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Introduction 

Body size is a widely used morphometric measure to explain 
biogeographic rules, as it is closely related to the physiology 
and evolutionary history of organisms (Lokatis & Jeschke 
2018; Cornejo et al. 2022). Thus, current body size is con-
sidered the result of both historical and ecological processes. 
In this context, geographically isolated animal populations 
have long served as key study models to explain body size 
evolution. Biogeographic hypotheses such as Foster’s Rule 
have emerged from scientific records showing that island 
populations often exhibit smaller body sizes than their con-
tinental counterparts. That is, larger animals tend to become 
smaller—an attribute recorded across a wide range of taxa 
including mammals, snakes, fish, mollusks, reptiles, and 

even insects (Brown & Maurer 1989; Brown et al. 1993; 
Blackburn & Gaston 1994; Maurer 1998; Keogh et al. 2005; 
Meiri 2008; Cornejo et al. 2022).

Foster’s Rule, also known as the Island Rule, refers to 
cases of gigantism or dwarfism in insular species (Cornejo 
et al. 2022). Foster (1964) demonstrated body size variation 
in island mammal species, confirming that in some carni-
vores, Lagomorpha, and Artiodactyla, insular individuals 
were smaller than their continental counterparts. Unlike 
other biogeographic rules, Foster’s Rule lacks a clearly de-
fined causal mechanism explaining the phenomenon. It is 
believed that for species with large body sizes, islands often 
pose a challenge due to limited food resources per unit area. 
Consequently, these species tend to reduce their body size to 
the point where the available resources are sufficient to meet 
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Abstract
Body size is a key morphological trait that reflects both the evolutionary history and ecological processes of species and is commonly 
used in assessing biogeographic patterns. Foster’s rule predicts changes in body size associated with insularity, often manifested as 
dwarfism or gigantism. In this study, we tested this rule in Akymnopellis chilensis (Gervais, 1847) (Chilopoda, Scolopendromorpha), us-
ing specimens from the Humboldt Archipelago (Chile) and the mainland. Robust statistical analyses and generalized linear models reveal 
that insular individuals exhibit significantly reduced body sizes relative to mainland populations. Furthermore, mean annual temperature 
emerged as a key predictor of body size variation. This study provides the first documented evidence of insular dwarfism in myriapods, 
extending the applicability of Foster’s rule to a previously underrepresented group of terrestrial arthropods. Our findings underscore the 
importance of insularity and climate change as selective pressures influencing the morphological evolution of invertebrates, with impli-
cations for the conservation of endemic taxa in fragile island ecosystems.
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shows a wide distribution (three species are known from 
Chile) with records across various environmental gradients 
throughout the country, including some northern and south-
ern islands (Shelley 2008; Vega-Román & Ruiz 2018). A. 
chilensis (Gervais, 1847) exhibits unique morphological 
and physiological traits that may reflect adaptation to its en-
vironment, such as body length—a key trait in thermoreg-
ulation. For these reasons, the objective of this study was 
to evaluate the presence of the Island Rule (Foster’s Rule) 

the energetic demands of individuals over time (Cornejo et 
al. 2022). In contrast, smaller-bodied species often find new 
opportunities on islands, benefiting from the absence of 
negative biological interactions such as predators, limited 
resource access, reduced competition, and even the occupa-
tion of vacant ecological niches (Cornejo et al. 2022).

In Chile, the order Scolopendromorpha is represented 
by the families Cryptopidae and Scolopendridae. The lat-
ter includes the genus Akymnopellis Shelley, 2008, which 

Fig. 1 – A, Female Akymnopellis chilensis (Gervais, 1847) guarding her eggs (photograph by Claudia Maureira); B, Points record from Continental Chile; 
C, Points record from Island Chile.
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Data were obtained from https://explorador.cr2.cl, which 
provides updated information for each locality. The first 
model assessed the relationship between body size and 
TMEAN only; the second model evaluated the relation-
ship between body size and collection year (COLFECH); 
the third model included an additive effect of both varia-
bles (TMEAN + COLFECH). The variables mean annual 
temperature (TMEAN) and collection year (COLFECH) 
were selected due to their direct relevance to the physiolo-
gy of ectothermic organisms such as myriapods. Ambient 
temperature affects key processes such as growth, meta-
bolic rate, and thermoregulation, and it is one of the most 
commonly used factors to explain patterns of morpholog-
ical variation under climate change scenarios (Entling et 
al. 2010; Yom-Tov & Geffen 2011).

We prioritized climatic and temporal predictors 
(TMEAN, COLFECH) due to their direct physiological 
relevance for ectotherms and their consistent spatiotem-
poral coverage. Additional ecological variables (habitat 
structure, resource availability, biotic interactions) were 
considered; however, limitations in resolution and compa-
rability led us to exclude them to prevent overfitting and 
collinearity. Sensitivity analyses (Appendix S1) indicate 
that our conclusions regarding insular dwarfism and the 
effect of TMEAN are robust to alternative specifications 
and environmental proxies.

Collection year allows for the evaluation of temporal 
changes associated with global warming and serves as a 
useful proxy variable to capture potential evolutionary 
trends or plastic responses accumulated over time. And the 
fourth model tested an interaction effect between them. Fi-
nally, the significance of model coefficients was assessed 
using an analysis of variance (ANOVA) (Zuur et al. 2007; 
Cornejo et al. 2022). 

The analyses were carried out in the statistical program 
R 4.0.2.

Results

The Akymnopellis chilensis specimens collected on the 
mainland had an average body length of 39.54 mm, while 
those from the islands had an average of 33.36 mm. Ac-
cording to Yuen’s trimmed mean test (T = 5.984; p = 9.65 
× 10–8), island specimens are significantly smaller than 
those from the mainland (Fig. 2).

in A. chilensis. It is hypothesized that insular specimens 
will exhibit smaller body sizes due to limiting conditions 
on the islands of the Humboldt Archipelago, compared to 
their continental congeners, thereby demonstrating a case 
of insular dwarfism. 

Materials and Methods

A total of 206 specimens of Akymnopellis chilensis were in-
cluded in this study. 69 specimens were collected on islands 
and 137 on the continent. Specimens were collected from 
the islands of the Punta de Choros Archipelago (Isla Damas, 
Isla Choros, and Isla Gaviota), as well as from various loca-
tions along continental Chile. Collections were carried out 
using active searching and pitfall traps between the years 
2006 and 2024 (Fig. 1A, B, C). The specimens are deposited 
in the arthropod collection of the Ecological Entomology 
Laboratory, University of La Serena, Chile (LEULS).

Each specimen was measured for total body length, 
from the cephalic plate to tergite 21 (sensu Shelley 
2008). For specimens preserved in alcohol, the length 
of each tergite was measured individually, and the sum 
of these lengths was considered as the total body length 
(Shelley 2008). Each individual specimen was observed 
by stereoscopic microscopy and its taxonomic charac-
teristics were analyzed using specific classification keys 
based on characters of taxonomic importance such as ce-
phalic plate, cervical groove, coxosternite, among others 
(Shelley 2008).

To assess differences in body size between insular 
and continental specimens, the means were compared us-
ing Yuen’s trimmed mean test (Yuen 1974), applying a 
20% trimming level. Unlike other statistical tests, Yuen’s 
test is not sensitive to the assumption of homogeneity of 
variance, thus reducing Type I error rates when the data-
set does not meet this assumption (Ramalle-Gómara & 
de Llano 2003).

To detect temporal changes in body size, four gener-
alized linear models (GLMs) were evaluated. Since many 
of the specimens were at juvenile stages or their preser-
vation status made accurate sex determination difficult, 
this variable was excluded to avoid introducing biases as-
sociated with incomplete or unreliable classification. The 
predictor variables included collection year (COLFECH) 
and the mean temperature (TMEAN) of each locality. 

Table 1 – Coefficients of the generalized linear models (GLMs) for body size.

Models AIC Intercepto Devianza (%) F-value P-value

Mod 1. TMEAN 1575 41 16.54 3.173 0,0003

Mod 2. COL FECH 1578 1578 16.78 2.736 0,0010

Mod 3. ADIT. 1586 1586 22.98 1.195 0,289

Mod 4. INTER. 1589 1589 33.20 0.460 0,709
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Discussion

The results support the idea of dwarfism in Akymnopellis 
chilensis, as insular specimens were significantly smaller 
than those collected on the mainland (Fig. 2). This con-
stitutes the first recorded instance of this phenomenon in 
myriapods, opening a new line of research to explore the 
biological processes underlying this biogeographic pat-
tern. Entling et al. (2010) identified a clear relationship 
between body size and climate (temperature) in European 
spiders, showing that average body size increased from 
cold and humid environments to warm and dry ones.

Moya-Solà & Köhler (2003) studied the evolution of 
Oreopithecus bambolii Gervais, 1872, (Primates, Dendro-
pithecidae) demonstrating that a finite geographical area, 
trophic resource limitation, and the absence of terrestrial 
predators were the main ecological factors acting as selective 
pressures. However, there are several unconsidered variables 
that could help explain why miniaturization occurs in insular 

The best-fitting GLM corresponds to model 1: TMEAN 
(AIC = 1575). The AIC, or Akaike Information Criterion 
(AIC), is a statistical measure that evaluates model quality 
by balancing goodness of fit with model complexity; lower 
values indicate a better and more parsimonious model. Al-
though model 4 presents a significant interaction between 
TMEAN and COLFECH, it has the highest AIC and is 
therefore the least parsimonious. Model 3 does not include 
any significant predictors and has a high AIC, indicating that 
adding predictors does not improve model fit. Finally, mod-
el 2, which includes only the collection year (COLFECH) 
as a predictor, is statistically significant but accounts for less 
variability than model 1 (TMEAN) (Table 1).

Additionally, when analyzing deviance explained by 
each model, results show that model 4 (INTER) accounts 
for approximately 33.20% of the variability, indicating 
greater predictive power. This suggests that the interac-
tion between mean temperature and collection year (COL-
FECH) is relevant for understanding body size variation. 

Fig. 2 – Average body size of A. chilensis (Gervais, 1847). Violin plot showing the full distribution of body sizes in each group (continent and islands), 
overlaid with a boxplot to highlight medians and interquartile ranges.
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