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1. Introduction: Urban Digital Platforms, the City Brain Experiment in Hangzhou

Cities have historically been centers of innovation and development, and in 
recent years, they have increasingly become the focal point of a digital trans-
formation aimed at making urban environments more efficient, sustainable, 
and livable. The concept of the smart city arises as a strategic response to the 
growing challenges posed by urbanization, not only through the adoption of 
cutting-edge technologies but also through the active engagement of citizens 
and a focus on inclusivity and digital security (Anttiroiko, 2016).

Smart city development is driven by advanced technologies such as sen-
sors, the Internet of Things (IoT), artificial intelligence, big data, and cloud 
computing. These tools enable the creation of interconnected systems capable 
of gathering and analyzing vast amounts of real-time data to provide insights 
for urban planning and management (Schaffers et alii, 2012). IoT, in particu-
lar, plays a crucial role in ensuring seamless connectivity among everyday 
devices, allowing them to collect, share, and process data continuously. This 
real-time data exchange has proven essential for improving the efficiency of 
various urban services, from traffic management to waste collection.

However, while the use of technologies offers numerous opportunities for 
progress and improving urban functions, their use is certainly associated with 
risks that cannot be underestimated, particularly when digitalization is overly 
focused on efficiency at the expense of social inclusivity. Digital Darwinism 
refers to the phenomenon where the rapid adoption of advanced technolo-
gies benefits only a segment of the population, leaving behind those who do 
not have access to digital resources or the skills required to effectively utilize 
these tools (Cardullo, Kitchin, 2019). In cities where technology drives deci-
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sion-making and urban management, marginalized groups may find them-
selves further excluded, worsening pre-existing socio-economic inequalities. 
The digital divide – whether in terms of access to high-speed internet, digital 
literacy, or access to digital devices – can become an even greater barrier to 
equal participation in urban life, creating a city that works well for some but 
excludes many (Graham, 2011).

This dynamic is often compounded by social reductionism, the process of 
simplifying complex social interactions and human experiences into quan-
tifiable data points. As cities increasingly rely on algorithms, there is a risk 
that the richness of human behavior and the complexity of social systems are 
overlooked. The inherent danger lies in treating cities as mere collections of 
numbers and patterns rather than vibrant, multifaceted environments shaped 
by cultural, social, and emotional dynamics (Leszczynski, 2016). By reducing 
people and communities to users or data points, technologies might miss out 
on addressing deeper social issues that require more nuanced, human-cen-
tered approaches (Mattern, 2021).

These concerns are captured by the concept of urban smartmentality, a 
term used to critique the growing tendency to frame urban challenges solely 
through the lens of technology (Vanolo, 2014). This mindset implies that 
every urban problem can be solved through more data, more sensors, and 
more algorithms. While technological tools undeniably offer powerful solu-
tions to many urban issues, urban smartmentality risks overshadowing the 
fact that cities are living, breathing entities, deeply shaped by human rela-
tionships, histories, and cultures. This focus on technology can ignore criti-
cal environmental, social, and cultural factors that are equally important for 
fostering a sustainable and inclusive urban environment (Caprotti, Liu, 2020).

In this context, there is an increasing awareness of the need to use tech-
nologies with a more inclusive approach, one that integrates different per-
spectives and takes human needs into account. As a matter of fact, as recent 
research suggests, the focus is shifting from mere technological adoption to 
what is now called platform urbanism (Caprotti, Liu, 2022). This approach 
emphasizes not just the use of advanced technologies, but the creation and 
management of digital platforms that facilitate the sharing of data and the 
collaboration between various stakeholders in an urban environment (Han, 
Hawken, 2018). Platforms allow for a more holistic form of urban governance, 
moving beyond technology as an end in itself to creating systems that can 
support sustainable development and improve quality of life.

In this scenario, City Brain, the platform developed by Alibaba and imple-
mented in Hangzhou, offers a prime example of how platform urbanism can 
reshape urban experiences, influencing aspects such as governance, public 
service delivery, and urban consumption patterns (Rose et alii, 2021). Unlike 
traditional models of smart cities focused on infrastructure, City Brain repre-
sents a more dynamic approach, where the platform serves as the backbone of 
the city’s ability to respond in real time to the needs of its citizens.

The City Brain platform can be considered an experimental product ini-
tially tested within a specific urban context, which in itself serves as an exper-
imental space. Urban experimentation literature has underscored the role of 
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cities as testing grounds for various forms of technical, political, and social 
experimentation across different areas such as sustainability, climate change, 
energy transitions, and digital transformations. (Bulkeley, Castan Broto, 
2013). In this context, Alibaba’s choice of Hangzhou for the development of 
City Brain was not random. The implementation of City Brain in Hangzhou 
allows Alibaba to showcase its platform on a global scale. Simultaneously, 
Hangzhou benefits from the latest innovations in data management and anal-
ysis to improve the quality of urban life. City Brain is an artificial intelligence 
platform designed to improve urban management through real-time analysis 
of large quantities of data from various sources, including surveillance cam-
eras, traffic sensors, and other digital resources. Its primary goal is to make 
the city more efficient and responsive to citizens’ needs by improving traffic 
flow, optimizing public services, reducing response times in emergency situa-
tions, and enhance the quality of urban life.

City Brain was first introduced in 2016, with its implementation officially 
beginning in October of that year. This initiative followed a request by the 
Hangzhou administration in April 2016, aimed at addressing the city’s grow-
ing traffic issues (Alibaba Cloud, 2018). Initially branded as City Brain 1.0, 
the platform employed data gathered from traffic lights and surveillance 
cameras. Leveraging cloud computing, it facilitated real-time processing to 
synchronize traffic signals and optimize emergency vehicle routes, enhanc-
ing response times (Min et alii, 2018).

By 2018, the system underwent a significant upgrade, both in terms of its 
technological sophistication and its geographic reach. Initially focused on 
the Gongshu and Xiaoshan districts, City Brain expanded to cover three dis-
tricts, spanning a total of 420 km2. This upgrade also included the integra-
tion of 1,300 traffic lights, covering approximately 25% of intersections in the 
expanded area (Zhejiang online, 2018). The system utilized real-time data on 
traffic conditions, congestion levels, and vehicle speeds to further optimize 
traffic flow.

In June 2020, City Brain 3.0 was launched, with an increased focus on 
digital data integration. This upgrade enhanced the city’s ability to respond 
to emergencies more effectively, such as natural disasters and pandemics, as 
evidenced by its performance during the Covid-19 outbreak in 2020. Alibaba 
reported that by 2017, the platform had already demonstrated notable suc-
cess, with a 15.3% improvement in average travel speeds and a 9.2% reduc-
tion in traffic congestion during peak hours. These improvements led to an 
average reduction of approximately three minutes in travel time per journey 
(Alibaba Cloud, 2018).

A report submitted to the U.S.-China Economic and Security Review Com-
mission in 2020 highlighted a significant improvement in Hangzhou’s traffic 
congestion ranking, moving from the fifth-most congested city in China to 
the 57th, a change attributed largely to City Brain (Atha et alii, 2020). In 
addition to managing traffic, City Brain was designed to detect and man-
age 12 different types of incidents, including pedestrian crossings and traffic 
accidents, with the help of license plate recognition and visual recognition 
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technology. The system processes over 2,500 incidents each day, maintaining 
an accuracy rate of 95% (Alibaba Cloud, 2018).

However, it’s worth noting that City Brain’s success metrics are limited in 
scope and time horizon. The success metrics used in promotional and corpo-
rate documentation are highly technical and revolve around themes such as 
efficiency, analysis speed, automation, and other indicators associated with 
business rationales for promoting smart cities (Caprotti, Liu, 2022).

At this point, it is interesting to understand what possible impacts, in addi-
tion to those described in Alibaba’s communications, the implementation 
of such a traffic monitoring system may have had on improving the quality 
of life for citizens, particularly regarding a fundamental variable for urban 
well-being, as air quality.

2. Methodological Approach

The proposed analysis consists of two parts. In the first part of the analysis, 
satellite remote sensing data were examined using the Google Earth Engine 
platform to provide an overview of the air quality situation in the city of Hang-
zhou. This analysis aimed to identify the most urbanized areas of the city and 
track how air quality has improved in recent years, focusing specifically on 
carbon monoxide (CO) levels. Data from the Sentinel-5P satellite (Sentinel 5P 
OFFL CO: Offline Carbon Monoxide1) were considered, focusing on annual 
average data for the region of interest, Hangzhou, for the years from 2019 to 
20222. Subsequently, a cartographic package was generated to visualize the 
CO levels in Hangzhou for the specified years3 to assess whether changes in 
emissions have occurred or not.

The second part of the investigation involved processing daily data on PM 
2.5 (µg/m³) and CO (ppm) emission levels from 2014 to 2022 at the ten air 
quality monitoring stations in Hangzhou: Linping town; Yunqi; Chengxiang 
town; Hangzhou; Hemu primary school; Wolong bridge; Binjiang; Xiasha; 
Xixi; Zhejiang University (World’s Air Pollution: Air Quality Index). The data 

1 More information about this dataset at link: https://developers.google.com/earth-engine/
datasets/catalog/COPERNICUS_S5P_OFFL_L3_CO. 

2 Previous years’ data were not available because Sentinel 5P was launched on October 13, 
2017. Therefore, the analysis focused on data from 2019 to 2022, which corresponds to the 
period when Sentinel 5P was in operation and collecting data.

3 Data was processed using a single legend with the base year being 2020. This means that 
the data from other years, such as 2019, 2021, and 2022, were compared to the data from the 
base year (2020) to assess whether there were any changes in emission levels. The year 2020 was 
selected as the base year because it showed the highest concentration of carbon monoxide (CO). 
This spike in CO levels can be attributed to several factors, including the disruptions caused by 
the COVID-19 pandemic, which altered normal traffic and industrial activity patterns. While 
overall emissions from certain sectors decreased due to lockdowns and restrictions, other fac-
tors, such as increased reliance on private vehicles and changes in energy consumption, contrib-
uted to a rise in CO emissions during certain periods of 2020.
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was organized, and annual medians were calculated for both PM 2.5 and CO 
levels. Since the monitoring stations are concentrated in the urbanized area, 
the study area was reduced to the area of interest. Maps were produced for 
both pollutants for the years 2014 and 2015, representing the years before 
the introduction of City Brain in Hangzhou, and for the years from 2017 to 
2022, which are the years following the implementation. The results show the 
annual average levels of PM 2.5 and CO recorded by each monitoring station 
in different years. The data was then summarized in bar graphs.

Subsequently, a time series analysis was conducted to assess whether 
there has been a significant change in air pollutant concentrations attribut-
able to the period following the introduction of City Brain. Daily data from 
2014 to 2022 for both pollutants were analyzed, recorded by the four moni-
toring stations most affected by the traffic control platform. To examine the 
temporal effect of the introduction of City Brain on pollution levels, a linear 
regression model was adopted. The time series analysis involved creating 
a linear regression model to predict PM 2.5 and CO levels, considering 
monthly variations as the independent variable. The model was represented 
by the following equation4:

Y = β0 + β1*X + ε
•	 Y represents the dependent variable (PM 2.5 or CO levels).
•	 X represents the independent variable (the month of the year).
•	 β0 is the intercept or the constant term in the model.
•	 β1 is the regression coefficient (slope) associated with X.
•	 ε represents the residual error, i.e., the difference between the observed 

values of Y and those predicted by the model. 

This model showed significant results, with R² = 0.75 for PM 2.5 and R² 
= 0.70 for CO, indicating that the model explained 75% and 70% of the 
variation in the data, respectively, thus demonstrating a strong relationship 
between the system’s implementation and the reduction of pollutants.

To ensure that the results were not influenced by seasonal variations, a 
deseasonalization procedure was applied to the data. The chosen method 
was the classical trend decomposition, which isolates the seasonal component 
from the raw data to identify the underlying long-term trend. This technique 
was particularly useful for correcting the typical seasonal fluctuations of envi-
ronmental data, especially in the winter months, when heating emissions can 
significantly affect PM 2.5 and CO levels. 

An analysis of the residuals of the regression model was conducted to eval-
uate the validity of the model and check for the absence of autocorrelation. 
The residuals were examined to ensure that there were no non-random pat-

4 The regression model is used to predict the seasonal component of the data. This com-
ponent is then subtracted from the original data to obtain “deseasonalized” data. For more 
details, please refer to the appendix of the text.
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terns or correlations that could invalidate the results. The analysis confirmed 
that the residuals followed a random pattern, demonstrating that the linear 
regression model was well-fitted to the data and that there were no signs of 
distortion or misrepresentation of the relationships between the variables.

Finally, several statistical tests were conducted to verify the robustness 
and significance of the results obtained. Among these, the Dickey-Fuller test 
was applied to check the stationarity of the time series, confirming that the 
data were suitable for regression analysis. Additionally, an ARIMA model was 
implemented to compare the results obtained on seasonal and deseasonalized 
data, and the AIC and BIC criteria were used to select the most appropriate 
model. The models were subjected to the Ljung-Box test to analyze the pres-
ence of autocorrelations in the residuals, further confirming the validity of 
the model5.

3. Discussion of Results

The remote sensing data, as mentioned, were acquired through the Google 
Earth Engine platform, using information from the Sentinel 5P satellite, spe-
cifically related to carbon monoxide (CO). They were processed by taking 
annual averages for the Hangzhou study area for the period between 2019 
and 2022. The cartographic representation in figure 1 illustrates the levels of 
carbon monoxide (CO) recorded in Hangzhou during the years in question, 
to assessing any variations in emissions. The analysis of remote sensing data 
revealed a significant improvement in CO concentration in the air through-
out the Hangzhou region. 

Specifically, the northeastern part of the area, characterized by high urban 
density, consistently showed the highest levels of CO concentration during 
the study period (fig. 1). However, it is interesting to note that in this area, 
a significant decrease in CO levels was observed. In fact, in the earlier years 
considered (from 2018 to 2020), levels were above 0.0462 ppm, while in 2022, 
they were recorded in the range between 0.0406 and 0.0424 ppm (fig. 1).

Nevertheless, these improvements could be attributed not only to the 
introduction of the City Brain system, as it could be the outcome of various 
measures aimed at improving air quality that have been promoted by the city 
administration for some time6. In fact, China as a whole has intensified its 

5 For more details, please refer to the appendix of the text.
6 Some of the measures that Hangzhou has implemented or planned to address air pollution:

•	 Vehicle restrictions: Hangzhou has implemented vehicle circulation restrictions based on 
license plate numbers and has promoted the adoption of low-emission or electric vehicles.

•	 Fleet upgrade: Hangzhou has encouraged the use of cleaner vehicles, such as electric buses 
and taxis, to reduce emissions from transportation.

•	 Improvement of public transportation infrastructure: Hangzhou has invested in efficient 
public transportation systems, such as subways and buses, to reduce dependence on indi-
vidual transportation.
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efforts to combat air pollution, and many of its major cities, including Hang-
zhou, have adopted specific plans and measures in line with these national 
initiatives7. China’s commitment to environmental sustainability was further 
underscored by its participation in international forums such as the G20 Sum-
mit in 2016, which was notably held in Hangzhou. During the summit, China 
announced additional measures to curb pollution, including a commitment 
to the Paris Agreement and pledges to invest heavily in renewable energy 
and green technologies. This international stage not only highlighted Chi-
na’s growing leadership in climate initiatives but also reinforced the country’s 
domestic policies aimed at creating cleaner, more sustainable cities.

In parallel with these national efforts, technological advancements like the 
City Brain platform in Hangzhou have played a crucial role in improving air 
quality. City Brain’s ability to manage and optimize urban traffic has contrib-
uted to lower emissions from vehicles, further supporting the objectives of Chi-
na’s national policies. By reducing congestion and creating more efficient traffic 
flows, City Brain has helped to decrease CO levels in the most urbanized districts 
of Hangzhou, complementing the broader goals of the national initiatives.

•	 Strict industrial controls: The city has imposed stricter standards on industrial emissions 
and has closed or relocated highly polluting industries.

•	 Promotion of renewable energy sources: Hangzhou has incentivized the adoption of renew-
able energy sources to reduce dependence on coal, which is one of the main sources of air 
pollution.

•	 Tree planting: Hangzhou has undertaken large-scale tree planting projects to improve air 
quality, as plants absorb CO₂ and release oxygen, helping to clean the air.

•	 Monitoring and awareness: The city has improved air quality monitoring systems and pro-
vided real-time information to the population. Additionally, it has conducted awareness cam-
paigns on the importance of air quality and how individuals can contribute to improving it.

•	 Regional cooperation: Since air pollution can cross municipal and provincial borders, 
Hangzhou has worked in collaboration with other nearby cities and provinces to address 
air pollution on a regional basis (Rui Feng, Qing Wang, Cheng-chen Huang, Jin Liang, 
Kun Luo, Jian-ren Fan, Ke-fa Cen, Investigation on air pollution control strategy in Hang-
zhou for post-G20/pre-Asian-games period (2018–2020), Atmospheric Pollution Research, 
Volume 10, Issue 1, January 2019, Pages 197-208).

7 Since the early 2010s, China has embarked on a comprehensive effort to combat air pol-
lution, recognizing the environmental and health consequences of rapid industrialization and 
urbanization. One of the most significant steps in this direction was the Air Pollution Action 
Plan launched in 2013. This initiative targeted three main areas: reducing coal consumption, 
cutting industrial emissions, and improving vehicle standards. Major urban areas, particularly 
in the east, were mandated to reduce coal use and invest in cleaner energy alternatives such 
as natural gas and renewables. The transportation sector also saw tighter controls, with lim-
its on vehicle emissions and the promotion of electric vehicles. This plan marked a turning 
point, with cities like Hangzhou benefitting from stricter regulations on industrial emissions 
and improved public transportation options, contributing to a gradual decline in pollutants 
such as CO. Building on the success of the 2013 plan, China introduced the Blue Sky Action 
Plan in 2018, which reinforced these goals by setting more ambitious targets for reducing indus-
trial emissions and shifting energy production from coal to cleaner alternatives. This initiative 
placed particular emphasis on the reduction of particulate matter (PM2.5) and CO emissions in 
densely populated areas like Hangzhou, where the urban population and the concentration of 
vehicles posed significant challenges to air quality.
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Fig. 1 – CO Levels (ppm*) from Remote Sensing in Hangzhou, Various Years.

Source: Median from Sentinel 5P data.

Thus, the improvements observed in Hangzhou’s air quality, particularly 
regarding CO emissions, could be seen as part of a larger, multi-faceted 
approach by the Chinese government. This approach combines strict regula-
tory frameworks, international commitments, technological innovation, and 
cleaner energy transitions to foster a healthier urban environment. 

Once this has been clarified, it is possible to move on to evaluating the 
potential effects of City Brain on the pollutant levels under consideration. 
The analysis of PM 2.5 and CO concentration data recorded by air quality 
monitoring stations focused on the northeastern part of Hangzhou, which 
is the urban area where the monitoring stations are located. Figure 2 shows 
the locations of the ten monitoring stations: Linping town (Yuhang District); 
Yunqi (Xihu District); Chengxiang town (Xiaoshan District); Hangzhou 
(Gongshu District); Hemu primary school (Gongshu District); Wolong bridge 
(Shangcheng District); Binjiang (Binjiang District); Xiasha (Jianggan Dis-
trict); Xixi (Xihu District); Zhejiang University (Gongshu District).



The City of Algorithms: City Brain and Air Quality in HangzhouGiovanna Galeota Lanza

77

Fig. 2 – Location of the ten air quality monitoring stations in Hangzhou.

Source: Author’s elaboration.

The data related to the annual average levels of PM 2.5 in different mon-
itoring stations (fig. 2) show high concentrations of particulate matter in 
the air (ranging from 127-158 µg/m³) recorded by nine out of ten stations 
in the year 2014. In the following year, the situation seems to have slightly 
improved, with four stations reporting levels between 97 and 127 µg/m³, 
while six stations still remained at the higher values. In 2017, the year fol-
lowing the implementation of City Brain for traffic control (officially started 
in October 2016), the situation recorded in 2014 is reversed. Eight stations 
report levels ranging from 97 to 127 µg/m³, one station registers values 
between 127 and 158 µg/m³, and one records the lowest values between 67 
and 97 µg/m³. What is interesting for the investigation is the location of the 
stations that recorded the lower values, particularly the one that reported 
the lowest levels. This station is Zhejiang University in Gongshu district, 
where the City Brain platform was first activated.

In 2018, four monitoring stations recorded values ranging from 97 to 
127 µg/m³, while six stations reported levels between 67 and 97 µg/m³. Once 
again, the location of the six stations with lower values is significant for the 
analysis presented here. These stations are located in Chengxiang town in 
Xiaoshan district, Hemu primary school in Gongshu district, Wolong bridge 
in Shangcheng district, Yunqi in Xihu district, Xiasha in Jianggan district, 
and Zhejiang University in Gongshu district. Out of these six stations, half are 
situated in districts (Gongshu, Binjiang, Xiaoshan) where, in 2018, City Brain 
– in version 2.0 – covered a total area of 420 km², with the sensor network 
expanded to 1300 traffic lights.

The years 2019 and 2020 show a nearly identical situation, with values 
slightly higher than in 2018, but the stations located in districts where the 
City Brain platform operates at full capacity continue to record particulate 
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concentration values ranging from 67 to 97 µg/m³. During 2021 and 2022, 
the situation improves across the board, with all monitoring stations record-
ing PM 2.5 levels ranging from 67 to 97 µg/m³ (fig. 3).

Fig. 3 – PM 2.5 levels (µg/m³) recorded by monitoring stations in Hangzhou, years before and 
after the introduction of City Brain.

Source: Author’s analysis based on data from World’s Air Pollution: Air Quality Index.
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Fig. 4 – Graph of PM 2.5 levels (µg/m³) recorded by monitoring stations in Hangzhou, years 
before and after the introduction of City Brain.

Source: Author’s analysis based on data from World’s Air Pollution: Air Quality Index.

The graph in figure 4 shows the average annual PM 2.5 concentration levels 
at the monitoring stations. On average, there has been a 43.5% reduction 
from 2014 to 2022. Specifically, at the monitoring stations located in the 
districts most affected by the City Brain platform, there was a 40% reduc-
tion at the Hangzhou station (Gongshu district) from 2014 to 2022 and a 
29% reduction from 2016 – the year the platform became operational – to 
2022. As for the Binjiang station (Binjiang district), the reduction was 45% 
from 2014 to 2022 and 31% from 2016 to 2022. Lastly, the Chengxiang town 
station (Xiaoshan district) saw a reduction of 39% from 2014 to 2022 and 
23% from 2016 to 2022.

Also, concerning the data on CO levels recorded by the monitoring sta-
tions, a decrease in the annual average pollutant concentration levels can 
be observed, generally in line with the Sentinel 5 data analyzed earlier. The 
carbon monoxide levels recorded by the ten monitoring stations tend to 
decrease on average everywhere in 2017 compared to 2014, with a peak in 
2018 recorded only at the Hangzhou station. The years from 2019 to 2022 
show an alternation of increases and decreases in different stations without 
ever exceeding values in the 5 to 8 ppm range. In this case, unlike what was 
observed with PM 2.5 levels, any potential difference between the values 
recorded by the stations located in the districts most affected by the plat-
form and those less affected may be less pronounced.

Finally, the Xiasha town station (in the Jianggan district) did not record 
any reductions during the periods considered; in fact, it even saw an increase 
of approximately 40% from 2016 to 2022 (fig. 6). With that said, it can be 
stated that when individually analyzing the values from the monitoring sta-
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tions with respect to CO, the highest percentage reductions occurred in the 
districts where City Brain became fully operational.

An additional analysis was conducted to explore the potential association 
between a decrease in PM 2.5 and CO pollutant concentrations in the air and 

Fig. 5 – Carbon Monoxide (CO) Levels Recorded by Hangzhou Monitoring Stations, Years 
Before and After the Introduction of City Brain.

Source: Author’s analysis based on data from World’s Air Pollution: Air Quality Index. 
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Fig. 6 – Graph of CO levels (ppm) recorded by Hangzhou monitoring stations, years before and 
after the introduction of City Brain.

Source: Author’s analysis based on data from World’s Air Pollution: Air Quality Index.

Fig. 7 – Deseasonalized time series of PM 2.5 (µg/m³) and CO (ppm) levels recorded by selected 
monitoring stations*.

Source: Author’s analysis based on data from World’s Air Pollution: Air Quality Index.
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the introduction of the City Brain platform. The focus was on analyzing the 
deseasonalized time series data collected by the air monitoring stations, par-
ticularly those located in the districts where the platform operates. Therefore, 
the stations selected for analysis were Hangzhou, Binjiang, and Chengxiang 
town (fig. 7).

Regarding PM 2.5 levels, all three monitoring stations showed a decreasing 
trend. Specifically, in the Hangzhou and Binjiang stations, the levels declined 
after 2016, the year City Brain was launched, and continued to decrease in the 
following years. In the case of the Chengxiang town station, there were some 
spikes in PM 2.5 levels towards the end of 2018 and the beginning of 2019.

As for carbon monoxide (CO) concentrations, the Hangzhou station 
recorded constant reductions after 2016. In the Binjiang and Chengxiang 
town stations, the levels were reduced from 2016 compared to previous years, 
with slight increases in 2018 followed by a decrease in the subsequent years. 
Consequently, there is evidence of a reduction in the levels of both pollutants 
after 2016 for each analyzed air monitoring station (fig. 7).

4. Conclusions

The analysis of remote sensing data and measurements from air quality mon-
itoring stations has provided a detailed overview of the variations in the con-
centration of major air pollutants, CO and PM 2.5, during the period from 
2014 to 2022.

The concentrations of carbon monoxide, as detected by the Sentinel 5P 
satellite, have shown a significant decrease, particularly in high-density urban 
areas in the northeast of the city. However, this result cannot be directly attrib-
uted to introducing the City Brain system; it could be a response to various 
measures aimed at improving air quality that have been promoted by the city’s 
administration for some time. In fact, China as a whole has intensified efforts 
to combat air pollution, and many of its major cities, including Hangzhou, have 
adopted specific plans and measures in line with these national initiatives.

The analysis of air quality monitoring station data reveals a significant 
reduction in CO concentrations, with a decrease of 37.5% from 2014 to 
2022. The monitoring station in Hangzhou recorded the most pronounced 
decrease, approximately 50%.

The monitoring stations also demonstrated a substantial decrease in PM 
2.5 levels, particularly after introducing the City Brain platform in 2016. On 
average, there was a 43.5% reduction in PM 2.5 concentration from 2014 to 
2022. The monitoring stations located in districts most affected by the City 
Brain system showed particularly encouraging reduction trends.

Therefore, introducing the City Brain platform appears to be correlated 
with the reduction of pollutant levels. Monitoring stations in districts where 
City Brain is more active exhibit the highest percentage decreases in both CO 
and PM 2.5 concentrations. Additionally, the observation of deseasonalized 
data from selected monitoring stations, particularly Hangzhou and Binjiang, 
strengthens the hypothesis of the positive impact of City Brain on air quality.
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Despite the overall positive trend, some monitoring stations, such as the 
one in Xiasha town, exhibited contrasting results, with an increase in CO levels 
during the period from 2016 to 2022. The annual fluctuations and differences 
between monitoring stations highlight the complexity of the impact of environ-
mental measures and the influence of other unanalyzed factors in this research.

However, the results obtained suggest a potential link between the imple-
mentation of intelligent traffic control technologies like City Brain and the 
improvement of air quality in densely populated urban areas. The desea-
sonalized time series data further strengthened the connection between the 
introduction of City Brain and the reduction of pollutants. While this signif-
icant correlation does not imply causality, so further studies are needed to 
explore the various variables at play.

In conclusion, the research has highlighted how the implementation of 
intelligent systems like City Brain can be valuable tools in improving urban 
air quality. Though, it is essential to consider local variations and diverse 
environmental and urban dynamics in developing effective and personalized 
intervention strategies. Future research in this field could delve into the role 
of environmental policies, vehicular traffic, and urbanization in pollution 
level variations, as well as explore the effectiveness of other technological 
interventions for safeguarding air quality in urban areas. 

It is crucial to consider the environmental impact of urban digitalization. 
While platforms like City Brain can contribute to environmental goals by opti-
mizing resource usage and reducing emissions, the technology itself is not 
without environmental cost. The infrastructure necessary to support large-
scale urban digital systems (data centers, sensors, and networks) consumes 
significant energy, often sourced from non-renewable resources. This creates 
a paradox where a system designed to reduce environmental impact may, 
if not carefully managed, contribute to new forms of pollution or resource 
depletion (Hogan, 2015). Ultimately, while urban platforms offer undeniable 
advantages – in the specific case analyzed, an impact on air quality as well as 
an improvement in citizens’ quality of life through reduced travel times and 
fewer traffic accidents – it’s important not to overlook the risks associated with 
the extensive use of technology. As noted in the introduction, some of these 
risks, while partially mitigated by the integrated approach of urban plat-
forms, are not entirely eliminated. Additionally, other environmental risks, 
directly tied to the operation of these platforms, remain present and should 
not be underestimated.
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Appendix: Methodological Details and Residuals Analysis

Linear Regression and Residuals
The linear regression model was used to analyze the relationship between 
time and pollution levels. The R² values were 0.75 for PM 2.5 and 0.70 for 
CO, indicating that the model explains a significant portion of the variance 
in the data. 

These values suggest a significant relationship between time and pollutant lev-
els but do not indicate a direct causal relationship between the introduction of City 
Brain and the reduction of pollutants, as confirmed in the conclusions. However, 
explaining much of the variance is a positive indicator of the model’s adequacy.

The residual plots represent the residuals (the difference between the 
observed and predicted values by the model) against the predicted values.

Fig. A1 – Residual Plot for PM 2.5. 
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Fig. A2 – Residual Plot for CO. 

The residual plots for both models, related to PM 2.5 and CO, show a random 
distribution around zero, with no visible patterns that would suggest an inade-
quacy in the model. This indicates that the linear regression model fits the data 
well, and there is no evidence of nonlinear relationships that the model failed 
to capture. Specifically, the absence of a U shape or a regular pattern in the 
residuals confirms that the linearity assumption is met. The analysis of the resid-
ual variance shows an almost uniform distribution across the range of predicted 
values, with no evident signs of heteroscedasticity (i.e., irregular variance of the 
residuals). This confirms that the linear model adequately captures the data var-
iability. In case of heteroscedasticity, an alternative model, such as a logarithmic 
transformation or a robust regression model, would have been considered.

Fig. A3 – Correlogram (ACF) for PM 2.5. 



The City of Algorithms: City Brain and Air Quality in HangzhouGiovanna Galeota Lanza

89

Fig. A4 – Correlogram (ACF) for CO. 

The correlogram (Autocorrelation Function, ACF) was used to detect any 
autocorrelation in the residuals. This graph shows the autocorrelation of the 
residuals at various time lags, providing insights into the presence of tempo-
ral dependencies that the model did not capture.

•	 PM 2.5: The correlogram for the residuals of the PM 2.5 model does not 
show any significant autocorrelation beyond the confidence intervals (usu-
ally set at ±1.96/sqrt(N), where N is the number of observations), indicat-
ing that the residuals are not correlated at subsequent time intervals. This 
suggests that the linear model correctly captured the temporal structure of 
the data.

•	 CO: Similarly, the correlogram for the CO model residuals does not show sig-
nificant autocorrelation. This suggests that there are no temporal patterns that 
the model failed to capture and that the use of the linear model is appropriate.

The goal of a linear regression model is to find the optimal values of β0 and 
β1 that minimize the sum of squared residual errors (least squares method). 
Once these coefficients are obtained, the model can be used to make predic-
tions about the dependent variable Y based on known or estimated values 
of X. Simply put, a linear regression model aims to fit a straight line to the 
data that best represents the linear relationship between the independent and 
dependent variables. The β1 coefficient quantifies how much the dependent 
variable changes for each one-unit change in the independent variable.

Model Robustness Check
Several statistical tests were applied to ensure the robustness of the results:

A. Dickey-Fuller Test
The Dickey-Fuller test was used to verify the stationarity of the time series 
related to pollution levels (PM 2.5 and CO). Stationarity is fundamental for 



Semestrale di Studi e Ricerche di Geografia XXXVI, Fascicolo 2, luglio-dicembre 2024

90

applying a linear regression model to time series data. The results of the test 
show that the time series are stationary, with p-values below 0.05.
Dickey-Fuller test results for PM 2.5:

•	 Test statistic: -3.85
•	 Critical value (1%): -3.50
•	 p-value: 0.02

Dickey-Fuller test results for CO:
•	 Test statistic: -4.10
•	 Critical value (1%): -3.50
•	 p-value: 0.01

B. ARIMA Model
An ARIMA model was applied to the deseasonalized data to examine the 
fluctuations in pollution levels. The AIC and BIC criteria were used to select 
the best model.

•	 AIC for PM 2.5: 1345.67
•	 BIC for PM 2.5: 1360.89
•	 AIC for CO: 985.34
•	 BIC for CO: 997.56

C. Additional Statistical Tests
Pearson’s correlation test: Conducted for all-time series data from the mon-
itoring stations to calculate the correlation between the original PM 2.5 or 
CO data and the deseasonalized data. Each test showed strong correlation, 
with consistently low p-values indicating statistical significance. Therefore, 
the original and deseasonalized data are strongly correlated.

Welch Two-Sample t-test: Performed to compare the means of the original 
and deseasonalized data for both PM 2.5 and CO. The results showed signifi-
cant differences between the means of the two datasets, with low p-values indi-
cating statistical significance. Thus, the means of the two datasets are distinct.

Augmented Dickey-Fuller Test: Performed for all deseasonalized time 
series. The p-value was consistently below 0.05, providing statistically signifi-
cant evidence to reject the null hypothesis that the time series is non-station-
ary. Therefore, the deseasonalized time series data are stationary.

D. Effect of Deseasonalization
In all cases where deseasonalization was performed, non-seasonal ARIMA 
models showed better information criteria and similar error measures com-
pared to seasonal models. This suggests that removing the seasonal compo-
nent simplified the model while maintaining a good fit to the data. Deseason-
alization had a positive effect on the analysis, and the non-seasonal model was 
an appropriate choice for all cases analyzed.

Additionally, Ljung-Box tests were conducted on both seasonal and non-sea-
sonal ARIMA models to check for significant autocorrelations in the residuals 
at various lags. For the seasonal models, the p-value was below 0.05, indicating 
that the residuals may contain some structure not captured by the model.
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The City of Algorithms: City Brain and Air Quality in Hangzhou
The research aims to analyze the impact of the implementation of smart 
urban platforms on the quality of life of citizens, focusing on air quality in 
the city of Hangzhou. In particular, the research attempts to assess whether 
introducing the “City Brain” platform in 2016, aimed at optimizing urban 
traffic management, has improved the levels of atmospheric pollutants. The 
analysis covered data relating to the levels of fine particulate matter (PM 2.5) 
and carbon monoxide (CO) collected in the period 2014-2022. Preliminary 
results suggest a possible correlation between the adoption of the platform 
and the improvement of air quality, emphasizing smart technology in sustain-
able development and improving the lives of citizens. However, it is essential 
to also consider other environmental, socio-economic, and meteorological 
factors that may affect pollution levels. This study, therefore, intends to lay 
the groundwork for further research in this field, representing an attempt to 
contribute to the growing literature on the intersection between technology 
and urban sustainability.

La Città degli algoritmi: City brain e la qualità dell’aria a Hangzhou
La ricerca mira ad analizzare l’impatto delle piattaforme urbane intelligenti 
sulla qualità della vita dei cittadini, concentrandosi sullo studio della qualità 
dell’aria nella città di Hangzhou. In particolare, si tenta di valutare se l’in-
troduzione della piattaforma “City Brain” nel 2016, finalizzata all’ottimiz-
zazione della gestione del traffico urbano, abbia migliorato i livelli di inqui-
nanti atmosferici. L’analisi prende in considerazione i dati relativi ai livelli 
di particelle fini (PM 2.5) e monossido di carbonio (CO) raccolti nel periodo 
2014-2022. I risultati preliminari suggeriscono una possibile correlazione tra 
l’adozione della piattaforma e il miglioramento della qualità dell’aria, sotto-
lineando l’importanza delle tecnologie intelligenti nello sviluppo sostenibile 
e nel miglioramento della vita cittadina. Tuttavia, è essenziale considerare 
anche altri fattori ambientali, socio-economici e meteorologici che possono 
influenzare i livelli di inquinamento. Lo studio intende, quindi, gettare le 
basi per ulteriori ricerche in questo campo, rappresentando un tentativo di 
contribuire alla crescente letteratura sull’intersezione tra tecnologia e soste-
nibilità urbana.

La Ville des algorithmes : City brain et l a qualité de l’air à Hangzhou
Cette recherche évalue l’impact de la mise en place de plateformes urbaines 
intelligentes sur la qualité de vie des citoyens, en se concentrant spécifique-
ment sur la qualité de l’air à Hangzhou. Elle examine si l’introduction de 
la plateforme « City Brain » en 2016, visant à optimiser la gestion du tra-
fic urbain, a amélioré les niveaux de polluants atmosphériques. L’analyse 
traite des données concernant les niveaux de particules fines (PM 2.5) et de 
monoxyde de carbone (CO) recueillies entre 2014 et 2022. Les résultats préli-
minaires montrent une corrélation possible entre l’adoption de la plateforme 
et l’amélioration de la qualité de l’air, soulignant l’importance de la techno-
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logie intelligente dans le développement durable et l’amélioration de la vie 
des citoyens. Cependant, il est crucial de prendre en compte d’autres facteurs 
environnementaux, socio-économiques et météorologiques qui peuvent affec-
ter les niveaux de pollution. Cette étude vise ainsi à jeter les bases pour des 
recherches ultérieures dans ce domaine, contribuant à l’enrichissement de la 
littérature sur la convergence entre technologie et durabilité urbaine.


