TY - JOUR AU - Schmidt, K.M. AU - Hanshaw, M.N. AU - Howle, J.F. AU - Kean, J.W. AU - Staley, D.M. AU - Stock, J.D. AU - Bawdeng, W. PY - 2011/11/30 Y2 - 2024/03/28 TI - Hydrologic conditions and terrestrial laser scanning of post-firedebris flows in the san gabriel mountains, CA, U.S.A JF - Italian journal of engineering geology and environment JA - IJEGE VL - IS - SE - Articles DO - 10.4408/IJEGE.2011-03.B-064 UR - https://rosa.uniroma1.it/rosa02/engineering_geology_environment/article/view/1319 SP - 583-593 AB - <p><span data-sheets-value="{&quot;1&quot;:2,&quot;2&quot;:&quot;To investigate rainfall-runoff conditions that generate post-wildfire debris flows, we instrumented and surveyed steep, small watersheds along the tectonically active front of the San Gabriel Mountains, California. Fortuitously, we recorded runoff-generated debris-flows triggered by one spatially restricted convective event with 28 mm of rainfall falling over 62 minutes. Our rain gages, nested hillslope overland-flow sensors and soil-moisture probes, as well as a time series of terrestrial laser scanning (TLS) revealed the effects of the storm. Hillslope overland-flow response, along two ~10-m long flow lines perpendicular to and originating from a drainage divide, displayed only a 10 to 20 minute delay from the onset of rainfall with accumulated totals of merely 5-10 mm. Depth-stratified soil-moisture probes displayed a greater time delay, roughly 20- 30 minutes, indicating that initial overland flow was Hortonian. Furthermore, a downstream channel-monitoring array recorded a pronounced discharge peak generated by the passage of a debris flow after 18 minutes of rainfall. At this time, only four of the eleven hillslope overland flow sensors confirmed the presence of surface-water flow. Repeat TLS and detailed field mapping using GPS document how patterns of rainsplash, overland-flow scour, and rilling contributed to the generation of metter-scale debris flows. In response to a single small storm, the debris flows deposited irregular levees and lobate terminal snouts on hillslopes and caused wide-\rspread erosion of the valley axis with ground surface lowering exceeding 1.5 m.&quot;}" data-sheets-userformat="{&quot;2&quot;:13057,&quot;3&quot;:{&quot;1&quot;:0},&quot;11&quot;:0,&quot;12&quot;:0,&quot;15&quot;:&quot;Arial&quot;,&quot;16&quot;:10}">To investigate rainfall-runoff conditions that generate post-wildfire debris flows, we instrumented and surveyed steep, small watersheds along the tectonically active front of the San Gabriel Mountains, California. Fortuitously, we recorded runoff-generated debris-flows triggered by one spatially restricted convective event with 28 mm of rainfall falling over 62 minutes. Our rain gages, nested hillslope overland-flow sensors and soil-moisture probes, as well as a time series of terrestrial laser scanning (TLS) revealed the effects of the storm. Hillslope overland-flow response, along two ~10-m long flow lines perpendicular to and originating from a drainage divide, displayed only a 10 to 20 minute delay from the onset of rainfall with accumulated totals of merely 5-10 mm. Depth-stratified soil-moisture probes displayed a greater time delay, roughly 20- 30 minutes, indicating that initial overland flow was Hortonian. Furthermore, a downstream channel-monitoring array recorded a pronounced discharge peak generated by the passage of a debris flow after 18 minutes of rainfall. At this time, only four of the eleven hillslope overland flow sensors confirmed the presence of surface-water flow. Repeat TLS and detailed field mapping using GPS document how patterns of rainsplash, overland-flow scour, and rilling contributed to the generation of metter-scale debris flows. In response to a single small storm, the debris flows deposited irregular levees and lobate terminal snouts on hillslopes and caused wide- spread erosion of the valley axis with ground surface lowering exceeding 1.5 m.</span></p> ER -