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ABSTRACT — The activities associated with urbanization, such as vehicular traffic and industrial processes, lead to elevated emissions of atmospheric
pollutants. Measuring the spatial extent of these pollutants is pivotal to identifying areas of concern and assessing mitigation measures. The
objective of this study was to evaluate the relative deposition of heavy metals and nitrogen using moss species along an urban—agricultural transition
in the Credit River Watershed, southern Ontario. Thirteen species of moss were collected from Sugar Maple (Acer saccharum) dominated forest
stands across the study area, with only one moss species (Atrichum altercristatum) commonly occurring. Heavy metal concentrations were variable
between species; the Coefficient of Variation (CV) for the majority of metals (Al, V, Cr, Fe, Ni, As, Sb and Pb) was greater than ~50% across species.
Nonetheless, metals exhibited similar trends, with the highest concentrations for Fe, followed by Al > Zn > Cu>Pb > Cr>Ni >V > As > Cd >
Sb > Hg across species. Heavy metal concentrations in Atrichum altercristatum exhibited lower variability between sites, with CV < 33% for most
metals (Cu, Zn, As, Cd, Sb, Pb and Hg). Further, many metal concentrations were strongly correlated (e.g., Al, V, Cr, Fe, and As; r < 0.90)
suggesting common emission sources, such as wind blown dust from agricultural activities or vehicular traffic, both predominant throughout the

watershed.
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INTRODUCTION

Urbanization is the expansion and development of cities
under growing populations and migration from rural to urban
environments (Freedman, 2010). As urbanization increases,
the intensity of associated industrial activities and vehicular
traffic also increase (Watmough et al., 1998; Freedman,
2010). This leads to elevated emissions of atmospheric
pollutants such as sulphur dioxide (SO,), nitrogen dioxide
(NO,), ammonia (NH;) and heavy metals (Percy & Feretti,
2004). Southern Ontario is the most densely populated
region in Canada; the majority of the population live within
the Greater Toronto Area (GTA), which has 8.1 million
registered vehicles as of 2013 (Statistics Canada, 2014a).
Traffic related emissions are responsible for more than 50%
of the atmospheric NO, concentrations (Ministry of the En-
vironment and Climate Change, 2012), and have been linked
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to human health impacts (Toronto Public Health, 2007).
Further, these pollutants can impact on natural ecosystems
leading to acidification, eutrophication and deposition of
heavy metals, which can decrease productivity, increase
mortality rates and lower species diversity (Freedman, 2010;
vanLoon & Duffy, 2011).

Measuring the spatial extent of atmospheric pollutants is
integral to identifying areas of concern and assessing regional
response to mitigation measures. Bryophytes (mosses) have
been widely used as bioindicators of air pollution (Bates,
2009; Riihling, 2002), providing insight into the degree of
ecosystem stress (Correa Mazzoni et al., 2012). Since mosses
receive their nutrients predominantly from dust-fall and
precipitation, they provide a reliable measure of atmospheric
pollution deposition (Harmens et al., 2010; 2015; Riihling,
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2002). The collection and analysis of mosses has become a
regular practice in biomonitoring programmes across Europe
since 1990 (Harmens et al., 2010; 2015; Riihling, 2002;
Riihling & Tyler, 2004) for heavy metals and since 2005 for
nitrogen (Harmens et al., 2011). Further, studies have shown
that heavy metal concentrations in mosses correlate with
atmospheric deposition values measured in precipitation
monitoring networks, establishing moss as an effective and
efficient biomonitoring tool (Berg & Steinnes, 1997;
Dragovic & Mihailovic, 2009). For nitrogen, the relationship
appears to vary with nitrogen speciation (Pitcairn et al., 2006)
and seems to saturate at deposition rates of approximately
15-20 kg N ha'! yr! (Harmens et al., 2011; 2014).

The objective of this study was to evaluate the concentration
of heavy metals and nitrogen in moss species along an
urban—agricultural transect in the Credit River Watershed,
southern Ontario, Canada. Mosses were sampled from Sugar
Maple (Acer saccharum) dominated forest stands located
within the watershed boundaries.

COWDEN P. / Ann. Bot. (Roma), 2015, 5: 63-70

MATERIALS AND METHODS
Study area

The Credit Valley Conservation Authority (CVC) protects the
health and integrity of the Credit River Watershed, in
southern Ontario, which encompasses an area of 86,000 ha.
The upper boundary begins north of Orangeville (43°56.29°
N, 80°9.139°W) and continues southeast for approximately
90 km, where it drains into Lake Ontario (Credit Valley
Conservation, 2009). Due to its long and thin shape, (the
widest part measuring approximately 28 km), the watershed
was subdivided into three regions; upper, middle and lower
(Figure 1). The watershed incorporates many major
municipalities, such as: Brampton (population: 525,000) and
Mississauga (population: 700,000; Statistics Canada, 2014b).
In addition, high capacity highways cross the watershed, e.g.,
the MacDonald-Cartier Freeway (401) with an annual
average daily traffic (AADT) volume of 156,967 and the
Queen Elizabeth Way (QEW) with an AADT of 150,567
(MTO, 2010).
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Fig. 1. Location of southern Ontario in Canada and the location of the Credit River Watershed. Upper, middle and lower regions of the watershed
are depicted as U, M and L letters, respectively. Upper (blue), Middle (green) and Lower (red) site are depicted as circle marks (n = 12: four per

watershed region). See Table 1 for site abbreviations.
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The three watershed sub-regions embody multiple types of
land use; the dominant land covers are urban, agricultural and
natural areas, which include both terrestrial and aquatic
systems (Credit Valley Conservation, 2013). This represents
a south—north transition from urban to rural agricultural land
use along the Credit River Watershed. The upper region is
comprised of 15% urban, 43% agricultural and 42% natural
land use, the middle region is 14% urban, 41% agricultural
and 44% natural, and the lower region is 56% urban, 27%
agricultural and 17% natural (Credit Valley Conservation,
2013). The average temperature in the watershed is 12.5°C in
the summer and —2.5°C in the winter; annual precipitation is
793 mm, with 115 mm as snow (Statistics Canada, 2007).

Site selection, field sampling and laboratory analysis

Study sites were selected from deciduous forest stands
dominated by Sugar Maple (Acer saccharum) within
conservation areas and municipal or public parks in the
Credit River Watershed. In general, field sampling followed
the ICP Vegetation protocol (ICP, 2014); however, in urban
areas it was difficult to select sites 100 m away from small
roads, free of canopy cover. The majority of the sites were
situated near existing monitoring sites established under the
CVC Terrestrial Monitoring Program (TEMO; Credit Valley
Conservation 2013). Twelve sampling sites were chosen (see
Figure 1) to encompass the entire watershed, with four per
sub-region. Island Lake Conservation Area (IL) and Rattray
Marsh Conservation Area (RM) were chosen with the
intention of including the furthest northern and southern
conservation areas of the watershed (Figure 1).

Sampling was carried out during August 2014. At each study
site, a 10 m x 10 m plot was established within a standard
substrate; mosses were only sampled when found growing

on rock or soil substrate within a five meter buffer zone of the
plot. A composite sample of each moss species was collected
and placed in a paper bag. In the laboratory, samples were
identified and separated into species by site. Dead material
and litter were manually removed, and samples were then
cleaned by 30 seconds of agitation in a clean sample bottle
with 90 mL of distilled reverse osmosis water. Moss was then
air dried for at least 48 hours, and oven dried at 55°C for an
additional 24 hours. Finally, the samples were pulverized in
a ball mill for two minutes, to create a homogenous mixture
for analysis.

The concentrations for eleven metals (aluminum (Al),
vanadium (V), chromium (Cr), iron (Fe), nickel (Ni), copper
(Cu), zinc (Zn), arsenic (As), cadmium (Cd), antimony (Sb),
and lead (Pb)) in all moss species were determined using a
Triple-Quad ICP-MS analyzer following acid digestion
(Mars 6 microwave digester, EPA method 3052). Carbon and
nitrogen (CN) were measured by elemental analyser, and
mercury was determined using a mercury analyzer
(Milestone DMA-80).

RESULTS

Thirteen species of moss, dominated by pleurocarpous
mosses (10 of 13 species) were collected across the
watershed (Table 1). Nonetheless, acrocarpous mosses were
dominant in the lower and the upper regions; with 5 of 6
species in the lower and 4 of 7 species in the upper region.
In contrast, 6 of the 7 species collected within the middle
region were pleurocarpous (Table 1). The only species to
occur throughout all regions was the acrocarpous moss
Atrichum altercristatum.

Table 1. Site name (watershed region: upper [U], middle [M] and lower [L]), site abbreviation, location (latitude and longitude [decimal degrees])
and moss species (Acrocarp [A] or Pleurocarp [P]) found in Sugar Maple (Acer saccharum) dominated forest plots (n = 12) within the Credit River

Watershed, Ontario, Canada.

Watershed region: Site name Latitude Longitude Moss Species

U: Island Lake (IL) 43.9329 -80.0761 Homalia trichnomanoides (P), Brachythecium plumosum (P), Bryhnia graminicolor (P)
U: Upper Credit (UC) 43.8766 —-80.0569 Atrichum altercristatum (A)

U: Wilcox (WC) 43.8738 -80.1425 Brachythecium rutabulum (P), Hygroamblystegium varium (P)
U: Belfountain (BF) 43.7957 -80.0102 Brachythecium plumosum (P)

M: Warwick (WW) 43.8230 —79.9002 Atrichum altercristatum (A), Callicladium haldanianum (P)

M: Terra Cotta (TC) 43.7233 -79.9615 Campyliadelphus chrysophyllus (P), Fissidens adianthoides (A)
M: Willow Park (WP) 43.6479 —79.8661 Hypnum pallenscens (P), Pohlia nutans (A)

M: Limehouse (LH) 43.6337 —79.9735 Leskeella nervosa (P)

L: Brampton Park (BP) 43.6697 —79.7961 Atrichum altercristatum (A), Pohlia nutans (A)

L: Eldorado (ED) 43.6412 —79.7807 Atrichum altercristatum (A)

L: Mississauga Garden (MG) 43.5664 —79.6743 Atrichum altercristatum (A)

L: Rattray Marsh (RT) 43.5182 —79.6046 Atrichum altercristatum (A), Hygrohypnum spp. (P)




66

Heavy metal concentrations were variable between
species, but exhibited similar trends, with the exception of
some species (Fissidens adianthoides, Pohlia nutans and
Campyliadelphus chrysophyllus), which exhibited higher
concentrations for many metals (Table 2) possibly due to
species characteristics or sample contamination, e.g.,
incorporation of wind blown dust into moss tissue. In gen-
eral, the metal with the highest concentration was Fe,
followed by Al >Zn>Cu>Pb>Cr>Ni>V >As>Cd>
Sb > Hg. The coefficient of variation between species ranged
from 25-35% for some metals (Cu, Zn, Cd and Hg) but
variability was greater than ~50% for most metals (Al, V, Cr,
Fe, Ni, As, Sb and Pb; Table 2). In contrast, the coefficient of
variation for Atrichum altercristatum between sites (n = 6)
was much lower, less than 33% for the majority of metals
(Cu, Zn, As, Cd, Sb, and Pb; Table 2). Notably, Hg exhibited
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very little variation in Atrichum altercristatum between sites
(13%), ranging in concentration from 0.07-0.10 mg kg™
(mean = 0.08 mg kg™), reflecting its long atmospheric
residence time (Schroeder & Munthe, 1998); nonetheless, Hg
concentrations may have been influenced by oven drying.
Further, Atrichum altercristatum generally exhibited lower
concentrations within the middle region of the watershed
(Figure 2), e.g., average values of Cr, Cu and Pb (3.1, 10.6
and 6.0 mg kg™!, respectively) in the middle sites (n = 1),
were lower compared with the upper (7.7, 21.4 and 10.8 mg
kg™) and lower (5.1, 15.7 and 8.0 mg kg™') sites (n = 1 and
4, respectively). Many metal concentrations were strongly
positively correlated in Atrichum altercristatum (and other
moss species); e.g., Al, V, Cr, Fe, and As r > 0.90. In contrast
% N was negatively (and poorly) correlated with most
metals, except Cd (r = 0.77).

Table 2. Concentrations (mg kg ') of heavy metals and nitrogen (%) in moss species (number of samples) in the Credit River Watershed, Ontario.

Moss species Al \% Cr Fe Ni Cu Zn As Cd Sb Pb Hg %N
Atrichum altercristatum (6) 2200 4.9 52 3451 4.5 15.8 66.6 0.97 0.35 0.15 8.1 0.08 1.48
Brachythecium plumosum (2) 3017 5.7 13.5 4055 7.7 19.4 109.1 1.20 0.42 0.22 9.0 0.07 1.22
Brachythecium rutabulum (1) 5377 10.9 12.4 9928 11.3 16.2 82.6 3.33 0.37 0.10 15.6 0.09 0.93
Bryhnia graminicolor (1) 298 1.0 2.9 540 2.9 11.8 46.9 0.72 0.28 0.24 2.6 0.03 1.54
Callicladium haldanianum (1) 3828 9.2 10.0 8251 6.6 14.9 53.6 1.96 0.22 0.06 9.7 0.05 0.89
Campyliadelphus chrysophyllus (1) 3772 9.5 6.3 14685 13.1 75.7 93.5 23.44 0.64 0.15 20.8 0.10 0.82
Fissidens adianthoides (1) 23633  49.6 640 50299 32.0 219.1 331.5 46.03 1.54 0.23 57.4 0.06 0.86
Homalia trichnomanoides (1) 313 0.9 1.5 572 1.3 6.8 32.7 0.43 0.20 0.24 2.0 0.07 1.82
Hygroamblystegium varium (1) 2308 4.6 7.2 3968 8.0 8.3 46.0 1.56 0.24 0.09 5.1 0.08 1.40
Hygrohypnum spp. (1) 2508 5.8 7.8 5033 6.4 7.4 49.6 1.33 0.14 0.09 10.1 0.07 0.73
Hypnum pallescens (1) 5471 11.1 10.6 9272 9.7 15.7 75.5 2.11 0.31 0.08 17.5 0.09 0.95
Leskeella nervosa (1) 1225 2.9 2.9 2044 34 9.2 73.0 0.87 0.32 0.27 9.1 0.10 1.31
Pohlia nutans (2) 7290 15.8 16.5 12625 11.1 15.2 68.0 2.36 0.23 0.20 18.1 0.09 1.09
CV': All species® 65.5 61.5 540 68.7 48.5 335 33.4 55.4 28.7 49.0 533 26.3 26.7
Average: All species® 2655 5.7 7.4 4711 6.2 12.6 63.6 1.45 0.28 0.15 8.9 0.07 1.2
Average: Upper watershed 2469 5.2 8.4 4020 6.2 14.8 72.4 1.39 0.33 0.18 7.7 0.07 1.4
Average: Middle watershed? 2973 6.6 6.7 5449 5.6 12.6 64.6 1.39 0.32 0.14 10.6 0.08 1.2
Average: Lower watershed? 2277 5.0 5.7 3697 53 14.0 62.5 1.05 0.28 0.15 8.4 0.08 1.3
CV': Atrichum altercristatum 58.2 53.1 409 53.6 483 28.0 19.1 322 33.0 28.9 322 12.8 14.7
A. altercristatum: Upper (1) 2953 7.5 7.7 5024 42 21.4 80.4 1.27 0.40 0.13 10.8 0.10 355
A. altercristatum: Middle (1) 1369 3.1 3.1 2229 2.9 10.6 56.3 0.64 0.43 0.14 6.0 0.08 40.7
A. altercristatum: Lower (4) 2220 4.8 5.1 3363 5.0 15.7 65.7 0.98 0.32 0.16 8.0 0.08 38.21

CV is the coefficient of variation (%), which is estimated as the standard deviation divided by the mean value and multiplied by 100; 2 Excludes
Fissidens adianthoides, Pohlia nutans and Campyliadelphus chrysophyllus; 3 Excludes Pohlia nutans.

Nitrogen content in A. altercristatum ranged from
1.04-1.72% (mean =1.49%), which was comparable to other
moss species in the upper (Bryhnia graminicolor [1.54%],
Hygroamblystegium varium [1.41%)], Brachythecium
plumosum [1.22%]) and middle (Leskeella nervosa [1.31%],

Pohlia nutans [1.31%]) watershed regions. Nitrogen content
was much less variable throughout the watershed and
between species (CV% = 27.9%) compared to heavy metal
concentrations, except Hg (Table 2).
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Fig. 2. Concentrations (mg kg ') of V, Cr, Ni, Cu, Zn, As and Pb in Atrichum altercristatum at study sites (n = 6) in the Credit River Watershed, Ontario (see Figure 1 for

site locations and Table 1 for site abbreviations).

DiscussioN

The most commonly occurring moss species in the study area,
Atrichum altercristatum (Renauld & Cardot) Smyth &
Smyth, Lumina C. Riddle., is endemic to North America
and has similar characteristics to the European Atrichum
undulatum (Hedw.). The presence or absence of specific moss
can indicate the presence of certain pollutants. Some species
are very sensitive to pollutants, while others demonstrate
resistance; e.g. Pohlia nutans prefers ecosystems high in
heavy metals (Huttunen, 2003), while Hygrohypnum species
prefer more acidic environments (McKnight et al., 2013). The
Atrichum species is opportunistic, as it is habitually an early
colonizer of degraded habitats, preferring to establish on
perturbed soils (McKnight et al., 2013) making it an
effective bioindicator of anthropogenic disturbance
(Govindapyari et al., 2010). The common occurrence of
Atrichum altercristatum throughout the lower region (Table 1)
is consistent with the high percentage of urbanization found
in that region (56%). However, the variations in species
composition at the study plots could simply be influenced by
the underlying geology. The Niagara Escarpment is a
massive ridge of sedimentary rock that traverses through the
middle region of the watershed. The calcareous nature of the
sedimentary rocks of the escarpment create a less acidic
environment that is favoured by species such as
Campyliadelphus chrysophyllus, Fissidens andianthoides and

Leskella nervosa (McKnight et al., 2013), which were all
sampled in the middle watershed region.

The metal concentrations were variable between species
(Table 2), as the degree of metal accumulation is influenced
by the differing morphology of each species, their annual
growth rates, the recycling of micronutrients (e.g., Cu and
Zn) from dead tissue and the chemical form of deposition
(Govindapyari et al., 2010; Halleraker et al., 1998;
Zechmeister, 1998). Therefore, combining analysis from
several species is not recommended. Large scale surveys
such as ICP Vegetation (Harmens et al., 2010, 2015)
recommend sampling of only certain species (e.g., Pleurozium
schreberi and Hylocomium splendens) to provide more
accurate data (neither species was present at the study sites).
In the current study, multiple species were sampled and
analyzed as only one species (4. altercristatum) commonly
occurred throughout the region. Nonetheless, the variability
between metal concentrations followed a similar trend across
species (Table 2). Reliable comparison between species
requires interspecies calibration at sites with co-occurring
species (Halleraker et al., 1998).

The spatial pattern of nitrogen content (%) was less variable
throughout the sampling area (upper, 1.39%, middle 1.19%,
lower 1.22%) and across species (e.g., 4. altercristatum
1.48%, Brachythecium plumosum 1.22%, Leskeella nervosa
1.31%). Nitrogen is a macronutrient, as such, moss tissue
background concentrations (~0.5%: Harmens et al., 2011)
reduce spatial and interspecies variability owing to
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atmospheric inputs. The mean N content was consistent with
national observations in recent European scale surveys
(Harmens et al., 2011, 2015; e.g., Austria [1.20%], Bulgaria
[1.37%], France [1.26%], Switzerland [1.12%], etc.).
However, the concentrations of heavy metals were generally
higher when compared with observations in northern Europe
(Harmens et al., 2010; e.g., Sweden [Cr = 0.61 mg kg™!, Pb
=0.61 mgkg'and Ni=3.61 mg kg'] and Norway [Cr=0.58
mgkg !, Pb=2.17 mg kg ! and Ni = 1.24 mg kg ']) and south
eastern Europe (Harmens et al., 2010; e.g., Turkey [Cr=4.41
mg kg, Pb = 4.04 mg kg!, and Ni = 5.09 mg kg'] and
Serbia [Cr = 6.44 mg kg™, Pb = 16.7 mg kg! and Ni =4.43
mg kg']). In contrast, the concentrations found throughout
the study area were generally lower than those observed in a
similar study carried out in an urban area in Northern Italy
(Gerdol et al., 2014), e.g., the moss Tortula muralis
(acrocarp) was found to have Cr = 13.3 mg kg! and Pb =
60.2 mg kg and Ni = 11.0 mg kg (compare with Table 2).
Heavy metal concentrations in the current study were
comparable to those found in a rural area in southern Brazil
(Correa Mazzoni et al., 2012); the average of all species
found in rural areas were Cr = 3.7 mg kg!, Pb = 9.1 mg
kg, Ni=6.2 mgkg!and Cd=0.29 mg kg .

Correa Mazzoni et al. (2012) and Gerdol et al. (2014) linked
heavy metal concentrations to anthropogenic activities such
as agriculture, vehicular traffic, construction and waste
management. The correlations between groups of pollutants
in the current study, similarly suggested common emission
sources. The metals Fe, V, Al, As, and Cd may be attributed
to wind blown dust from agricultural activities such as tillage,
or fertilizer use (Gerdol et al., 2014; Halleraker et al., 1998),
which are predominant activities throughout the upper
regions of the watershed. Further, N, Cr, Cd, Ni, and V are
associated with vehicular traffic (Correa Mazzoni et al.,
2012; Gerdol et al., 2014) common throughout the whole
watershed.

CONCLUSIONS

The moss analysis provided insight into the patterns of
atmospheric pollution due to anthropogenic activities; in
general, Atrichum altercristatum exhibited the highest
concentrations of heavy metals in the upper and lower
regions of the watershed. Atrichum altercristatum was
dominant throughout the lower region; however, the number
of sampled species increased to include a mix of acrocarpous
and pleurocarpous mosses within the middle and upper
regions. While the efficacy of mosses can be affected by
physical factors such as forest cover, which enhances
deposition rates, they are still an effective tool providing

insight into spatial trends and patterns at a regional scale.
Moss biomonitoring is widely used to measure the temporal
and spatial changes in anthropogenic deposition in Europe
(Harmens et al., 2010, 2011, 2015), surprisingly, studies of
this nature are rare in Canada. It is recommended that future
regional assessments include interspecies calibration, ideally
incorporating moss species commonly used in Europe
(e.g., Pleurozium schreberi and Hylocomium splendens).
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