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Introduction

Climate change refers to a change in the state of the climate 
that can be identifi ed by changes in the mean and/or the 
variability of its properties and that persists for an extend-
ed period, typically decades or longer (IPCC 2014). The 
human-induced warming on global scale is unequivocal 
and consisted of an increase of about 0.2 °C per decade 
from the pre-industrial period to 2017 (Allen et al. 2018). 
Central Europe, including Italy (Brunetti et al. 2006), is 
facing increasingly hot and dry summers (Seneviratne et 
al. 2006), and temperatures are expected to rise further 
during the twenty-fi rst century (Tomozeiu et al. 2014; 
Bucchignani et al. 2016).

Range shift is one of the expected responses of spe-
cies to climate change (Parmesan & Yohe 2003; Chen et 
al. 2011). As formerly unsuitable habitat becomes suitable, 
and vice versa, many species shift their ranges to follow 
changes in habitat and climate. Even among European in-
sects, there are many examples where species have recent-
ly started both northward (Parmesan et al. 1999; Devictor 

et al. 2012; Mason et al. 2015) and upward (Dieker et al. 
2011; Menéndez et al. 2014; Rödder et al. 2021) distribu-
tive shifts. Local conditions and microclimates are altered 
by climate change, sometimes in different ways, evolv-
ing discontinuously and creating peculiar local climate 
patterns that affect local populations (Suggitt et al. 2011, 
2018; Potter et al. 2013; Battiston & Biondi 2015). 

In this study we analysed the Italian distribution of 
the European dwarf mantis Ameles spallanzania (Rossi, 
1792) in the last decades, a period during which the spe-
cies was observed more and more frequently in northern 
Italy (Battiston et al. 2020a). According to Battiston et al. 
(2020a) this species, not migrant, tendentially sedentary 
and linked to warm climate, could have recently expanded 
its range, thanks to the recent rising temperatures and the 
presence of man-made corridors and human transport. We 
have therefore investigated the relationship between the 
climate of the last four decades in Italy and the distribution 
of this species, as a case study to investigate the infl uence 
of climate on low-mobility species between natural and 
human-mediated habitats.
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Abstract
Climate change is altering the distribution of many species, which shift their range chasing the suitable conditions to survive and reproduce. 
Within a few years, the European dwarf mantis (Ameles spallanzania) seems to have expanded its range towards northern Italy, settling 
in the Po Valley and reaching the Alps. Our goal was to investigate the relationship between the climate of the last four decades in Italy 
and the distribution of this species in the current period and in the past. The results indicate that, during the last decades, a rapid and 
remarkable increase in climatically suitable area for this species has occurred in northern Italy, while in the historical presence sites it has 
remained rather constant. The existence of corridors such as railways, embankments, and roadsides may have accelerated its dispersal. 
These results suggest that rapid climate change, in particular the rise in average annual temperature, may contribute signifi cantly to the 
rapid expansion of a thermophilic species, with hitherto unknown consequences on the ecological communities it reaches.
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gos sphaerocarpa (L.) Heyw. interspersed with herbs and 
tall grasses (Payne 2017). Nymphs and mature females 
usually hide on low vegetation amongst leaves, buds or 
flower heads while adult males use to cling on higher 
stems, especially if they are following the female phero-
mones (Payne 2017). A. spallanzania is capable of adapt-
ing its lifecycle to latitude: in Mediterranean and warmer 
areas it can produce two generations per year, either with 
overwintering nymphs or with mixed populations of over-
wintering nymphs and oothecae; in northern and continen-
tal localities only one generation per year is produced and 
overwintering oothecas are able to tolerate sub-zero tem-
peratures (Battiston & Galliani 2011).

Past and current occurrences
According to the historical checklist and distribution of the 
Italian fauna (Fontana et al. 2005), the past distribution 
of A. spallanzania was mainly concentrated near the West 
inland coastline and in the islands, referring to 99 generi-
cally indicated localities from 1878 to 2001 (grouped in 77 
UTM square cells of 10 x 10 km). Among these data, those 
falling in northern Italy refer mainly to the western part, 
near the Ligurian coast and the nearby inland, while to 
the East only two occurrences were recorded in 1963 and 

Material and methods

Study species
The European dwarf mantis Ameles spallanzania is a 
small-sized mantis, distributed in almost all the Mediter-
ranean basin (Battiston 2020). Females are brachypterous 
and tendentially sedentary while males are macropterous 
and able to fly over short distances (Battiston et al. 2010). 
The general coloration, shape of the body, and movements 
mimic the vegetation where this species rests and hunts. Its 
natural habitats are maquis, garrigue, and mediterranean 
steppe but it can be found as well in many arid and ther-
mophilus discontinuity of natural vegetation inside artifi-
cial environments (unmanaged gardens, deposits, roadside 
verges, etc.) (Battiston et al. 2020b; Cassar 2020). This 
species has been recorded standing on a variety of forbs 
and shrubs: Artemisia campestris L., Centaurea panicu-
lata L., Eryngium campestre L., Echinops sphaeroceph-
alus L., Foeniculum vulgare L., Lavandula spp., Mentha 
spp., Odontites luteus (L.), Salvia rosmarinus Spenn. (= 
Rosmarinus officinalis L.), S. officinalis L., Satureja spp. 
(Battiston et al. 2010; Leandri et al. 2013; Anselmo 2022; 
WDP pers. obs.). It is also found in abandoned orchards, 
with a layer of Genista umbellata (L‘Her.) Poir. and/or Ly-

Fig. 1 – Distribution of Ameles spallanzania in Italy across a, past period and b, current period. Confirmed data refer to already known presence cells in 
the previous time interval.
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(Tsoar et al. 2007). The models were built using one occur-
rence per pixel referred to the current period (2007-2021) 
resulting in 325 points, and the climatic variables referred 
to the current period (2010-2019) prepared as described 
in the previous steps. In the modelling procedure a ran-
dom sample of 10‘000 pseudo-absences were generated 
across the study area. To evaluate model performance, the 
algorithm was calibrated with 80% of the data and tested 
with the remaining 20%. The procedure was replicated 10 
times and each model was evaluated by the Area Under the 
Curve (AUC) and the True Skill Statistic (TSS): Models 
with AUC below 0.6 are not considered reliable, 0.6-0.7 
are considered poor, 0.7-0.8 right, 0.8-0.9 good and higher 
than 0.9 excellent (Arújo et al. 2005). Models with TSS 
measures below 0.4 are considered poor, 0.4-0.8 useful, 
and higher than 0.8 good-excellent (Allouche et al. 2006). 
An ensemble model was created by averaging the individ-
ual models, trained on the 10 sampling replicates, and then 
projected in the current period and in each past decade in 
order to obtain suitability maps through time (with suit-

1969 in the Province of Padova (Fig. 1a). Subsequently, 
the presence of this species was recorded more and more 
frequently in northern Italy (Cogo & Battiston 2007; Bat-
tiston & Buzzetti 2012; Uliana & Battiston 2012; Leandri 
et al. 2013; Buzzetti et al. 2018; Battiston et al. 2020a; Bat-
tiston 2021), even in the Alps (Ballini & Wilhelm 2014; 
Tabarelli de Fatis & Debiasi 2020; Anselmo 2022).  We 
then gathering overall 401 georeferenced data from 2007 
to 2021 (Fig. 1b) available from the aforementioned litera-
ture, GBIF (https://doi.org/10.15468/dl.ggb4u5), iNatural-
ist (https://www.inaturalist.org), data collected by the au-
thors also through the “Segnala una mantide” (= “Report 
a mantis!”) of Mantidi Lovers Italia citizen science pro-
ject (https://www.facebook.com/MantidiLoversItalia). We 
only selected data and with a precision lower than 300 m.

Climatic variables
For the purposes of our study, high resolution layers of 
monthly precipitation amount, maximum and minimum 
temperature from 1980 and 2019 were obtained from the 
CHELSA V2.1 database (Karger et al. 2017, 2021), with 
original resolution on Italy of about 655 m. These data 
were averaged over 10-year subsets and used to produce 
19 bioclimatic variables for each, with the package dismo 
v. 1.3-9 (Hijmans et al. 2022) in the software R v. 3.6.3 
(R Core Team 2020). A selection of climatic variables 
from the decade 2010-2019 was carried out (Merow et al. 
2013; Fourcade et al. 2018), identifying the groups of var-
iables most correlated (Spearman correlation > 0.7) with 
the package ENMTools v. 1.0.6 (Warren et al. 2021) and 
choosing the supposed most ecologically important varia-
ble for each group (Forcaude et al. 2018). The resulting set 
of variables from this procedure were bio1 (mean annual 
temperature), bio2 (mean diurnal temperature range), bio8 
(mean daily temperatures of the wettest quarter), bio15 
(precipitation seasonality) and bio19 (mean monthly pre-
cipitation amount of the coldest quarter). No land cover 
variables were used, as this species is capable of settling 
in marginal small microhabitats (e.g. roadsides) possibly 
present within almost any land cover and above. Further-
more, these microhabitats are not identifiable at the same 
resolution of the climatic variables. 

Species distribution modelling
The modelling was performed with the package Biomod2 
v. 3.5.1 (Thuiller et al. 2021) in R. Individual models were 
built with the MaxEnt algorithm (Phillips et al. 2006), 
a machine learning method that applies the principle of 
maximum entropy to predict the potential distribution of 
species from presence-only data (Elith et al. 2011; Phillips 
& Dudík 2008). Compared to other methods, this algo-
rithm is more efficient and reliable (Elith et al. 2006; Gui-
san et al. 2007; Peterson et al. 2007), providing useful re-
sults even with small samples (Pearson et al. 2006; Wisz et 
al. 2008) and is less influenced by unequal sampling levels 

Fig. 2 – Land use in the occurrences of the current period.

Fig. 3 – Importance of climatic variables used to model the distribution 
of Ameles spallanzania.
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Fig. 4 – Suitability maps of Ameles spallanzania referred to each decade.
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The efficiency of the models built only with climatic vari-
ables demonstrates that these were of great importance in 
the distribution of Ameles spallanzania. The average annu-
al temperature plays a fundamental role in predicting the 
distribution of this species and its recent rise (WMO 2022) 
may explain the increase of its observations in northern It-
aly. The low importance of the variables related to rainfall 
instead suggests that this species can survive even in plac-
es with a not distinctly Mediterranean climate and there-
fore, A. spallanzania should be considered a thermophilic 
species rather than a xero-thermophilic species. According 
to the models, while habitat suitability has remained quite 
similar over time within areas of historical presence, it has 
much increased in northern Italy (+62.3% since the 1980s; 
average inter-decade increase of 27.9%, SD = 1.7%). The 
area of potential presence has also increased considerably 
in northern Italy (+88.3% since the 1980s;, average in-
ter-decade increase of 43.4%, SD = 38.3%). These results 
suggest a rapid expansion of this species due to the pro-
gressive gain in the climatically suitable area, especially 

ability values from 0 to 1000), also building binary pro-
jections of presence-absence (1 for presence and 0 for ab-
sence) using the threshold that maximizes the TSS scores, 
with the Biomod2 package (Thuiller et al. 2021).

Distribution analysis
We evaluated the change of distribution of A. spallanza-
nia in the last four decades, in terms of predicted suitabil-
ity and predicted presence area with the package raster v. 
3.5-15 (Hijmans 2022) in R. The areas on which the com-
parison was carried out corresponds to northern Italy (i.e. 
the merging of the administrative regions Valle d‘Aosta, 
Piedmont, Lombardy, Trentino-Alto Adige, Veneto, Friu-
li-Venezia Giulia, Liguria and Emilia-Romagna) and to the 
historical range, i.e. the 10 x 10 km presence cells provided 
10 x 10 km cells provided in the checklist and distribution 
of the Italian fauna (Fontana et al. 2005).

For descriptive purposes, the land cover in the occur-
rences related to the current period was reported, based on 
CORINE Land Cover 2018 (CLC) produced by the Coper-
nicus Land Monitoring Service (Büttner et al. 2021).

Results

The performance of the models was deemed sufficient 
to consider reliable the predictions and carry out the dis-
tribution analyses, as they showed AUC greater than 0.7 
(mean = 0.79, SD = 0.02) and TSS greater than 0.4 (mean 
= 0.46, SD = 0.05). The most important variables driving 
the distribution of A. spallanzania were the temperature 
variables, in particular the mean annual temperature (bio1) 
showed the greatest influence (Fig. 3).  In contrast, the 
precipitation-derived variables (bio15 and bio19) were not 
of great importance. The suitability of northern Italy for 
this species has gradually increased over the decades (Figs 
4-5), from the mean value of 111.3 (SD = 158.7) referred 
to the decade 1980-1989 to 295.4 (SD = 300.8) of the last 
decade. In this geographical context, the presence area in-
dicated by the binomial transformation of the suitability 
map has also greatly increased over time, from 3553.3 km2 
to 30385.4 km2 between the first and last decade consid-
ered (Fig. 6). In comparison, the suitability within the his-
torical distribution cells has only slightly increased over 
time (Fig. 5), showing a mean value of 370.2 (SD = 272.3) 
in the first decade and of 494.75 (SD = 271.61) in the 
last decade, and so has the predicted presence area, from 
1589.4 km2 to 2082.1 km2 (Fig. 6). 

Based on the CLC, the occurrences in the current peri-
od fell mostly on the urban fabric (N = 134), followed by 
other more natural land covers (Fig. 2).  

Discussion

Fig. 5 – Boxplots of suitability per decade referred to the historical range 
and northern Italy.

Fig. 6 – Extent of predicted presence areas derived from binary maps.
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northward expansion of A. spallanzania in response to an-
thropogenic climate changes and human mediated actions, 
would correspond at least in part to the definition proposed 
by Essel et al. (2019, 2021) of “neonative” species, i.e. 
range-expanding species that track environmental changes 
without human assistance. Only through further research 
will it be possible to determine the extent to which this 
species may affect the new recipient ecosystems.
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