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Abstract

Body size is a key morphological trait that reflects both the evolutionary history and ecological processes of species and is commonly
used in assessing biogeographic patterns. Foster’s rule predicts changes in body size associated with insularity, often manifested as
dwarfism or gigantism. In this study, we tested this rule in Akymnopellis chilensis (Gervais, 1847) (Chilopoda, Scolopendromorpha), us-
ing specimens from the Humboldt Archipelago (Chile) and the mainland. Robust statistical analyses and generalized linear models reveal
that insular individuals exhibit significantly reduced body sizes relative to mainland populations. Furthermore, mean annual temperature
emerged as a key predictor of body size variation. This study provides the first documented evidence of insular dwarfism in myriapods,
extending the applicability of Foster’s rule to a previously underrepresented group of terrestrial arthropods. Our findings underscore the
importance of insularity and climate change as selective pressures influencing the morphological evolution of invertebrates, with impli-
cations for the conservation of endemic taxa in fragile island ecosystems.
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Introduction

Body size is a widely used morphometric measure to explain
biogeographic rules, as it is closely related to the physiology
and evolutionary history of organisms (Lokatis & Jeschke
2018; Cornejo et al. 2022). Thus, current body size is con-
sidered the result of both historical and ecological processes.
In this context, geographically isolated animal populations
have long served as key study models to explain body size
evolution. Biogeographic hypotheses such as Foster’s Rule
have emerged from scientific records showing that island
populations often exhibit smaller body sizes than their con-
tinental counterparts. That is, larger animals tend to become
smaller—an attribute recorded across a wide range of taxa
including mammals, snakes, fish, mollusks, reptiles, and
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even insects (Brown & Maurer 1989; Brown et al. 1993;
Blackburn & Gaston 1994; Maurer 1998; Keogh et al. 2005;
Meiri 2008; Cornejo et al. 2022).

Foster’s Rule, also known as the Island Rule, refers to
cases of gigantism or dwarfism in insular species (Cornejo
et al. 2022). Foster (1964) demonstrated body size variation
in island mammal species, confirming that in some carni-
vores, Lagomorpha, and Artiodactyla, insular individuals
were smaller than their continental counterparts. Unlike
other biogeographic rules, Foster’s Rule lacks a clearly de-
fined causal mechanism explaining the phenomenon. It is
believed that for species with large body sizes, islands often
pose a challenge due to limited food resources per unit area.
Consequently, these species tend to reduce their body size to
the point where the available resources are sufficient to meet
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the energetic demands of individuals over time (Cornejo et
al. 2022). In contrast, smaller-bodied species often find new
opportunities on islands, benefiting from the absence of
negative biological interactions such as predators, limited
resource access, reduced competition, and even the occupa-
tion of vacant ecological niches (Cornejo et al. 2022).

In Chile, the order Scolopendromorpha is represented
by the families Cryptopidae and Scolopendridae. The lat-
ter includes the genus Akymnopellis Shelley, 2008, which
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shows a wide distribution (three species are known from
Chile) with records across various environmental gradients
throughout the country, including some northern and south-
ern islands (Shelley 2008; Vega-Roman & Ruiz 2018). 4.
chilensis (Gervais, 1847) exhibits unique morphological
and physiological traits that may reflect adaptation to its en-
vironment, such as body length—a key trait in thermoreg-
ulation. For these reasons, the objective of this study was
to evaluate the presence of the Island Rule (Foster’s Rule)

Fig. 1 — A, Female Akymnopellis chilensis (Gervais, 1847) guarding her eggs (photograph by Claudia Maureira); B, Points record from Continental Chile;

C, Points record from Island Chile.
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Table 1 — Coefficients of the generalized linear models (GLMs) for body size.

Models AIC Intercepto Devianza (%) F-value P-value
Mod 1. TMEAN 1575 41 16.54 3.173 0,0003
Mod 2. COL FECH 1578 1578 16.78 2.736 0,0010
Mod 3. ADIT. 1586 1586 22.98 1.195 0,289
Mod 4. INTER. 1589 1589 33.20 0.460 0,709

in A. chilensis. It is hypothesized that insular specimens
will exhibit smaller body sizes due to limiting conditions
on the islands of the Humboldt Archipelago, compared to
their continental congeners, thereby demonstrating a case
of insular dwarfism.

Materials and Methods

A total of 206 specimens of Akymnopellis chilensis were in-
cluded in this study. 69 specimens were collected on islands
and 137 on the continent. Specimens were collected from
the islands of the Punta de Choros Archipelago (Isla Damas,
Isla Choros, and Isla Gaviota), as well as from various loca-
tions along continental Chile. Collections were carried out
using active searching and pitfall traps between the years
2006 and 2024 (Fig. 1A, B, C). The specimens are deposited
in the arthropod collection of the Ecological Entomology
Laboratory, University of La Serena, Chile (LEULS).

Each specimen was measured for total body length,
from the cephalic plate to tergite 21 (sensu Shelley
2008). For specimens preserved in alcohol, the length
of each tergite was measured individually, and the sum
of these lengths was considered as the total body length
(Shelley 2008). Each individual specimen was observed
by stereoscopic microscopy and its taxonomic charac-
teristics were analyzed using specific classification keys
based on characters of taxonomic importance such as ce-
phalic plate, cervical groove, coxosternite, among others
(Shelley 2008).

To assess differences in body size between insular
and continental specimens, the means were compared us-
ing Yuen’s trimmed mean test (Yuen 1974), applying a
20% trimming level. Unlike other statistical tests, Yuen’s
test is not sensitive to the assumption of homogeneity of
variance, thus reducing Type I error rates when the data-
set does not meet this assumption (Ramalle-Gémara &
de Llano 2003).

To detect temporal changes in body size, four gener-
alized linear models (GLMs) were evaluated. Since many
of the specimens were at juvenile stages or their preser-
vation status made accurate sex determination difficult,
this variable was excluded to avoid introducing biases as-
sociated with incomplete or unreliable classification. The
predictor variables included collection year (COLFECH)
and the mean temperature (TMEAN) of each locality.

Data were obtained from https://explorador.cr2.cl, which
provides updated information for each locality. The first
model assessed the relationship between body size and
TMEAN only; the second model evaluated the relation-
ship between body size and collection year (COLFECH);
the third model included an additive effect of both varia-
bles (TMEAN + COLFECH). The variables mean annual
temperature (TMEAN) and collection year (COLFECH)
were selected due to their direct relevance to the physiolo-
gy of ectothermic organisms such as myriapods. Ambient
temperature affects key processes such as growth, meta-
bolic rate, and thermoregulation, and it is one of the most
commonly used factors to explain patterns of morpholog-
ical variation under climate change scenarios (Entling et
al. 2010; Yom-Tov & Geffen 2011).

We prioritized climatic and temporal predictors
(TMEAN, COLFECH) due to their direct physiological
relevance for ectotherms and their consistent spatiotem-
poral coverage. Additional ecological variables (habitat
structure, resource availability, biotic interactions) were
considered; however, limitations in resolution and compa-
rability led us to exclude them to prevent overfitting and
collinearity. Sensitivity analyses (Appendix S1) indicate
that our conclusions regarding insular dwarfism and the
effect of TMEAN are robust to alternative specifications
and environmental proxies.

Collection year allows for the evaluation of temporal
changes associated with global warming and serves as a
useful proxy variable to capture potential evolutionary
trends or plastic responses accumulated over time. And the
fourth model tested an interaction effect between them. Fi-
nally, the significance of model coefficients was assessed
using an analysis of variance (ANOVA) (Zuur et al. 2007;
Cornejo et al. 2022).

The analyses were carried out in the statistical program
R4.0.2.

Results

The Akymnopellis chilensis specimens collected on the
mainland had an average body length of 39.54 mm, while
those from the islands had an average of 33.36 mm. Ac-
cording to Yuen’s trimmed mean test (T = 5.984; p = 9.65
x 107%), island specimens are significantly smaller than
those from the mainland (Fig. 2).
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The best-fitting GLM corresponds to model 1: TMEAN
(AIC = 1575). The AIC, or Akaike Information Criterion
(AIC), is a statistical measure that evaluates model quality
by balancing goodness of fit with model complexity; lower
values indicate a better and more parsimonious model. Al-
though model 4 presents a significant interaction between
TMEAN and COLFECH, it has the highest AIC and is
therefore the least parsimonious. Model 3 does not include
any significant predictors and has a high AIC, indicating that
adding predictors does not improve model fit. Finally, mod-
el 2, which includes only the collection year (COLFECH)
as a predictor, is statistically significant but accounts for less
variability than model 1 (TMEAN) (Table 1).

Additionally, when analyzing deviance explained by
each model, results show that model 4 (INTER) accounts
for approximately 33.20% of the variability, indicating
greater predictive power. This suggests that the interac-
tion between mean temperature and collection year (COL-
FECH) is relevant for understanding body size variation.

Discussion

The results support the idea of dwarfism in Akymnopellis
chilensis, as insular specimens were significantly smaller
than those collected on the mainland (Fig. 2). This con-
stitutes the first recorded instance of this phenomenon in
myriapods, opening a new line of research to explore the
biological processes underlying this biogeographic pat-
tern. Entling et al. (2010) identified a clear relationship
between body size and climate (temperature) in European
spiders, showing that average body size increased from
cold and humid environments to warm and dry ones.
Moya-Sola & Kohler (2003) studied the evolution of
Oreopithecus bambolii Gervais, 1872, (Primates, Dendro-
pithecidae) demonstrating that a finite geographical area,
trophic resource limitation, and the absence of terrestrial
predators were the main ecological factors acting as selective
pressures. However, there are several unconsidered variables
that could help explain why miniaturization occurs in insular
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Fig. 2 — Average body size of A. chilensis (Gervais, 1847). Violin plot showing the full distribution of body sizes in each group (continent and islands),

overlaid with a boxplot to highlight medians and interquartile ranges.
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specimens. It is likely that in island habitats, intraspecific or
interspecific competition may favor the selection of small-
er individuals. In the absence of predators, arthropods may
evolve toward smaller sizes in order to more efficiently ex-
ploit habitat space and improve the allocation of resources.

Another important point is that our results confirm
mean annual temperature (TMEAN) as a key factor in-
fluencing body size in these arthropods, and that this ef-
fect is also associated with collection year (COLFECH).
These findings are consistent with previous studies that
link body size variation in ectotherms to temporal and
thermal conditions (Reading 2007; Yom-Tov & Geffen
2011; Garden et al. 2009; Messmer et al. 2017; Fajardo
et al. 2019; Mundiger et al. 2022). Although our anal-
yses did not directly evaluate global warming, the as-
sociation between body size and temperature supports
the view that ongoing climatic changes may indirectly
influence morphological traits. This study also provides
valuable data for understanding how insular habitat
characteristics influence the evolution and ecology of
terrestrial organisms and highlights how environmen-
tal conditions in the Punta de Choros Archipelago (e.g.,
limited resources, competition, predation pressure) may
shape the morphology of myriapods compared to their
mainland counterparts.

Another relevant aspect is that our findings support
the idea that mean annual temperature influences body
size in arthropods, particularly ectotherms whose phys-
iology depends directly on environmental conditions
(Ohlberger 2013). One of the most recurrent responses
described in the literature is a reduction in body size,
which can be explained by phenotypic plasticity—i.e.,
reversible developmental changes in response to tem-
perature variation (Entling et al. 2010). Such plasticity
allows individuals to rapidly adjust to warmer environ-
ments, optimizing metabolic efficiency and resource
use. Over longer timescales, these conditions may also
act as selective pressures favoring genotypes associated
with smaller body sizes, thereby initiating microevolu-
tionary processes (Mundiger et al. 2022). Distinguishing
between plastic and evolutionary responses is therefore
essential for understanding the adaptive mechanisms
of arthropods in the face of ongoing climatic changes
(Yom-Tov & Geffen 2011).

Although our models focused on climatic and tempo-
ral predictors, future research should integrate ecological
variables such as habitat structure, resource availability,
and interspecific interactions, in order to provide a more
comprehensive understanding of the mechanisms driving
body size variation in insular centipede populations. The
confirmation of insular dwarfism in 4. chilensis highlights
the vulnerability of island populations to ecological per-
turbations, reinforcing the need for conservation strategies
tailored to fragile insular ecosystems.
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