSECNN=0.0276 respectively.
Table 11 displays the BIst  prediction errors (EP) and 

coefficient of determination based on the test (20%) subset for 
three algorithms. Figures 13 provides a comparison for BIst 
measured and BIst predicted using three algorithms for train 
and test data. (Fig.  13a), comparison of BIst measured and BIst 
predicted for train and test data using MLP algorithm. (Fig. 13b), 
BIst prediction using LSTM algorithm. (Fig. 13c), BIst prediction 
using CNN algorithm. Blue log (measured BIst for training 
(original data)), orange log (predicted BIst for training data), green 
log (measured BIst for test data (original data)), red log (predicted 
BIst for test data). According to Fig. 13 and Table 10 and 11, for 
BIst train and test data, three algorithms MLP, LSTM and CNN 
have a low error and high coefficient of determination, where the 
R2 values for train data are equal to R2

MLP=0.9985, R2
LSTM=0.9995, 

R2
CNN=0.9999, and for test data the MSE and values are equal 

to MSEMLP=0.1290, MSELSTM=0.0241, MSECNN=0.0052 and 
MAE values are equal to MAEMLP=0.2420, MAELSTM=0.0876, 
MAECNN=0.0484, and RMSEMLP=0.3592, RMSELSTM=0.1553, 
RMSECNN=0.0727 and R2 values are equal to R2

MLP=0.9958, 
R2

LSTM=0.9902, R2
CNN=0.9998,  respectively. 

Table 12 depicts the predicted BIst errors and coefficient of 
determination based on the blind subsets of data, selected from 
the 400 data records. To estimate BIst, error values for blind data 
are equal to MSEMLP=1.2071, MSELSTM=0.9076, MSECNN=0.6719 
and MAEMLP=0.8980, MAELSTM=0.7866, MAECNN=0.6434, and 
RMSEMLP=1.0987, RMSELSTM=0.9527, RMSECNN=0.8197 and 
determination coefficient values are equal to R2

MLP=0.9557, 
R2

LSTM=0.9667, R2
CNN=0.9754. Figure 14 shows a comparison of 

the predicted BIst using three algorithms with the measured BIst 
values for blind data (Fig. 14a), comparison of BIst measured and 
BIst predicted for blind data using MLP algorithm. (Fig. 14b), 
BIst prediction using LSTM algorithm. (Fig. 14c), BIst prediction 
using CNN algorithm (Blue log (BIst measured), orange log (BIst 
predicted)). Figure 15 shows the coefficient of determination of 
the blind data of the BIst measured and the BIst predicted for three 
algorithms. (Fig. 15a), the coefficient of determination of the 
blind data using the MLP algorithm. (Fig. 15b), the coefficient 
of determination using the LSTM algorithm. (Fig. 15c), the 

coefficient of determination using the CNN algorithm. According 
to the values of  Table 12 and considering the prediction errors 
and the coefficient of determination, for blind data in three 
algorithms, it can be concluded that the most robust and best 
method of BIst prediction is the CNN algorithm and the weakest 
performance for this case related to the MLP algorithm. 

Figure 16a shows the comparison of all measured and 
predicted dynamic brittleness index data BIdyn  measured (blue 
color) and BIdyn  predicted (orange color). (Fig. 16b) shows 
the comparison of all predicted static brittleness index data 

Tab. 11 - 	BIst prediction errors for test data records using three 
algorithms

Fig. 13 - 	Display of BIst predict from log data with three algorithms for 
train and test data. (a), BIst  prediction with MLP algorithm. 
(b), BIst  prediction with LSTM. (c), BIst prediction with 
CNN. Blue log (BIst  measured for training (original data)), 
orange log (BIst  predicted for training data), green log (BIst  
measured for test data (original data)), red log (BIst  predicted 
for test data)
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predicted brittleness index data. (Fig. 16d) shows the brittleness 
index obtained with the volume percentage of minerals with 
equation 5. In (Fig. 16d), sandstone ranges have a higher 
brittleness index than carbonate ranges. According to Fig. 16, 
there is a very good match between core data and predicted static 
brittleness index. Also, according to the comparison between the 
index obtained from the volume percentage of minerals and the 
obtained static and dynamic brittleness index, there is a good 
match. Also, according to relation 5 and also the brittleness 
index calculated from lithology and lithology column, it can be 
stated that in the carbonate environment, in the areas where the 
lithology is limestone and dolomite, it has a lower brittleness 
index compared to the areas where the lithology is sandstone.

The deep learning algorithm is one of the new and high-
accuracy methods for predicting BI. In this paper, three deep 
learning algorithms (MLP, LSTM and CNN) are used to predict 
BIdyn and BIst. In this research, the aim is to check the accuracy 
of the algorithms used in predicting the BIdyn and BIst of the blind 
data, that these algorithms can be used in wells where we do 
not have an actual data. The results show the high accuracy 
of LSTM and CNN algorithm for BIdyn and BIst prediction. 

(blue color) and core data (orange color). (Fig. 16c) shows the 
enlargement of the comparison between core samples and 

Tab. 12 - 	BIst  prediction errors for blind data with three algorithms

Fig. 14 - 	Display of BIst  predict from log data with three algorithms for 
blind data. (a), BIst  prediction with MLP. (b), BIst prediction 
with LSTM. (c), BIst  prediction with CNN. Blue log (BIst 
measured), orange log (BIst  predicted)

Fig. 15 - 	Display of coefficient of determination of blind data for BIst  
measured and BIst  predicted with three deep algorithms. (a), 
R2 using MLP algorithm. (b), R2 using LSTM algorithm. (c), 
R2 using CNN algorithm
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Therefore, the accuracy and robustness of the prediction results 
of these techniques have more advantages than MLP model and 
traditional empirical models.

CONCLUSION
One of the important stages of geomechanical modeling is the 

determination of the BI, which is mainly determined by empirical 
relations. Actual data of well from one of Iran’s hydrocarbon 
fields is selected in this study to perform relevant tests. In this 
study, some models are stablished for predicting BIdyn and BIst 
values based on three MLP, LSTM and CNN algorithms. To 
achieve the goals, first, the Auto-encoder algorithm was used to 
select the effective features, and the effective features of the Vp, 
RHOB, CALIPER, PEF and CGR were selected for BI predicted. 
To estimate the BI of the structure of the MLP model including 
two layers where the first layer is 500 nodes and the second layer 
is 100 nodes, the LSTM model including two layers where the 
first layer is 200 nodes and the second layer is 100 nodes and the 
dropout is 0.2, and for CNN model consists of two layers, 128 
filters of the first layer, 256 filters of the second layer were selected. 
In this research, the BIdyn was first estimated with three algorithms 
and conventional data logs, and then two methods were used to 
estimate the BIst. The BIdyn  was estimated with log data and three 
algorithms, and then three algorithms were used to convert BIdyn 

to BIst, in the following, instead of using two steps to estimate 
the BIst, this parameter was estimated directly from conventional 
logs using three algorithms (MLP, LSTM and CNN). To ensure 
the results of the algorithms, the evaluation of the models was 
done with the parameters of MAE, MAPE, MSE, RMSE and R2. 

In the next step, the three models were applied on the blind data 
of the BIdyn and BIst, R

2 values obtained  for BIdyn; R
2
MLP=0.9199, 

R2
LSTM=0.9734, R2

CNN=0.9841 and R2 values obtained for BIdyn 
converted to BIst; R2

MLP=0.9457, R2
LSTM=0.9655, R2

CNN=0.9691 
and R2 values obtained for BIst; R2

MLP=0.9557, R2
LSTM=0.9667, 

R2
CNN=0.9754. In continue according to the comparison between 

the index obtained from the volume percentage of minerals and 
the obtained static and dynamic brittleness index, there is a good 
match. Moreover, the BIdyn and BIst are predicted by the proposed 
method and traditional empirical models, it has been demonstrated 
that the introduced method, as an efficient deep learning model, 
outperforms MLP models and traditional empirical models in 
their prediction accuracy and robustness. While MLP network 
achieved relatively satisfactory results in BIdyn and BIst prediction, 
but compared to the LSTM and CNN algorithms, it shows less 
accuracy and more error. the results of which show the robust of 
deep learning algorithms in BIdyn and BIst  prediction.

ABBREVIATIONS
AI 		  Artificial intelligence
ANN		  Artificial neural network
BIdyn		  Dynamic Brittleness Index
BIst		  Static Brittleness Index
CGR		  Corrected Gamma Ray
CHAL 		  Caliper log
CNL 		  Compensate neutron log 
CNN 		  Convolutional neural network
DL 		  Deep learning 
DNN 		  Deep neural network 
DT 		  Acoustic (sonic) log 
ELM 		  Extreme learning machine
ENN 		  Elman neural network
EP		  Evaluation Parameter
PEF		  Photoelectric Log
FFANN 		  Feedforward artificial neural network
FL		  Fuzzy logic
GA		  Genetic algorithm
GEP		  Gene expression programming
GR 		  Gamma ray log 
GRNN 		  General regression neural network
LSSVM		  Least-squares support-vector machines
LSTM		  Long short-term memory networks
MAE 		  Mean absolute error 
MAPE		  Mean absolute percentage error
MF		  Memetic firefly
ML		  Machine learning technique 
MLEM		  Multi extreme learning machine
MLP		  Multi-layer perceptron
MSE		  Mean square error
NRMSE		  Normalized Root Mean Squared Error

Fig. 16 - 	BIdyn  measured (blue color) and BIdyn  predicted (orange 
color). (b), BIst  predicted (blue color) and core data (orange 
color). (c), the enlargement of the comparison between core 
samples and BIst predicted. (d), brittleness index with the 
volume percentage of minerals
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R2 		  Coefficient of determination
RHOB 		  Density log 
RMSE 		  Root mean square error 
RNN 		  Recurrent neutral network 
RS 		  Shallow lateral resistivity log 
RT 		  Formation true resistivity

SGR		  Sum Gamma Ray
SVM 		  Support vector machine
SVR		  Support vector regression
UCS		  Uniaxial Compressive Strength   
Vs 		  Shear wave velocity 
Vp		  Compressional wave velocity
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