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EXTENDED ABSTRACT

11 termine Deformazioni Gravitative Profonde di Versante (DGPV), in inglese Deep-Seated Gravitational Slope Deformations (DSGSDs),
¢ stato ed ¢ tuttora usato per descrivere un insieme di lenti e complessi processi deformativi guidati dalla gravita, che coinvolgono interi
versanti o larghe porzioni di essi su lunghi periodi di tempo. Questi fenomeni si verificano nelle piu diverse condizioni morfostrutturali
e sono caratterizzati da numerose evidenze morfologiche (sdoppiamenti di cresta, depressioni sommitali, trincee, scarpate, controscarpate,
fratture da trazione, rigonfiamenti), generalmente distribuite lungo tutto il sistema crinale-versante-fondovalle. Le deformazioni gravitative a
grande scala interessano 1’ammasso roccioso per spessori di diverse decine o centinaia di metri e, generalmente, sono caratterizzate da tassi
di deformazione estremamente ridotti se comparati con le loro dimensioni, nell’ordine dei millimetri/anno. Oltre a condizionare 1’assetto
morfologico del rilievo, questi fenomeni determinano lo sviluppo di numerose frane secondarie. Non di rado, le DSGSDs presentano una
evoluzione catastrofica e portano allo sviluppo grandi frane altamente pericolose a causa degli elevati volumi in gioco e delle alte velocita di
spostamento.

Le deformazioni gravitative a grande scala sono particolarmente importanti sia per il loro ruolo morfogenetico che per il rischio associato
alle deformazioni indotte e alla possibile evoluzione in grandi frane catastrofiche. Per questi motivi, negli ultimi decenni sono stati condotti
numerosi studi specialistici su questi fenomeni. La mancanza di una classificazione generale e universalmente riconosciuta, unitamente alla
grande variabilita di morfologie e caratteristiche, ha portato allo sviluppo di numerose terminologie e definizioni, che rendono I’approccio
a questi fenomeni particolarmente complesso. Nonostante cio, ¢ possibile identificare alcune caratteristiche fondamentali, sia in termini di
cinematismo ed elementi morfologici prodotti che in termini di fattori di controllo e possibile evoluzione.

Le DSGSDs possiedono caratteristiche che le collocano in una posizione intermedia tra le frane s.s. e la tettonica gravitativa. Tra le diverse
tipologie di fenomeni non esiste un limite netto e ben definito, anche se nel corso degli anni sono stati prodotti diversi studi sugli elementi che
consentono di discriminare i vari processi. In particolare, come elemento caratteristico delle DSGSDs alcuni autori hanno considerato 1’assenza
di una superficie di scivolamento continua, mentre altri la mancanza di limiti esterni ben definiti. La prima condizione ha perso di valore a
causa della scoperta di superfici di scivolamento continue in molte deformazioni gravitative, mentre la seconda ¢ strettamente dipendente dalle
caratteristiche geologico-strutturali dei versanti coinvolti e dal grado di evoluzione del fenomeno, anche se appare piuttosto comune in natura.

Negli ultimi anni, alcuni studi hanno evidenziato 1’importanza delle elevate scale spaziali e temporali che contraddistinguono le DSGSDs.
Le scale su cui esse agiscono sono strettamente connesse al comportamento reologico tempo-dipendente degli ammassi rocciosi coinvolti,
che rappresenta un elemento distintivo e caratteristico di tali fenomeni. L’analisi della letteratura scientifica esistente ha permesso di definire
i range che contraddistinguono questi processi deformativi guidati dalla gravita. Le DSGSDs presentano dimensioni generalmente comprese
tra 10° ¢ 10° m?, localmente fino a 10'° - 10" m?, e si sviluppano su intervalli di tempo variabili tra 10* ¢ 10* anni, in alcuni casi fino a 10° anni.

Sulla base di quanto esposto, si ritiene che la loro differenziazione rispetto alle frane convenzionali e alla tettonica gravitativa non
possa essere fatta in riferimento a un singolo elemento, ma piuttosto tenendo conto di tutta una serie di fattori caratteristici. In sintesi, i
principali elementi che contraddistinguono le DSGSDs sono: (i) dimensioni comparabili con quelle dell’intero versante (o gran parte di
esso); (if) limiti esterni o margini diffusi, discontinui o non ben definiti, con fianchi talora coincidenti con elementi idrografici o tettonici;
(ifi) distribuzione peculiare di alcuni elementi morfologici (sdoppiamenti di cresta, depressioni sommitali, trincee, scarpate, controscarpate,
fratture da trazione, rigonfiamenti), generalmente distribuiti lungo I’intero sistema crinale-versante-fondovalle; (iv) tassi di deformazione
estremamente ridotti (nell’ordine dei millimetri/anno); (v) ampie scale spaziali e temporali (volumi compresi tra 10° ¢ 10" m? e intervalli
di tempo compresi tra 10* e 10° anni); (vi) complessi processi deformativi (deformazioni fragili, duttili e visco-plastiche sia in ammasso
che lungo bande e piani di taglio); (vii) ammassi rocciosi intensamente fratturati e deformati (non completamente disturbati, con struttura
originaria ancora riconoscibile, a meno che nelle zone di taglio); (viii) presenza di frane secondarie e grandi collassi di versante (in tutto o
in parte del versante).
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ABSTRACT

Deep-Seated Gravitational Slope Deformations (DSGSDs)
are complex, slope-scale, gravity-driven phenomena, which
are placed between landslide movements s.s. and gravitational
tectonics. These processes, which develop over very long time
periods, are considerably relevant both for the remarkable
influence on the evolution of hillslope morphology and for
risk associated with the induced deformations and the possible
evolution into catastrophic landslides. A large number of studies
on DSGSDs was produced in the scientific literature; the lack of a
widely recognized classification, together with the great variability
of shapes and characteristics, have led to the development
of numerous terminologies and definitions, which make the
approach to these phenomena particularly complex. Despite this,
it is possible to identify some fundamental characteristics, both
in terms of kinematic mechanisms and induced morphological
elements and of controlling factors and possible evolution. In
more recent years, some studies highlighted the relevance of the
elevated spatial and temporal scales that feature DSGSDs, with
specific reference to the time-dependent rheology regulating the
deformation of rock masses as a prominent distinctive feature of
such processes. This study describes the current state of the art,
starting from both the numerous works present in the literature
and specialized review articles aimed at individual aspects of
these phenomena. The work is developed in order to describe
both the history of scientific progress in this field and all the
main aspects that characterize the phenomena in question, both
in terms of intrinsic characteristics and in relation to the control
factors and possible evolution. Through the analyzes of literature
data, indications are given on the space-time scale and on the
characteristics that allow to distinguish DSGSDs from other
gravitational phenomena.

Keyworps: DSGSDs, sackung (sagging), classification, nomenclature,

kinematics, morphological features, rock mass rheology, creep

INTRODUCTION

The term Deep-Seated Gravitational Slope Deformations
(DSGSDs Auct.) refers to a set of slow and complex deformational
processes driven by gravity, which involve entire slopes (or large
portions of them) over long time intervals (DramIS & SORRISO-
VALvO, 1994; AGLIARDI et alii, 2012). These phenomena take
place in a wide variety of morpho-structural conditions (Fig.
1) and are characterized by typical morphological features
(e.g., double ridges, ridge top depressions, trenches, scarps,
counterscarps, tension cracks, toe bulging) generally distributed
along the entire ridge-slope-valley floor system (RADBRUCH-
HALL, 1978; Bovis, 1982; SAVAGE & VARNES, 1987; AGLIARDI et
alii, 2001, 2012; JABOYEDOFF et alii, 2013; EsposITo et alii, 2014,
DisCenza et alii, 2021).

Italian Journal of Engineering Geology and Environment, 1 (2021)

© Sapienza Universita Editrice

M. E. DISCENZA & C. ESPOSITO

Some Authors refer to these processes with different names,
such as Slope Tectonics (ST — JABOYEDOFF et alii, 2011), Mass
Rock Creep (MRC — RaDBRUCH-HALL, 1978; CHIGIRA, 1992) or
Rock Slope Deformation (RSD — HUNGR et alii, 2014; JARMAN
& HARRISON, 2019). These terms have the advantage of not
referring to the binding concept of depth, rather emphasizing
the importance of stress fields and related deformations (as in
the case of ST), implying high spatial scales, or the mechanical
behavior (as in the case of MRC), implying significant temporal
scales. In this study, for uniformity, reference will be made to
the term DSGSD as it is more widespread in the international
scientific literature, while stressing that the different terms are
interchangeable.

DSGSDs involve large rock masses, with thickness of many
tens or hundreds of meters (PANEK & KLIMES, 2016) and have
dimensions comparable with those of the entire slope or ridges
(AGLIARDI et alii, 2001; JABOYEDOFF et alii, 2013). Generally,
these phenomena are characterized by very small deformation
rates if compared with their dimensions (DrAMIS & SORRISO-
VALvO, 1994), in the order of mm per years (VARNES et alii, 1990;
AGLIARDI et alii, 2001; AMBROSI & CROSTA, 2006; AGLIARDI ef
alii, 2012; JABOYEDOFF et alii, 2013; PANEK & KLIMES, 2016;
DELLA SETA et alii, 2017).

Large-scale = deformational  processes  often  show
characteristics similar to purely tectonic ones (AGLIARDI ef alii,
2012) and, in general, there is no clear and well-defined limit
between the two processes (JABOYEDOFF et alii, 2011, 2013).
As in the case of tectonics, slope deformations can also induce
both brittle and ductile deformations in the involved rock masses,
such as folds, faults, and shear zones (ZI1SCHINSKY, 1969; NEMCOK
et alii, 1972; MAHR & NEMCOK, 1977; FLEMING & JOHNSON,
1989; CHIGIRA, 1992; BRAATHEN et alii, 2004). Gravity-induced
features can be extended and linear if set on pre-existing tectonic
lineaments, but generally they are less persistent than tectonic
ones, with more arcuate shape and peculiar assemblage along the
slope (RADBRUCH-HALL, 1978; AGLIARDI et alii, 2012).

As a distinctive element among landslides and DSGSDs,
both the lack of a continuous sliding surface or basal shear zone
(DrAMIS & SORRISO-VALVO, 1994) and the absence of continuous
and well-defined external boundaries (AGLIARDI et alii, 2001;
JARMAN, 2006; AGLIARDI et alii, 2012; Crosta et alii, 2013;
JARMAN & HARRISON, 2019) have been considered. Some authors
suggested the use of the size of phenomena (SORRISO-VALVO,
1984, 1995; JABOYEDOFF et alii, 2011; HUNGR et alii, 2014).
The complexity in the identification of peculiar characteristics
(recognizable and quantifiable) makes it difficult to choose a single
element as distinctive (and specific) of DSGSDs with respect
to conventional landslides and gravitational tectonics. Much
more reasonable is to distinguish these different phenomena by
using more than one element, as described below. Among these
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Fig. 1 - Typical examples of DSGSDs and related morphological features: a) frontal view of the gravitational slope deforma-
tion at Siah, Zagros Mountains, Iran (photo courtesy of Dr. Michele Delchiaro); b) double-sided sackung, marked by uphill-

facing scarps, at Mission Ridge, Pacific Coast Mountains,

Canada; ¢) double crest related to DSGSD at Mission Ridge,

Pacific Coast Mountains, Canada; d) trenches and uphill-facing scarps at Maiella Mountain, Central Apennines, Italy; e) spreading pheno-
menon and related trenches at Sasso Simone, Northern Apennines, Italy; f) lateral spread of thrust front at Sgurgola, Central Apennines, Italy

factors, the high spatial and temporal scales on which DSGSDs
act assume particular importance, as a consequence of time-
dependent rheology of the involved rock often featuring these
processes (MARTINO et alii, 2017).

DSGSDs represent a very important geomorphological
element, both from the scientific point of view and for the possible
implications in terms of social and economic impact (ZARUBA
& MENCL, 1969; Dramis & SORRISO-VALVO, 1994; PANEK &

Italian Journal of Engineering Geology and Environment, 1 (2021)

© Sapienza Universita Editrice

KrmMes, 2016; MARTINO et alii, 2020). In fact, in addition to
the large-scale influence on the morphological elements of the
landscape, they determine the development of many secondary
landslides at the more local scale. They also produce significant
interferences with the anthropic structures and infrastructures
present in the territory (DISCENzA et alii, 2011; FRATTINI et
alii, 2013). Critically, these phenomena present a catastrophic
evolution and can evolve into large landslides, such as fast and
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highly-dangerous rock avalanches (HUNGR & Evans, 2004;
EvANs et alii, 2006; CHIGIRA et alii, 2010).

Considering the terminological and sometimes substantial
differences existing in the scientific literature for the definition
of these processes, this paper aims at constructing an updated
state of the art (review), which provides a starting point for
discussion and the construction of a comprehensive and uniform
classification scheme. This study also summarizes all the main
aspects concerning large-scale gravitational deformations and the
related reference bibliography. It tries to describe all the various
aspect that contribute to the definition of these processes, such
as nomenclature, diffusion, types, kinematic mechanisms, and
morphological characteristics, thus pointing out at the same time
the different definitions and the common aspects.

After providing the updated state of the art on this specific
topic, this paper discusses the key principles in order to suggest
possible criteria for terminological unification in view of a
comprehensive DSGSDs classification. Finally, key criteria for
the differentiation between slope-scale gravitational phenomena
and conventional landslides or gravitational tectonics are
suggested. Figure 2 shows the number of papers considered in
this work per decade of publication. Although the reported works
are not exhaustive of all the existing scientific literature regarding
DSGSDs, the graph nevertheless demonstrates the increase of
interest on this topic over time. However, the large number of
existing papers and the vast amount of published data are not
exhaustive of all the characteristics of DSGSDs, the scale factors
that characterize them, and of the various elements that make it
possible to identify these phenomena.

M. E. DISCENZA & C. ESPOSITO

NOMENCLATURE
CLASSIFICATIONS

Over the years, many terms and definitions were used by

AND EXISTING

several authors to describe the phenomena acting on large
space-time scales, which can be considered as complex, or
sometimes multiple, processes deriving from the mutual
interaction of many mechanisms of movement (CANCELLI &
CASAGLI, 1995). Most of them show a local character and are
used in relation to the researcher’s geographical interest area.
In many cases, specific terms were coined for this type of
phenomena, while in other cases the typical nomenclatures of
conventional landslides were adopted.

Terms and nomenclature

The term Deep-Seated Gravitational Slope Deformation
was introduced by MaLGoOT (1977), while the acronym DSGSD
was introduced much later, especially on the basis of the studies
of Dramis & SORRISO-VALVO (1994) and AGLIARDI et alii
(2001). Although this term (and its acronym) has now become
commonplace, numerous other definitions are still used to
describe these phenomena.

The term sackung (ZiSCHINSKY, 1966, 1969), in plural
sackungen, was introduced to indicate instability phenomenon
characterized by deformation mainly concentrated along a
discrete sliding surface, which does not extend continuously
below the moving mass. This deformational process, widespread
in jointed rock masses, were described by other authors
using terms such as gravitational creep (NEMCOK, 1972; TER-
STEPANIAN, 1974; MALGOT, 1977; RADBRUCH-HALL, 1978), deep
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Fig. 2 - Published works on DSGSDs cited in this paper, divided according to the period of publication
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seated deformation (TERZAGHI, 1962), deep seated creep (TER-
STEPANIAN, 1966; NEMCOK et alii, 1972; MAHR & NEMCOK, 1977;
HutcHinsoN, 1988), mass rock creep (RADBRUCH-HALL, 1978;
CHIGIRA, 1992), sagging (KoBayasHI, 1956; HUTCHINSON, 1988),
and rock flow (VARNES, 1978; SAVAGE & VARNES, 1987; CRUDEN
& VARNES, 1996; Dikau et alii, 1996).

For a phenomenon with similar morphological characteristics
but mainly produced by large-scale block toppling, other authors
introduced terms such as block toppling and flexural toppling
(GoobmaN & Bray, 1976; Bovis, 1982; NicHOL et alii, 2002;
REITNER & LINNER, 2009). This same phenomenon is also termed
T-sagging (HUuTCHINSON, 1988), because of the characteristics in
common with the other phenomena previously described.

The term lateral spreading (JAHN, 1964; RADBRUCH-HALL ef
alii, 1976; VARNES, 1978; CANCELLI & CASAGLIL, 1995; CRUDEN
& VARNES, 1996) is used to indicate a deformational process
with predominantly horizontal movement, that commonly affect
jointed rigid slabs superimposed on more ductile materials, such
as clays and silts. If the deformational phenomenon involves only
rock masses, it can be described as rock spreading (JAHN, 1964;
BEck, 1968) or rock mass spreading (MARTINO et alii, 2004;
DisceNza et alii, 2011).

The terms of block slide (VoIGHT, 1973; ZARUBA & MENCL,
1982), block-type movement (NEMCOK et alii, 1972; PASEK, 1974;
ZARUBA & MENCL, 1976; PaSEk & KOSTAK, 1979; NEMCOK,
1982; HutcHINSON, 1988), block glide (VoiGHT, 1973), back
tilting (ZARUBA & MENCL, 1982) or gleitung (ZISCHINSKY,
1966, 1969) have been used to describe a deformational process
characterized by movements along pre-existing, or newly formed
discontinuities. This phenomenon, especially in Italian literature,
is also referred to rock block slide (EsposiTo et alii, 2007).

Other terms used to describe deformational phenomena as
a function of the effects produced on the slope system, such
as cambering and valley bulging (HOLLINGWORTH et alii,
1944; HUTCHINSON, 1968; HORSWILL et alii, 1976; ZARUBA
& MENcL, 1982; HUTCHINSON, 1988; Parks, 1991) and deep
seated distortion of steep-sided ridges (VARNES et alii, 1989).
Finally, there are terms that identify phenomena in relation to
the structural setting of the relief, such as lateral spread of thrust
front (DrRAMIS & SORRISO-VALVO, 1994).

Existing classifications of mass movements

Since the second half of the 1900s, many studies proposed
different classifications of landslides and slope movements. Most
of them focus on the classification of conventional landslides (at
least in terms of size), although some of them reported indications
on large-scale gravitational phenomena (HUNGR et alii, 2014 and
reference in therein). Given the large number of classifications of
slope phenomena present in literature, only the most important
ones for the study of DSGSDs are reported below.
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In the well-known versions of the classification of VARNES
(1954, 1978), as well as in the review of CRUDEN & VARNES
(1996), large-scale gravitational deformations do not have their
own dedicated space. However, they can be included in some
categories of landslides s.s. by considering analogies in terms of
involved material and deformation mechanism (i.e., rock flow
and rock spreading). The first term is focused on rather deep
phenomena and, therefore, it is often used to describe DSGSDs.

In the classification of HuTcHINSON (1968, 1988), some
large-scale slope processes find a specific denomination. For
example, the typology of sagging, introduced in the second
version (HUTCHINSON, 1988), is often used to classify large-
scale deformational processes. Within this classification system,
other terms that can be used to describe a DSGSD are creep,
slide (or landslide), and complex slope deformation (e.g.,
cambering and valley bulging and block-type movement), some
in part already included in the first classification version (e.g.,
creep, slide, and cambering and valley bulging).

In parallel, ZARUBA & MENCL (1969) developed a first
classification of the gravitational slope processes. In this work,
the gravitational movements are divided into four categories
mainly related to the geological features of the slope (i.e., slope
movement of superficial deposits, slide in pelitic rocks, slope
movement involving solid rock, special kind of slope movement
which constitute important geological phenomena in particular
countries). In this case, large-scale gravitational deformations
fall mainly in the category of slope movement involving solid
rock and, only partially, in the slide in pelitic rocks.

In the Alpine sectors, NEMCOK et alii (1972) developed a
classification of landslide movements into four main types (i.e.,
creep, sliding, flow, fall), which in turn can be divided into
further groups according to the local geological, morphological,
and climatic conditions. In this study is defined a class (i.e.,
creep) in which large-scale gravitational processes, with
limited deformation rates up to a few centimeters per year,
can be included. In the case that the material undergoes an
evident acceleration, the creep passes into one of the other three
categories of landslides s.s. (i.e., sliding, flow or fall).

In Italy, Sorriso-VALvO (1984) proposed a classification
for the distinction between superficial landslide movements,
deep gravitational deformations and gravitational tectonics. At
each scale, three types of movement are identified (i.e., lateral
spreading, sliding, and flow). The classification was revised a
decade later (SOrRISO-VALVO, 1995); it kept intact the general
framework and the distinctions in three class, even if the
aspects related to the scale factors and the influence of the relief
morphology were integrated.

A few years later, HuTCHINSON (1995) proposed a specific
classification for deep gravitational movements by suggesting
some geometric parameters (and relative limits) for the
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distinction between deep slips and intermediate thickness
landslides. In his work, a brief review of the main types of
deep gravitational movements (i.e., deep-seated creep, sagging,
toppling, block-type movement, cambering and valley bulging,
deformation on plateau edges formed by a rigid tabular, jointed
rock stratum overlying argillaceous strata) is also proposed.
Furthermore, the deep phenomena were divided into diastrophic
(tectonic) and non-diastrophic (gravitational tectonics and
gravitational).

In recent years, the Varnes classification was revised by
HUNGR et alii (2014), that introduce the slope deformations
as an integration of the previous types of movements, dividing
them in turn into mountain slope deformation and rock slope
deformation. In the version of HUNGR et alii (2014), despite the
addition of a typology, large-scale gravitational deformations
can fall either in slope deformation (e.g., sackung given the
elimination of rock flow) or in the different landslide categories
(i.e., spreading, sliding, and flexural toppling).

BASICS OF DSGSDs

The distribution over time of published papers on DSGSDs
and considered in this work is shown in Fig. 2. The study
of large-scale gravitational phenomena began in the 1930s
(Hemv, 1932) and the following two decades (STINI, 1941; VAN
BEMMELEN, 1950; STinI, 1952; KoBAyasHI, 1956). In the 1960s
there was a moderate increase in the number of publications
on these phenomena (TERZAGHI, 1962; VON ENGELEN, 1963;
JAHN, 1964; HAEFELI, 1965; NEMCOK, 1966; TER-STEPANIAN,
1966; Z1sCHINSKY, 1966; FERGUSON, 1967; BEcK, 1968; KNILL,
1968; MENCL, 1968; NEMCOK & RYBAR, 1968; PASEK, 1968;
NEMCOK & PASEK, 1969; ZARUBA, 1969; ZARUBA & MENCL,
1969; Z1SCHINSKY, 1969).

Later, a significant growth of research on DSGSDs occurred
in the 1970s, as highlighted by Crosta (1996). In this period,
in addition to a large number of studies on the characteristics
of phenomena (TABOR, 1971; NEmCoOK, 1972; NEMCOK et alii,
1972; FEpA, 1973; RADBRUCH-HALL et alii, 1976; ZARUBA
& MEeNcL, 1976; MAHR, 1977, MAHR & NEMCOK, 1977;
RADBRUCH-HALL ef alii, 1977; RADBRUCH HALL, 1978; VARNES,
1978; GUERRICCHIO & MELIDORO, 1979), the first modellings
were also conducted (KoSTAK, 1977; EMERY, 1978). A complete
discussion of the history of studies on DSGSDs, especially up to
the mid- 1990s, has been provided by CROSTA (1996).

Since the end of the last century, the growth of new
technologies  (e.g., geotechnical
monitoring) has led to numerous studies that focus on the

interferometry, ~GPS,

monitoring of large-scale gravitational deformations and the
analysis of their deformation rates (AMBROSI & CROSTA, 2006;
Moro et alii, 2007; BARLA et alii, 2010; AGLIARDI et alii,
2012; FRATTINI et alii, 2013; AGNESI et alii, 2015; D1 MARTIRE

Italian Journal of Engineering Geology and Environment, 1 (2021)

© Sapienza Universita Editrice

M. E. DISCENZA & C. ESPOSITO

et alii, 2016; AMATO et alii, 2018; CAPPADONIA et alii, 2019;
TESHEBAEVA et alii, 2019; CrippA et alii, 2020). The monitoring
data can also be used to define the state of activity and the type
of movement (FRATTINI et alii, 2018). In this regard, PANEK &
KLiMES (2016) described the studies concerning monitoring and
the dating of DSGSDs to analyze the time-dependent behavior.
Although the first numerical modellings of DSGSDs were
carried out in the 1970s (EMERY, 1978) and in the period between
the 1990s and 2000s (PRITCHARD & SAVIGNY, 1991; CROSTA &
BERrTO, 1996; AGLIARDI et alii, 2001; MARTINO et alii, 2004,
KINAKIN & STEAD, 2005; MAFFEI et alii, 2005; APUANI et
alii, 2007; Esposito et alii, 2007; BACHMANN et alii, 2009;
CHEMENDA et alii, 2009), only in recent years the models have
significantly contributed to the study and understanding of these
phenomena (AMBROSI & CROSTA, 2011; BiaANCHI FASANI et alii,
2011; DisceNzA et alii, 2011; BozzaNo et alii, 2012; LEITH,
2012; Hou et alii, 2014; BozzaNo et alii, 2016; MAKOWSKA
et alii, 2016; DE BLASIO & MARTINO, 2017; DELLA SETA et alii,
2017; Bois et alii, 2018; AGLIARDI et alii, 2019; ALFARO et alii,
2019). In parallel, other methods were also used for the study
of large-scale gravitational deformations, such as small-scale
physical modelling (KOSTAK, 1977, BACHMANN et alii, 2004;
CHEMENDA et alii, 2005; BACHMANN et alii, 2006; Bois et alii,
2008, 2012; BozzaNo et alii, 2013; BRETSCHNEIDER et alil,
2013; DEL VENTISETTE et alii, 2015; DISCENZzA et alii, 2020).

DSGSDs diffusion

Starting from the first studies, a large amount of DSGSD
phenomena were identified and analyzed all over the world, as
can be observed from the map (Fig. 3) produced by PANEK &
KLiMES (2016). In the following sections, only few examples
are reported; for any further information reference is made to
specialized studies in the various geographical areas.

In recent years, cases of DSGSDs were analyzed in Alaska
(McCALPIN et alii, 2011; NEwWMAN, 2013), Alberta (JABOYEDOFF
et alii, 2009), Andalusia (ALFARO ef alii, 2019), Andes (VILIMEK
et alii, 2007; AUDEMARD et alii, 2010; GARCIA-DELGADO, 2020),
Carpathians (HRADECKY & PANEK, 2008; PANEK ef alii, 2011),
China (DENG et alii, 2000; CHIGIRA et alii, 2010), Ethiopian
Highland (MEGE et alii, 2013), Himalaya (THURO et alii, 2004),
Iceland (CoQuIN et alii, 2015), Japanese Alps (CHIGIRA, 2009;
CHIGIRA et alii, 2013a), New Zealand (Korup, 2006a), Norway
(ScHLEIER et alii, 2016; Vick et alii, 2020), Pacific Coast
Mountains (Bovis & Evans 1996; KINAKIN & STEAD, 2005),
Pamir-Alaj (TESHEBAEVA et alii, 2019), Pyrenees (GUTIERREZ-
SANTOLALLA et alii, 2005; LEBOURG et alii, 2014), Rocky
Mountains (VARNES et alii, 1990; McCALPIN & IRVINE 1995),
and Tien Shan Mountains (TIBALDI et alii, 2015).

The European Alps are certainly among the most studied
places: many cases have been studied in Italy (AGLIARDI et alii,
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Fig. 3 - Distribution of key DSGSDs in the world, especially cases from studies published since 1990s (redrawn from PANEK & KLIMES, 2016). a) worl-
dwide context; b) detailed view of Europe. The numbered hatched regions contain published databases of DSGSDs from: 1) Scottish Highland
(JARMAN, 2006); 2) Eastern Pyrenees (JARMAN et alii, 2014); 3) European Alps (CROSTA et alii, 2013); 4) Western Carpathians (NEMCOK, 1982;

ALEXANDROWICZ & ALEXANDROWICZ, 1988)

2001; AMBROSI & CROSTA, 2006; APUANI et alii, 2007; CADOPPI
et alii, 2007; AGLIARDI et alii, 2009; AMBROSI & CROSTA, 2011;
GHIROTTI et alii, 2011; MARTINOTTI et alii, 2011; TAMBURINI et
alii, 2015), France (HiPPOLYTE et alii, 2006; Bois et alii, 2008;
EL Bepoui et alii, 2009; HIPPOLYTE et alii, 2012; JOMARD et alii,
2014), Austria (MADRITSCH & MILLEN, 2007; IMRE et alii, 2009;
BARON et alii, 2016), and Switzerland (BARBARANO et alii,
2015; PEDRAZZINI et alii, 2016; AGLIARDI et alii, 2019). Many
detailed studies have been performed in the Italian Apennines
(D1 Luzio et alii, 2004b; MARTINO et alii, 2004; MAFFEI et alii,
2005; GALADINI, 2006; EsposiTo et alii, 2007; MoRro et alii,
2009; DisceNzA et alii, 2011; BozzaNo et alii, 2013; BIANCHI
Fasanti et alii, 2014; Esposito et alii, 2014; Gora1 et alii, 2014;
DELLA SETA et alii, 2017; MARIANI & ZERBONI, 2020; MARTINO
et alii, 2020; EsposiTo et alii, 2021), and in the Calabrian Arc
(GUERRICCHIO et alii, 1996; TANSI et alii, 2005; PELLEGRINO &
PrEsTININZI, 2007; BoNCI et alii, 2010; BRETSCHNEIDER et alii,
2013), which like all recently raised areas are characterized by
numerous gravity-induced gravitational deformations (MARTINO
et alii, 2004; EsposITo et alii, 2014).

Some databases specifically dedicated to or containing
also DSGSDs were created for areas of Europe, such as British
Mountains (JARMAN & HaRrIsON, 2019), Eastern Pyrenees
(JARMAN et alii, 2014), European Alps (AGLIARDI et alii, 2012;
AGLIARDI et alii, 2013; CROSTA et alii, 2013; PEDRAZZINI ef alii,
2016), Scottish Highland (JARMAN, 2006), Sicily (AGNESI et
alii, 2000; D1 MAGGIO et alii, 2014), and Western Carpathians
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(NEMCOK, 1982; ALEXANDROWICZ & ALEXANDROWICZ, 1988;
PANEK et alii, 2017, 2019). Others were made for different parts
of the world, such as Japan (KANEDA & Kowo, 2017), New
Zealand (McLEAN et alii, 2015), Patagonian Andes (PANEK et
alii, 2021), and Taiwan (Tsou et alii, 2015).

In addition to Earth, DSGSDs were recognized on other
planets of the Solar System, such as Mars (MEGE & BOURGEOIS,
2011;GuALLINIetalii,2012; GOURRONC et alii,2014; MAKOWSKA
et alii, 2016; DE BLASIO & MARTINO, 2017; CROSTA et alii, 2018,;
KRrOMUSZCZYNSKA et alii, 2019; DISCENZA et alii, 2021). Like
terrestrial counterparts, Martian gravitational deformations are
characterized by geomorphic features similar to those common
on the Earth (MEGE & BOURGEOIS, 2011; GOURRONC et alii,
2014), but have significantly larger dimensions, at least one
order of magnitude higher (KROMUSZCZYNSKA et alii, 2019).
The state of the art and the complete review of the Martian
DSGSDs is reported in DISCENZA ef alii (2021).

Mechanisms and controlling factors

The onset and the development of DSGSDs are closely
related to specific geological-structural, geomorphological, and
geomechanical conditions (AGLIARDI et alii, 2001; D1 Luzio et
alii, 2004b; AGLIARDI et alii, 2012; EsposiTo et alii, 2014; MARIANI
& ZERrBONI, 2020), that directly influence the kinematics of the
processes (PANEK & KLIMES, 2016). The works by Crosta (1996),
JABOYEDOFF et alii (2011), and AGLIARDI et alii (2012), with their
related bibliography, provides a complete discussion of the topic.
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Without prejudice to the complexity of the phenomena and
the absence of a univocal classification, it is possible to divide the
DSGSDs into two large macro-categories: sackung and spreading
(Fig. 4). The sackung is characterized by a significant vertical
component of the deformation in the upper part of the slope, which
is also associated with horizontal displacements in the middle-
lower portion of the relief (ZiscHINSKY, 1966; HUTCHINSON,
1988; AGLIARDI et alii, 2012). The spreading is characterized by
a prevalent horizontal component (JAHN, 1964; VARNES, 1978).
From a morphological and kinematic point of view, further types
of deformations, such as toppling and sliding, can be included
in the macro-category of sackung, while rock block slide can be
included in spreading (HUTCHINSON, 1988; HUNGR et alii, 2014).

Sackung typically occurs in mountainous areas and slopes
characterized by the presence of jointed rock masses (AGLIARDI
et alii, 2012). In these cases, inherited structures such as faults,
folds, bedding planes, and joints strongly control the process
(CHIGIRA, 1992; AGLIARDI et alii, 2001; BIANCHI FAsanNI et
alii, 2004; ScArRASCIA MUGNOzzA et alii, 2006a; BRIDEAU et
alii, 2009; REITNER & LINNER, 2009; JABOYEDOFF et alii, 2013;
Esposito et alii, 2021). The role played by pre-existing structures
on the evolution of DSGSDs was demonstrated by several
studies, that highlighted not only the importance of main bedrock
anisotropies acting as preferential weakness planes (or zones)
for the movement to occur, but also the implications in terms of
overall geomechanical properties of the material at the slope scale
(AMBROSI & CROSTA, 2006; BRIDEAU et alii, 2009; JABOYEDOFF
et alii, 2009; AMBROSI & CROSTA, 2011; EL BEDOUI ef alii, 2011,
BozzaNo et alii, 2012; MAKOWSKA et alii, 2016; DELLA SETA et
alii, 2017).

Sackung is mainly controlled by time-dependent deformations
(TER-STEPANIAN, 1966; ZISCHINSKY, 1969; NEMCOK, 1972; MAHR,
1977; MAHR & NEMCOK, 1977; RADBRUCH-HALL, 1978; SAVAGE
& VARNES, 1987; CHIGIRA, 1992; MARTINO et alii, 2004; APUANI
et alii, 2007; Esposito et alii, 2007; DISCENzA et alii, 2011,
BozzaNo et alii, 2012, 2016; DELLA SETA et alii, 2017), which
are spread over very long time intervals (DRAMIS & SORRISO-
VaLvo, 1994; AGLIARDI et alii, 2012, 2013; DELLA SETA et alii,
2017), i.e. up to hundreds of thousands years. The deformation of
rock mass occurs mainly for viscous deformations connected to
deep creep phenomena (TER-STEPANIAN, 1966; ZISCHINSKY, 1966;
FEDA, 1973; MAHR, 1977; RADBRUCH-HALL, 1978; SAVAGE &
VARNES, 1987; HUTCHINSON, 1988; CHIGIRA, 1992), even if there
are ductile and visco-plastic deformations along shear planes and
sliding surfaces (AGLIARDI et alii, 2001; AMBROSI & CROSTA,
2006; JABOYEDOFF et alii, 2013).

Creep phenomena are driven by various factors, such as the
mechanical and rheological characteristics of the involved rocks,
the structural setting of the relief, and the jointing state of rock
masses (CHIGIRA, 1992; AMBROSI & CROSTA, 2011; JABOYEDOFF
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et alii, 2013; MARTINO et alii, 2017; DISCENZA et alii, 2020).
Local the weathering, especially of igneous and metamorphic
rocks, can play an important role in the deterioration of the
mechanical properties and in the variation in viscosity of rock
masses (GENEVOIS & PRESTININZI, 1979; PrESTININZI, 1984;
PELLEGRINO & PRESTININZI, 2007; BozzaNoO et alii, 2012). As
demonstrated by DISCENZA et alii (2020), the rock mass jointing
condition and the geometrical characteristic of the discontinuities
greatly influence the rheological properties of the deformed
masses and the creep processes.

Spreading, on the other hand, is characteristic of slopes with
overlapping of rigid rocks on ductile and highly deformable
bedrock (NEMCOK et alii, 1972; PASEK, 1974; ZARUBA & MENCL,
1976; VarnEs, 1978; HuTCHINSON, 1988; AGLIARDI et alii,
2012; BozzaNo et alii, 2013; Pasuto & Sorparti, 2013; Di
MAGGI0 et alii, 2014). This process is essentially controlled
by the slope setting, the geometry of the contact between stiff
and ductile materials, as well as by the thickness of the rigid
rocks (Esposito et alii, 2007; ALFARO et alii, 2019). In some
specific cases spreading can affect jointed rock masses without
an evident rheological contrast (JAHN, 1964; MARTINO et alii,
2004; DisceNza et alii, 2011; Pasuto & SoLparti, 2013). This
kind of rock mass spreading is strictly related to the stress-strain
state of the mass and the unloading stress processes, that favor
the expansion of the mass through the formation of sub-vertical
deformational bands (MARTINO et alii, 2004; DISCENZA et alii,
2011).

The kinematics of spreading is controlled by slow and deep
deformational processes, which determine the expansion of the
slope towards the valley floor (VARNES, 1978; CRUDEN & VARNES,
1996; Pasuto & SoLpaTi, 2013; HUNGR et alii, 2014). The mass
deformation occurs through creep processes and visco-plastic
deformations associated with tensile regime, both in rock mass
and along discrete planes (VARNES, 1978; CROSTA, 1996). Visco-
plastic strain develop along sub-vertical bands of deformation
decreasing with depth, which do not give rise to continuous
shear zone (JAHN, 1964; MARTINO et alii, 2004). Locally, the
expansion can also take place through one or more slides with
a predominantly horizontal component (BozzANo et alii, 2013;
HUNGR et alii, 2014; Bors et alii, 2018).

In general terms, the development of DSGSDs is governed
by different control factors (AGLIARDI et alii, 2012; JABOYEDOFF
et alii, 2013; BozzaNo et alii, 2016; PANEK & KLIMES, 2016;
MARTINO et alii, 2017): (i) inherited and invariant factors
(e.g., anisotropies, deformability contrasts, morpho-structural
conditions, tectonic elements, karst); (ii) factors related to the
morpho-dynamics of the relief that induce significant variations
of the local stress regime in short to mid-term time spans (e.g.,
post-glacial debuttressing, river dynamics, erosional processes,
changes in water table level, tectonic stresses, earthquakes), if
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Fig. 4 -  Examples of DSGSDs proposed in the literature, divided on the basis of general typology (sackung and spreading) and ordered on the basis of
year of publications (modified after AGLIARDI et alii, 2012). Sackung: (1a), (1b) ZISCHINSKY (1966), (Ic), (1d) NEMCOK (1972); (1e) MAHR (1977);
(1f), (1g) HurcHINSON (1988); (1h), (1i), (1j) CHIGIRA (1992); (1k) AGLIARDI et alii (2001); (11), (Im), (In), (10) AMBROSI & CROSTA (2006), (1p)
APUANI et alii (2007); (1q), (Ir), (1s), (1t) Bors et alii (2008); (1u) AGLIARDI et alii (2009); (I1v) MARTINO et alii (2020); (Iw), (1y) Vick et alii
(2020). Spreading: (2a) JAHN (1964); (2b) ZARUBA & MENCL (1969); (2¢) NEMCOK (1982); (2d) HUTCHINSON (1988); (2¢) MARTINO et alii (2004);
(2f) Esposrro et alii (2007); (2g), (2h), (2i), (2j), (2k) D1 MAGGIO et alii (2014); (2]) PANEK & KLIMES (2016)
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compared to the time scale featuring such slope deformational
processes. These factors fundamentally control both the
development of slope-scale deformational processes and the
subsequent evolution of large landslides and slope collapses
(HUNGR & EvANS, 2004; PANEK & KLIMES, 2016; DELLA SETA et
alii, 2017; DELCHIARO et alii, 2019).

Among the inherited and pre-existing factors, the geological-
structural and geomechanical conditions described above are of
particular importance (AGLIARDI et alii, 2001; D1 Luzio et alii,
2004b; AGLIARDI et alii, 2012; EsposiTo et alii, 2014; PANEK
et alii, 2021), in addition to the morphological features of
relief (SWOLF & SAVAGE, 1986; AMADE!I et alii, 1988; AMBROSI
& Crosta, 2011). Tectonic structures such as folds and faults
should certainly be included among the most important inherited
elements (CHIGIRA, 1992; CROSTA & ZANCHI, 2000; AGLIARDI et
alii, 2001; BiaNcHI Fasani et alii, 2004; HIPPOLYTE et alii, 2006,
ScARASCIA MUGNOzzA et alii, 2006a; BRIDEAU et alii, 2009;
REITNER & LINNER, 2009; AMBROSI & CROSTA, 2011; BozzANO et
alii, 2012; CROSTA et alii, 2013; JABOYEDOFF et alii, 2013; STEAD
& WOLTER, 2015; PEDRAZZINI et alii, 2016; MARTINO et alii,
2017; ALFARO et alii, 2019; TESHEBAEVA et alii, 2019; MARIANI
& ZERBONI, 2020; VIcK et alii, 2020; EsposiTo et alii, 2021), in
addition of course to bedding planes or schistosity with peculiar
geometric characteristics (KIEFFER, 1998; AMBROSI & CROSTA,
2011; DELLA SETA et alii, 2017; DisceNzA et alii, 2020; VICK et
alii, 2020).

Under particular conditions, large-scale deformational
processes can originate from karst of carbonate rocks (APUANI &
CorazzATO, 2009; PANEK et alii, 2009b; LENTI et alii, 2012) or
from dissolution of evaporitic rocks (MARTINOTTI ef alii, 2011;
GUTIERREZ et alii, 2012a; CARBONEL et alii, 2013). In the Italian
Apennines there are several examples of DSGSDs related to karst
phenomena, such as Mt. Nuria (MARTINO et alii, 2004; MAFFEI
et alii, 2005; CASINI et alii, 2006, LENTI et alii, 2012) and Mt.
Rocchetta (DI1sceNza et alii, 2009, 2011).

The structural and morpho-climatic evolution of the area
(AGLIARDI et alii, 2009; BiaNcHI FasaNI et alii, 2011; CROSTA
et alii, 2013; DELLA SETA et alii, 2017; JARMAN & HARRISON,
2019), the topographic and tectonic stresses (VARNES e alii, 1989;
CROSTA, 1996; AMBROSI & CROSTA, 2011), the river erosion at the
slope toe (CroOSTA & ZANCHI, 2000; Hou et alii, 2014; BozzANO
et alii, 2016; DELCHIARO et alii, 2019; EsposITo et alii, 2021), the
changes in groundwater level (AGLIARDI et alii, 2001; JABOYEDOFF
et alii, 2009), and the tectonic deformations (DISCENZA et alii,
2011; ALFARO et alii, 2019) must also be considered. Recent
studies showed that gravitational slope deformations are quite
widespread in tectonically active areas (CROSTA & ZANCH]I, 2000;
AGLIARDI et alii, 2009; AMBROSI & CROSTA, 2011; PEDRAZZINI et
alii, 2016; TESHEBAEVA et alii, 2019) and in correspondence with
active faults (AGLIARDI et alii, 2009; MoRro et alii, 2012; PANEK
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& KLiMES, 2016). In this case, seismic shaking can represent a
real trigger/onset factor for new phenomena (JIBSON et alii, 2004;
TiBALDI et alii, 2015) or lead to an acceleration of pre-existing
ones (MORO et alii, 2007; AMATO et alii, 2018; AGLIARDI et alii,
2019).

Among the morpho-dynamic processes, glaciation and
deglaciation periods often play a significant role and represents
one of the main triggering factors of DSGSDs in the alpine
environment (AGLIARDI et alii, 2012; PANEK & KLIMES, 2016).
Since the first works on glacier withdrawal (BEck, 1968), several
studies have linked the development of large-scale gravitational
processes with post-glacial effect (Bovis, 1990; McCALPIN
& IRVINE, 1995; Bovis & STEWART, 1998; BALLANTYNE, 2002;
HipPOLYTE et alii, 2006; JARMAN, 2006; AGLIARDI et alii, 2009;
HipPOLYTE et alii, 2009; McCoLL et alii, 2010; McCoLL, 2012;
AGLIARDI & CROSTA, 2014; BALLANTYNE et alii, 2014; BARONI et
alii, 2014; LeITH et alii, 2014; GRAMIGER et alii, 2017; AGLIARDI
et alii, 2019; JARMAN & HARRISON, 2019). Different triggering
factors of DSGSDs may be associated to glacier retreat, such
as slope debuttressing, glacial rebound, stress redistribution,
valleys erosion, changes in slope hydrology, and rock jointing
(BALLANTYNE, 2002; McCoLL, 2012; CrostA et alii, 2013;
BALLANTYNE et alii, 2014; JARMAN & HARRISON, 2019). The
role of post-glacial effects in the development of DSGSDs was
invoked by several authors even for the gravitational phenomena
present on Mars in Valles Marineris (MEGE & BOURGEOIS,
2011; GoOurrONC et alii, 2014; MAKOWSKA et alii, 2016;
KroMuUszcZYNSKA ef alii, 2019).

DSGSDs and related slope failures

DSGSDs represent a risk factor not only for their related
induced strain (ZARUBA & MENCL, 1969; DRAMIS & SORRISO-
VarLvo, 1994; DisceNza et alii, 2011; FRATTINI et alii, 2013;
PANEK & KLIMES, 2016) but also for the overcoming of the
plasticity threshold in all or part of the slope (Fig. 5). The
plasticization can lead the formation of collapses (EvVANS et alii,
2000) featured by different types of landslides s.s.: from slow to
extremely rapid kinematics (HUNGR & EVANs, 2004; PANEK &
KriMes, 2016). In particular, catastrophic collapses or massive
Rock Slope Failures (RSFs) represent the most important effect
for society in terms of risk to life and infrastructures, as they
are characterized by high volumes and travel at high speeds
(HunGR & Evans, 2004; Evans et alii, 2006; CHIGIRA et alii,
2010).

The possibility that a gravitational deformation may evolve
into a large landslide can be the consequence of several factors
such as: (7) evolution of the creep processes up to the failure or
tertiary creep (GENEVOIS & PRESTININZI, 1979; MARTINO et alii,
2017; DiSCENZA et alii, 2020); (ii) variation of the mechanical
characteristics of the mass and strength reduction (CHIGIRA
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Fig. 5 - Some examples of massive Rock Slope Failures (RSFs) related to DSGSDs evolution: a) the gigantic Seymareh landslide, Zagros Mountains, Iran
(photo courtesy of Dr. Javad Rohui); b) the Frank rock avalanche, Turtle Mountain, Canada, c) the Mount Elizabeth rock avalanche, Canadian
Rockies, Canada; d) the Scanno rock avalanche, Central Apennines, Italy

& Kino, 1994; Biscr et alii, 1996; PANEK et alii, 2009a); (iii)
modification of slope topography (WILSON et alii, 2003; CROSTA
et alii, 2014; DELLA SETA et alii, 2017); (iv) sudden changes in
the stress condition due to events as earthquakes and extreme
rainfalls (CHIGIRA et alii, 2010, 2013b; DELCHIARO et alii, 2019;
FRrRANCIONI et alii, 2019).

The large slope collapses that can result from DSGSDs have
volumes in the order of tens or hundreds of millions of cubic
meters and are characterized by considerable elongations (EvaNs
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et alii, 2006; HERMANNS & LONGVA, 2012; HUNGR et alii, 2014;
STrOM, 2021), up to 30 times the initial height of fall. HEmm
(1932) defined these phenomena with the term sturzstrom, the
German equivalent of rock fall stream. This term was later taken
up by HsU (1975), while HowArD (1973) and VARNES (1978)
define these phenomena as rock-debris flow or rock avalanche.
Recent cases of rock avalanches connected to DSGSDs have
been described from different parts of the world (Azzoni et alii,
1992; SEMENZA & GHIROTTI, 2000; CROSTA, 2001; CROSTA et alil,
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2004; BOULTBEE et alii, 2006; HEWITT et alii, 2008; CHIGIRA, 2009;
JABOYEDOFF et alii, 2009; CHIGIRA et alii, 2010, 2013b; CROSTA
et alii, 2014; DEL VENTISETTE et alii, 2015). More ancient RSFs
are also widespread, ranging from the British Mountains (JARMAN
& HARRISON, 2019), Carpathians (PANEK et alii, 2009a), Central
Andes (HERMANNS & LONGVA, 2012), Eastern Pyrenees (JARMAN
et alii, 2014), European Alps (Korup, 2006b; PEDRAZZINI ef alii,
2013), Karakoram Himalaya (HEwiTT, 2006), Norway (BLIKRA
et alii, 2006; BOHME et alii, 2013), Scottish Highland (JARMAN,
2006; BALLANTYNE et alii, 2014), Southern Alps of New Zealand
(BARTH, 2014), Zagros Mountains (DELCHIARO et alii, 2019), and
especially Italian Apennines (NICOLETTI et alii, 1993; BIaANCHI
Fasant et alii, 2004; D1 Luzio et alii, 2004a; GALADINI, 2006;
ScARASCIA MUGNOZzA et alii, 2006a, 2006b; BIANCHI FASANI et
alii, 2014; EsposiTo et alii, 2014; GorlI et alii, 2014; ANTONIELLI
et alii, 2020).

MORPHOLOGICAL FEATURES
DEFORMATIONAL STRUCTURES

The DSGSDs determine the formation of a large number of

AND

characteristically elements, both shallow and deep, distributed
along the slope, from the ridge top to the valley bottom (AGLIARDI
et alii, 2001, 2012; JABOYEDOFF et alii, 2013).

These elements show different characteristics depending
on the type of deformational process, its mechanisms, and the
stratigraphical, structural, and geomorphological context of relief
(PANEK & KLIMES, 2016). More information on superficial and

M. E. DISCENZA & C. ESPOSITO

deep structures of DSGSDs are reported in the papers by CHIGIRA
(1992), AGLIARDI et alii (2001, 2012) and JABOYEDOFF et alii
(2013), and the references therein.

Surface features

There are a wide variety of different surface morphological
features connected to DSGSDs (Fig. 6), although some are
perhaps similar to those of a purely tectonic nature (JABOYEDOFF
et alii, 2013). However, unlike the tectonic-associated features,
the geomorphic evidence of DSGSDs show a characteristic
distribution along the relief, as well as being less persistent than
the tectonic ones, even if they often coincide with them (AGLIARDI
et alii, 2001, 2012). In fact, often the existing tectonic structures
represent weakness zones exploited and “gravitationally re-
activated” by the DSGSD.

At the top of the relief, elements such as double ridges,
downhill-facing scarps, normal faults, uphill-facing (or
counterslope) scarps, trenches, tension cracks, closed
depressions, and grabens are found (RADBRUCH-HALL et alii,
1976; MaHnr, 1977; Bovis, 1982; SAVAGE & VARNES, 1987,
CHIGIRA, 1992; DrAMIS & SORRISO-VALVO, 1994; AGLIARDI et
alii, 2001; HORLIMANN et alii, 2006; AGLIARDI et alii, 2009, 2012;
JABOYEDOFF et alii, 2013). At the finer scale, uphill-facing scarps
or uphill-facing scarps systems often play an important structural
control (JABOYEDOFF et alii, 2013) and are clear kinematic
indicators, in that they represent the junctions between the active

and passive blocks of the deformed masses (HUTCHINSON, 1988).

colluvial wedge

colluvial wedge

trenches/grabens

graben fill

half-graben

rockslide

toe bulging/large landslides

associations

Fig. 6 -  Morpho-structural features characteristic of DSGSD phenomena, related kinematic significance, and typical associations (redrawn after AGLIAR-

DI et alii, 2012)
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In the middle portion of the slope, numerous morphological
structures of transition between the upper and the lower part are
found, such as scarps, uphill-facing scarps, trenches, tension
cracks, and grabens (ZISCHINSKY, 1969; SAVAGE & VARNES,
1987; CHIGIRA, 1992; AGLIARDI et alii, 2001, 2012; JABOYEDOFF
et alii, 2013). The morphological elements are either newly-
generated or set on the pre-existing discontinuities. The flanks
of the deformation can frequently coincide with tributary streams
(AGLIARDI et alii, 2012) or normal faults (JABOYEDOFF et alii,
2013). In the case of slopes with sub-vertical joints, deformations
lead to the development of toppling structures (Bovis & EvVaNs,
1996; NicHOL et alii, 2002; REITNER & LINNER, 2009).

At the toe of DSGSDs, in the lower part of the slope,
compression and shortening mechanisms are typical, leading to
the formation of folds (ZiscHINSKY, 1969; MAHR & NEMCOK,
1977; ZARUBA & MENCL, 1982; CHIGIRA, 1992; HERMANN et alii,
2000; HipPOLYTE et alii, 2006) and reverse faults (MAHR, 1977,
SAVAGE & VARNES, 1987). In such settings, bulging (AGLIARDI ef
alii, 2001; DiSCENZA et alii, 2011; AGLIARDI et alii, 2012) and
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Fig. 7-  Schematic sketches of mesoscopic features and fold styles
induced by mass rock creep, depending on rock fabric (laye-
ring, massive and soil material) and confinement (redrawn
after JABOYEDOFF et alii, 2013). Black areas represent ope-
nings, while grey areas represent rock and soil material
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large secondary landslides (CROSTA, 1996; AGLIARDI et alii, 2001,
2012; PANEk & KimMES, 2016; Crippa et alii, 2020) are often
encountered.

Deep structures

The DSGSDs produce significant deformations within the
rock masses and soils involved in the instability, of both brittle
and ductile nature (CHIGIRA, 1992; JABOYEDOFF et alii, 2013). The
surface morphological features and the related structures produced
by the DSGSDs are very similar to those of a pure tectonic nature
(CHIGIRA, 1992; JABOYEDOFF et alii, 2011; AGLIARDI et alii, 2012,
JABOYEDOFF et alii, 2013). Deformational structures such as folds,
faults, shear zones, and cataclastic bands have been described
by various authors for large-scale gravitational phenomena
(ZiscHINSKY, 1969; NEMCOK et alii, 1972; MAHR & NEMCOK,
1977; FLEMING & JoHNSON, 1989; CHIGIRA, 1992; BRAATHEN
et alii, 2004). These mass deformations are indicative of slope
collapse mechanisms (JABOYEDOFF et alii, 2011) and are found on
slopes with extremely different dimensions (Fig. 7), from a few
tens to thousands of meters (CHIGIRA, 1992).

As regards the deep structures, the distinctive features of
DSGSDs have not yet been fully understood, due to both the
complexity of processes and the difficulties in directly analyzing
these portions of the involved rock mass. Generally, the shear
planes, clearly evident on the surface, do not extend in depth in
the entire rock mass (MENCL, 1968; HUTCHINSON, 1988). In this
cases, in the inner portion of slope, creep processes determine
the progressively decreasing of deformations with depth (JAHN,
1964; ZISCHINSKY, 1966; MENCL, 1968; NEMCOK, 1972; MAHR
& NEMCOK, 1977; VARNES, 1978; NEMCOK, 1982; DraMIS &
SORRISO-VALVO, 1994; CRUDEN & VARNES, 1996; MARTINO
et alii, 2004; Esposito et alii, 2007; DISCENZA et alii, 2011,
MARTINOTTI et alii, 2011; D1 MAGGIO et alii, 2014; DELLA SETA et
alii, 2017), without the development of a continuous sliding plane
or basal shear zone. Locally, deep creep processes can lead to
the volumetric decrease of rock mass (density increase), forming
a thick but not continuous contractant shear zone (FEpA, 1973;
MaAHR, 1977; RADBRUCH-HALL, 1978).

Sometimes, the progression of deformations or the presence
of inherited structures, favor the development of a well-defined
sliding plane or basal shear zone, extended continuously below
the deformed rock mass (CHIGIRA, 1992; AGLIARDI et alii,
2001; STRAUHAL et alii, 2017). This element, often invoked as a
discriminating between landslides and slope-scale deformational
processes (DraMIs & SORRISO-VALVO, 1994), have been
recognized (or hypothesized/inferred) in DSGSD phenomena
by numerous authors (GIGNOUX & BARBIER, 1955; CrosTA &
ZANCHI, 2000; AGLIARDI ef alii, 2001; AMBROSI & CROSTA, 2006;
BonzaNIGO et alii, 2007; MADRITSCH & MILLEN, 2007; AGLIARDI
et alii, 2009; Moro et alii, 2009; BARLA et alii, 2010; ZANGERL

www.ijege.uniromal.it

43



44

et alii, 2010; GHIROTTI et alii, 2011; AGLIARDI et alii, 2012;
Moro et alii, 2012; STRAUHAL et alii, 2017; AGLIARDI et alii,
2019; MariaNl & ZEerRBONI, 2020; Vick et alii, 2020). The
basal shear zone generally present thickness between few
meters and some ten of meters and is composed by cataclastic
breccias with abundant fine matrix (CROSTA & ZANCHI,
2000; MADRITSCH & MILLEN, 2007; CROSTA et alii, 2013).

TIME SPAN AND DIMENSIONS OF DSGSDs
As suggested by many authors, characteristic features of
DSGSDs are the spatial and temporal scales on which they

M. E. DISCENZA & C. ESPOSITO

act (Dramis & SORRISO-VALVO, 1994; AGLIARDI et alii, 2001,
2012; JABOYEDOFF et alii, 2013; PANEK & KLIMES, 2016). These
aspects are fundamental in the study of DSGSDs and in the
discriminating with respect to other gravitational processes. The
main data available in literature are summarized below, in order
to analyze and quantify the spatial and temporal characteristic of
these phenomena.
Regarding the time scale, many methods
TCN,
radiocarbon) have been used in last decades to study the

age and the evolution of DSGSDs (PANEK & KLIMES, 2016).

(e.g.

dendrochronology,  tephrochronology, U-series,

DSGSD location / region Age (ka) Dating method References
Mt. Scincina / Alps (Italy) > 120 4C, OSL TIBALDI et alii (2004)
+ relative dating
Foros / Crimean Mountains (Ukraine) >110 Uranium-series, '*C | PANEK et alii (2009b)
Perecalg / Pyrenees (Spain) >45 4C, OSL GUTIERREZ et alii (2012b)
Mt. Quoshadagh / Quoshadagh Range (Iran) >42 ¢, OSL BARON et alii (2013)
Mt. Morrone / Apennines (Italy) >41 4c GORI et alii (2014)
Bregaglia Valley / Alps (Switzerland and Italy) >29-16 4C, OSL + TIBALDI & PASQUARE (2008)
relative dating

Mt. Rognier / Alps (France) ~17 10Be HIPPOLYTE et alii (2012)
El Ubago / Pyrenees (Spain) ~16.9 c GUTIERREZ et alii (2008)
Horvatov Yrch Ridge / Tatra Mountains ~15.7-4.4 10Be, 36C1 PANEK et alii (2017)
(Slovakia and Poland)
Val Venosta / Alps (Italy) ~ 142 U/Th KOLTAI et alii (2018)
Zenzano Fault / Iberian Chain (Spain) >13.6 4c CARBONEL et alii. (2013)
Polska Tomanova Ridge / Tatra Mountains | ~ 12.4-8.4 10Be PANEK et alii (2017)
(Slovakia and Poland)
Aspen Highlands / Colorado (USA) ~11.5-11 4C McCALPIN & IRVINE (1995)
Arcs / Alps (France) ~11.5 10Be HIPPOLYTE et alii (2009)
Kagel Mountain / San Gabriel Mountains | ~ 10.7 4C McCALPIN & HART (2003)
(California, USA)
La Clapiére / Alps (France) 10.3 10Be BIGOT-CORMIER et alii (2005)

EL BEDOUI et alii (2009)
Salatin Ridge / Tatra Mountains ~10.3-4.2 10Be PANEK et alii (2017)
(Slovakia and Poland)
Mt. Kushtaka / Yakutat Microplate (Alaska, USA) | >10.2 4C, OSL MCcCALPIN et alii (2011)
Mt. Watles / Alps (Italy) ~10 4c AGLIARDI et alii (2009)
Mt. Serrone / Apennines (Italy) ~9.6 4c MORO et alii (2012)
Vallibierna and Estés sackungen / Pyrenees | ~7.8-5.9 l4c GUTIERREZ-SANTOLALLA et alii (2005)
(Spain)
Hlinske Saddle / Tatra Mountains ~6.0-4.0 19Be PANEK et alii (2017)
(Slovakia and Poland)
Mt. Ondfejnik / Western Carpathians >59 OSL PANEK et alii (2011)
(Czech Republic)
Moravskoslezske Beskydy Mts. / 4.2-3.6 10Be BREZNY et alii (2018)
Western Carpathians (Czech Republic)
Blue Ridge and Lytle Creek sackungen / 4.2-0.8 4C MCcCALPIN & HART (2003)
San Gabriel Mts. (California, USA)
Teruel Graben / Iberian Chain (Spain) 35 4C GUTIERREZ et alii (2012a)
Affliction Creek / Coast Mountains Onset of activity lichenometry Bovis (1982)
(British Columbia, Canada) between AD 1865-1875

Tab. 1 - Time span of some characteristic DSGSDs, constrained by absolute dating and relative methods (modified after PANEK & KLIMES, 2016)
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The available data (Tab. 1) show that the evolution of these
phenomena occurs (generally) over time intervals of thousands
(Bovis, 1982; Mccarpin & Hart, 2003; GUTIERREZ-
SANTOLALLA et alii, 2005; PANEK et alii, 2011; GUTIERREZ et
alii, 2012a; MoRo et alii, 2012; PANEK et alii, 2017; BREZNY et
alii, 2018) or tens of thousands of years (MCCALPIN & IRVINE,
1995; McCALPIN & HART, 2003; BIGOT-CORMIER et alii, 2005;
GUTIERREZ et alii, 2008; TIBALDI & PASQUARE, 2008; AGLIARDI
et alii, 2009; EL BEpOUI et alii, 2009; HIPPOLYTE et alii, 2009;
MCcCALPIN et alii, 2011; GUTIERREZ et alii, 2012b; HIPPOLYTE
et alii, 2012; BARON et alii, 2013; CARBONEL et alii, 2013;
GORI et alii, 2014; PANEK et alii, 2017; KoLTAI et alii, 2018),
sometimes hundreds of thousand years (TIBALDI et alii, 2004;
PANEK et alii, 2009D).

These results are fully compatible with the indirect
deductions deriving from geomorphological analyzes
(AGLIARDI et alii, 2001) and time-dependent numerical
modelling (DISCENZA et alii, 2011; DELLA SETA et alii, 2017),

which show similar evolution times. As suggested by PANEK
& KLIMES (2016), the lifespans are significantly different for
the DSGSDs located in formerly glaciated terrain later the final
deglaciation (onset after ~18—10 ka), and for the phenomena
locate in non-glaciated setting, often predating global Last
Glacial Maximum (~23-19 ka).

The DSGSDs are characterized by considerable dimensions,
with thickness of many tens or hundreds of meters (PANEK &
KLIMES, 2016) and surface up to hundreds of km? (AMBROSI &
CROSTA, 2006; AGLIARDI et alii, 2013; CROSTA et alii, 2013).
While there is a great deal of information in the literature on the
surface and depth of these phenomena, less data is available on
the volumes, as the diffuse margins and the complexity of the
processes make the evaluation of this parameter very difficult.
In particular, the data collected in the present study (Tab.
2) show that the volumes of these phenomena are generally
variable between 10° m*® (JArRMAN, 2006; DISCENZA et alii,
2011) and 10° m® (T1BALDI et alii, 2015; AGLIARDI et alii, 2019;

DSGSD location / region Maximum depth (m) | Surface (km?) Volume (m?) References
Mt. Quoshadagh / Quoshadagh 800 ~220 8.3-10'0 - BARON et alii (2013)
Range (Iran) 1.1-101
Sinne Valley / Alps (France) n.a n.a. 9.5:10° DROUILLAS et alii (2020)
Piz Dora / Val Miistair 400 12 1.85-10° AGLIARDI et alii (2019)
(Switzerland)
Talas—Fergana Fault / Tien Shan 250 4 1-10° TIBALDI et alii (2015)
(Kyrgyzstan)
El Ubago / Pyrenees (Spain) >300? 4.4 6.0-10% GUTIERREZ et alii (2008)
Celentino / Alps (Italy) 80 - 100 5 3.5-10%-4.0-10% GHIROTTI ef alii (2011)
Vollan / Sunndal Valley (Norway) 200 ~2.5 2.6:10% OPPIKOFER et alii (2017)
Mount Breakenridge / Lillooet n.a. n.a. 2-108 NicHOL et alii (2002)
Ranges (British Columbia, Canada)
Beinn Fhada / Scottish Highlands 100 ? 3.0 1.12-108 JARMAN (2006)
(Scotland)
Encampadana / Central-Eastern 300 1.5 1-108 HURLIMANN et alii (2006)
Pyrenees (Andorra)
Moosfluh / Alps (Switzerland) 170 1.3 7.5-107 GLUEER et alii (2019)
Sgurr Bhreac / Scottish Highlands n.a 0.82 3.6:107? JARMAN (2006)
(Scotland)
An Sornach / Scottish Highlands n.a. 0.75 1.3:107 2 JARMAN (2006)
(Scotland)
Sgurr na Ciste / Scottish Highlands 80 1.25 5-10°-1-107 JARMAN (2006)
(Scotland)
Tino / Apennines (Italy) 50 ~0.25 1-10°-1-107 MARTINO et alii (2020)
Grisciano / Apennines (Italy) 50 ~0.18 1-10°-1-107 MARTINO et alii (2020)
Mt. Rocchetta / Apennines (Italy)* 300-350 0.25 8.0-10° DISCENZA et alii (2011)
Sgurr na Lapaich / Scottish 100 ? 0.3 7-10°? JARMAN (2006)
Highlands (Scotland)
Hell’s Glen / Scottish Highlands 60 0.52 1.75-10° JARMAN (2006)
(Scotland)

Tab. 2 -

Dimensions of some characteristics DSGSDs (maximum depth, surface, volume); * indicate phenomena for which the volume is not present in the

original publication but was determined through the analyzes of surface and depth
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DRrouiLLAS et alii, 2020), although locally they can reach 10'°
- 10" m*® (BARON et alii, 2013). Many DSGSDs are included
in this range, with volumes varying between 107 and 10% m?
(NicHOL et alii, 2002; HORLIMANN et alii, 2006; JARMAN, 2006;
GUTIERREZ et alii, 2008; GHIROTTI ef alii, 2011; OPPIKOFER et

alii, 2017; GLUEER et alii, 2019; MARTINO et alii, 2020).

DISCUSSION AND CONCLUSIONS

Deep-Seated Gravitational Slope Deformations (DSGSDs
Auct.) are phenomena of great importance from a scientific
point of view, both for the role they play in the evolution of
relief and for the significant social impact should they occur in
proximity to peoples and infrastructures (ZARUBA & MENCL,
1969; Dramis & SORRISO-VALVO, 1994; PANEK & KLIMES,
2016; MARTINO et alii, 2020). In fact, they often produce
significant interferences with anthropic elements and constitute
a great potential risk factor (ZARuBA & MENCL, 1969; DraMIS
& SORRISO-VALVO, 1994; DISCENZA et alii, 2011; FRATTINI et
alii, 2013; PANEK & KLIMES, 2016), both directly (e.g., related
slope deformations) and indirectly (e.g., for the possible
catastrophic evolution). Large landslides with rapid kinematics
were recognized in many parts of the world in association with
DSGSD phenomena (HUNGR & Evans, 2004; PANEK & KLIMES,
2016), both in historical and recent times.

It is worth highlighting the predisposing role of the morpho-
evolutionary context as a factor (often necessary and sufficient)
that controls the stress regime variations acting on the slopes
over different time spans (AGLIARDI ef alii, 2009; DELLA
SETA et alii, 2017). In fact, significant changes of the stress-
strain conditions can occur over larger time spans (CHIGIRA,
1992; Discenza et alii, 2011; PANEK & KLIMES, 2016), due to
the morpho-evolutionary context and/or geodynamic regime
modifications. The significance of such variations in terms of
slope stability is then related to (MARTINO et alii, 2017): (i)
the amount and temporal rate of changes in deviatoric stress;
(i) the rheology of the slope materials as long as more or less
prominent viscous deformation alternate with and superimpose
on elastic-plastic strain.

In the last decades, several studies were conducted on
these phenomena, with extremely different purposes and
methodology. At present, there are many terminologies and
definitions in literature, from which derives a considerable
complexity in the systematic approach to DSGSDs. One
of the main issues is the definition of the limit (and, thus,
distinction) between slow-moving large landslides, DSGSDs,
and gravitational tectonics, as they all produce some similar
deformative effects and geomorphic features.

Like the tectonic processes s.s., the DSGSDs produce
deformations of the involved mass such as folds, faults, and
shear zones (ZISCHINSKY, 1969; NEMCOK et alii, 1972; MAHR
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& NEMCOK, 1977; FLEMING & JOHNSON, 1989; CHIGIRA, 1992;
BRAATHEN et alii, 2004). The similarities between the effects
produced by the two processes (CHIGIRA, 1992; JABOYEDOFF
et alii, 2011; AGLIARDI et alii, 2012; JABOYEDOFF et alii, 2013)
make their distinction particularly complex, even more if we
consider that many slope deformations exploit pre-existing
tectonic elements as kinematic release planes (AGLIARDI et alii,
2001; D1 Luzio et alii, 2004b; AGLIARDI et alii, 2012; EsPoSsITO
et alii, 2014). In this case, the identification of the dominant
process and the real cause of the deformation elements present
on slope must be made not so much on the individual identified
elements, but rather on the spatial distribution of the same and
on the relative extension within the slope (AGLIARDI et alii,
2012).

In differentiating DSGSDs from conventional landslides,
many elements have been considered over time by various
authors. Some workers consider the absence of a continuous
sliding surface or basal shear zone (DraMIS & SORRISO-VALVO,
1994), but the recognizing (or hypothesizing/inferring) of this
element in numerous DSGSDs leads today to consider this
condition as non-discriminatory between the two processes
(AGLIARDI et alii, 2001; PANEK & KLIMES, 2016). Other authors
consider the absence of clear and well-defined external limits
(Fig. 8) as discriminatory (AGLIARDI et alii, 2001; JARMAN,
2006; AGLIARDI et alii, 2012; CrROSTA et alii, 2013; JARMAN &
HaRrRISON, 2019) but, even if this is a very common condition in
DSGSD phenomena, it depends on local geological conditions
and the evolutionary stage of the process.

Starting from an initial study (SORRISO-VALvVO, 1984), some
years later SORRISO-VALVO (1995) proposed a differentiation
between landslides and gravitational deformations according
to the size of the phenomena and the effects produced by the
scale factor; conventional landslides are divided into two
classes depending on whether the scale effect is influential or
not on the development of the phenomenon, while gravitational
deformations are distinguished from gravitational tectonics
both in relation to the size of the DSGSDs and the extension
on the mountain relief. JABOYEDOFF et alii (2011) divide
the instability phenomena into three dimensional orders;
conventional landslides correspond to the 3rd order (or at
most to the 2nd in the case of large rock avalanches), while
gravitational deformations correspond to the 2nd order if
they concern only the slope or to the 1st order if they concern
entire mountainous relief. Finally, HUNGR et alii (2014) divide
the DSGSDs into two different types, the mountain slope
deformations and the rock slope deformations; the first concern
entire mountain relief, with a height in the order of 1 km or
more, while the latter concern rock slope with a height of a few
tens or hundreds of meters.

A characteristic aspect of DSGSDs is represented by the
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Fig. 8 - Scheme for the distinction between different large-scale gravitational phenomena (i.e., DSGSDs, Rockslides, Rock avalanches) based
on the morphological characteristics along the slope (modified after JARMAN & HARRISON, 2019). DSGSDs are characterized by dif-
fuse boundaries (or margins) and numerous morphological features with peculiar assemblage (scarps, uphill-facing scarps, fissures)

high spatial and temporal scales on which they act. Over the
years, a lot of authors have provided indications to describe the
spatial scale of these phenomena (DRAMIS & SORRISO-VALVO,
1994; AGLIARDI et alii, 2001, 2012; JABOYEDOFF et alii, 2013;
PANEK & KLIMES, 2016), taking as a reference the extent of the
phenomenon with respect to the relief. The numerous existing
bibliographic data, described in the previous paragraphs, made
it possible to define the characteristic intervals of time span
and volume for DSGSDs. These phenomena commonly have
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dimension of 10° - 10° m?, locally up to 10" - 10" m’, and
develop over time intervals on the order of 10° - 10* years,
sometimes up to 103 years.

This study proposes a new reference scheme which,
starting from the state of the art, integrates the concept of
time scale in defining slope deformational processes (Fig.
9). The scheme is based on two main aspects: (i) volume;
(ii) time scale. The volume regulates short-term geostatic
load and elastic-plastic equilibrium on and refers to a given
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morpho-structural setting, the related relief energy, as well as
geodynamic regime. The time scale introduces the relevance
of the time-dependent mechanical parameters of the slope
materials as long as the time span “fits” the viscosity of
slope materials and the related creep behavior. Obviously, the
boundary conditions of the different processes are not sharp
but are indicative (i.e., there is some uncertainty) and so they
should always be considered in relations to the geological
context.

The review of the main existing studies has made it
possible to fully define all the aspects that characterize
the DSGSDs and that allow them to be distinguished from
conventional landslides and gravitational tectonics. Among
these, particular importance assumes the high space-time
scales on which they act. In summary, the main characteristics
of the DSGSDs are:

* dimensions comparable with those of the entire slope (or
larger portion of it);

o diffuse,
boundaries (or limits/margins), with flanks often coinciding

discontinuous or not well-defined external
with tributary streams or tectonic elements;

e peculiar assemblage of typical morphological features
(e.g., double ridges, ridge top depressions, trenches, scarps,
counterscarps, tension cracks, toe bulging), generally
distributed along the entire ridge-slope-valley floor
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Simplified scheme representing dimensional and temporal scales (in terms of orders of magnitude) characterizing the DSGSDs, as defined by the

system;

* very small deformation rates (in the order of mm per
years);

» large spatial and temporal scales (volumes between 10° -
10" m® and time span between 10° - 10° years);

* complex deformational processes (brittle, ductile, and
viscous-plastic deformation, in mass or along discrete
zones and surfaces);

* heavily jointed and deformed rock masses (not completely
disturbed, with original structures still recognizable, except
for discrete shear zones);

» presence of secondary landslides and large Rock Slope
Failures (in all or part of the slope).

For specific bibliographical references and the description of
the individual aspects, please refer to the contents of the previous
paragraphs.

Above all, the concept of “depth” should be less constraining
in favor of a more appropriate reference to the coupling of spatial
and temporal scale factors, which better reflect the morpho-
evolutionary characteristics of the process and its rheological
behavior. Depth is not considered as a distinctive element of these
processes, as there are landslides and tectonic processes with
depths comparable with those of DSGSDs, but rather a direct
consequence of the scale on which they act, which requires a stress
field that can only form in large rock volumes.
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In addition to commonly used terms such as Deep-Seated
Gravitational Slope Deformation (DSGSD Auct.), other terminologies
such as Slope Tectonics (ST — JABOYEDOFF et alii, 2011), Mass
Rock Creep (MRC - RADBRUCH-HALL, 1978; CHIGIRA, 1992) or
Rock Slope Deformation (RSD — HUNGR et alii, 2014; JARMAN &
HARRISON, 2019) exists in literature. These terms have the advantage
of not referring to the concept of depth, by introducing significant
elements that refer to spatial scale or the rtheology of the slope material.
At the end of the present study, alternative terms such as Slope-Scale
Gravitational Deformation (SSGD) or Large-Scale Gravitational
Slope Deformation (LSGSD) are proposed, which further detach
themselves from the concept of depth by making direct and explicit
reference to the scale of the processes.

Finally, it is emphasized that the absence of a uniformly
accepted classification and terminology in the scientific field
represents a significant problem in the treatment of these
deformational processes. In fact, it is often difficult to correlate

the different case studies and frame them in a unique and complete
way. A fundamental aspect of future research will therefore be
the introduction of comprehensive classification system, which
should refer to the kinematic, the morpho-structural setting,
and the geological/geomechanical features of the slope, that are
proxies of the mechanical properties.
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