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ABSTRACT — A European-wide assessment of chlorophyll a fluorescence (ChlF, prompt fluorescence on dark-adapted samples) parameters in forest
ecosystems was carried out in the years 2012-2013, within the 7FP FunDivEUROPE project. A total of 1596 trees growing in 209 stands distributed in
six countries, from Mediterranean to boreal sites, were sampled. This paper shows the applicability of the ChIF in forest ecology surveys, the protocols
adopted for leaf sampling and ChIF measurements, the variability of the ChlF parameters within and between trees, their dependence to environmental
factors and the relationships with other functional leaf traits. The most relevant findings were as follows: (i) the least variable ChlF parameter within
and between the trees was the maximum quantum yield of primary photochemistry (Fy/Fy,), whereas the performance indices (PI,gg and Pl;oy) showed
the highest variability; (ii) for a given tree, the ChlF parameters measured at two heights of the crown (top and bottom leaves) were correlated among
the and, in coniferous species, the ChlF parameters were correlated between different needle age classes (the current year and previous year); (iii) the
ChlF parameters showed a geographical pattern, and the photochemical performance of the forest trees was higher in central Europe than in the edge
sites (northernmost and southernmost); and (iv) ChIF parameters showed different sensitivity to specific environmental factors: Fy/F); increased with
the increase of the leaf area index of stands and soil fertility; AV, was enhanced under high temperature and drought. The photochemical responses of
forest tree species, analyzed with ChlF parameters, were influenced by the ecology of the trees (i.e. their functional groups, continental distribution,
successional status, etc.), and by the tree species’ richness and composition of the stands. Our results support the applicability and usefulness of the ChlF
in forest monitoring investigations on a large spatial scale and its possibility of being integrated with remote sensing surveys.
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INTRODUCTION

Chlorophyll a fluorescence (ChlF) techniques and parameters
are extensively used in plant physiology researches, both to
study the mechanism of light harvesting and electron
transport between and beyond the two photosystems
(photosystem II, PSII and photosystem I, PSI) and in applied
studies to assess the mechanisms and effects of biotic
and abiotic stresses on the photosyntetic efficiency and
performances of plants (Papageorgiou and Govindjee, 2004).
Furthermore, ChlF is a useful tool for experimental research
in agriculture, forestry and arboriculture (for reviews, see

doi: 10.4462/annbotrm-13257

Ball et al., 1994; Maxwell and Johnson, 2000; Mohammed
et al., 2003; Bussotti et al., 2010; Kalaji et al., 2014). The
application of ChIF in forest monitoring to assess the
ecological conditions and productivity of forests is more
problematic than application in agriculture, and it mainly
concerns the use of remote sensing techniques, based on the
passive fluorescence (Grace et al., 2007; Meroni et al.,
2009; Joiner et al., 2011, 2014; Garbulsky et al., 2014;
Porcar-Castell et al., 2014; Zhang et al., 2014).

The photosynthetic properties of “tall” crowns, assessed by
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means of ChlIF fluorescence and analyzed using the JIP-test,
were revealed to be sensitive to the growth conditions of the
trees, such as stand density and leaf area index (Pollastrini et
al., 2016), above-ground competition between trees due to
different growth rates (Pollastrini et al., 2014) and tree
species diversity (both species’ richness and composition,
Bussotti and Pollastrini, 2015a; Pollastrini et al., 2015;
Pollastrini et al., submitted). ChlF parameters, moreover, can
describe the health status of trees and their physiological
reactions to defoliation, although with species-specific
behaviors (Pollastrini et al., 2016; Gottardini et al., 2016), as
well as the more general processes of acclimation to varying
environmental conditions (Pollastrini et al., submitted,
Gottardini et al., 2016). The simultaneous analysis of the
ChlF parameters and other functional leaf traits on the same
foliar sample is a tool for a comprehensive assessment of the
overall conditions of the crowns (Bussotti and Pollastrini,
2015b).

In field experiments and surveys in forests, the measurement
of ChIF parameters on leaves is not easy, due to the difficulty
of reaching and collecting the leaves at the canopy height
(e.g. in mature forests, trees can reach a height of 20 m or
beyond). Available data concerning the ChlF characteristics
of tall trees come mostly from research carried out in
experimental areas equipped for long-term assessment
(Gielen et al., 2007; Ménd et al., 2012; Hallik et al., 2012) or
as validation of remote sensing surveys (Rossini et al., 2006;
Pieruschka et al., 2014). Specific researches on tall trees in
forests were carried out by Bussotti (2004) (diurnal and
seasonal variations of photosynthetic efficiency in Quercus
ilex L.), Koprowski et al. (2015) (fertilization experiments
on tall Pinus sylvestris L. trees), Fusaro et al. (2015)
different ecophysiological behavior of Quercus ilex L. in
urban and periurban forests and Gottardini et al. (2016)
(assessment of the responses of Picea abies (L.) Karst. along
an altitudinal gradient).

Besides the difficulty of sampling leaves, the assessment of
ChIF in forest trees proposes specific challenges, such as (i)
the heterogeneity of the photosynthetic properties in leaves
living in different positions in the crown and, consequently,
exposed to different light regimes (Niinemets, 2007;
Yoshimura, 2010; Desotgiu et al., 2012a), namely the
distinction between sun and shade leaves; (ii) the influence of
the hour of the day when the leaves are collected, before the
ChlIF measurement, (Desotgiu et al., 2012b, 2013), that
determines the state of photoinhibition, or the lack of it, of the
leaves (Werner et al., 2002); (iii) the comparability of data
coming from different instruments (Bussotti et al., 2011); and
(iv) the variability of ChlF parameters within and among
trees.

This paper reports the experience carried out within the
FunDivEurope project (7FP), where a comprehensive foliar
sampling and analysis was carried out in six European

forests, from Mediterranean to boreal. Our purpose was to
provide an overview of the applicability, usefulness and
difficulties encountered in a terrestrial assessment of the ChIF
properties of tree species, suggesting solutions to enhance
the effectiveness of ChlF surveys in forests and their
comparability. Moreover, we want to address the variability
of the ChIF parameters within and between trees, their
dependence on environmental factors and their relationships
with other functional leaf traits.

MATERIALS AND METHODS
The prompt fluorescence (PF) and the JIP-test

The prompt fluorescence (PF) refers to the fluorescence
induction curve from the minimum fluorescence intensity
(Fy) to the maximum fluorescence (F,;) in dark-adapted
samples. This curve, called “fluorescence transient” (Strasser
et al., 2000, 2004), represents the “fast induction kinetics” of
the fluorescence emission. Plotted on a logarithmic time
scale, the fluorescence transients show a polyphasic shape.
In a dark-adapted sample, the fluorescence began to be
measured at the time of 20 ps (or 50 ps, depending on the
temporal resolution of the fluorimeter). This time step is the
first level of the ChIF emission and is indicated as O. Then,
three intermediate levels of fluorescence emission, indicated,
respectively, as K (at 300 ps), J (~2 to 3 ms) and I (~30 ms),
and then the last level of fluorescence emission, at 500-800
ms - Is, indicated as P (peak level of fluorescence), are
achieved. The latter indicates the maximum fluorescence
intensity (F,;) when saturating light is procured on the leaf.
The fluorescence O-J-I-P transient is analyzed using the
JIP-test (Strasser et al., 2000, 2004; Tsimilli-Michael and
Strasser, 2008), a methodology to study the structure and
functions of the photosystem II, through the translation of the
shape changes of the O-J-I-P-induced transient to quantitative
changes of several parameters. The JIP-test parameters link
the different steps and phases of the PF transient with the
redox states of the PSII, describing the efficiency of the
electron transfer in the intersystem chain to the end-electron
acceptors at the PSI acceptor side. The JIP-test defines the
maximal (subscript “0”) energy fluxes in the energy cascade
for the events absorption (ABS), trapping (TR,), electron
transport (ET,), dissipation (DI,), reduction of end acceptors
of PSI (RE,) in the PSIIL.

The most common parameter used in the prompt
fluorescence is the maximum quantum yield of primary
photochemistry (¢p, = TR(/ABS = [Fy-F(l/Fy = Fy/Fys
Paillottin, 1976). This parameter is defined as the ratio of the
total energy flux trapped by the reaction centers of PSII.



CHLOROPHYLL FLUORESCENCE IN FORESTS 25

It can be expressed also by means of a de-excitation constants
ratio [Fy/Fy = kp/(/kptky)] (Strasser et al., 2000). Other
parameters applied in this study for the ChIF transient
analysis are as follows: the number of the active reaction
centres per total chlorophyll content in the antennae of the
PSII (RC/ABS); the probability of an electron to reduce the
primary quinone acceptor and to move into the electron
transport chain beyond the PSII (g, = ETy/TR,); the
amplitude of the relative variable fluorescence of the
I-to-P rise (AVyp = relative contribution of the I-to-P- phase

to the OJIP transient), which is a semi-quantitative indicator
of the abundance of PSI with respect to PSII and is related to
the electron transport chains beyond PSI (Ceppi et al., 2012).
Finally, the performance indices (PIs) measure the potential
energy conservation of photons in the intersystem between
PSII and PSI (PI,gs) and the potential energy conservation
from photons absorbed by PSII to the reduction flux of PSI
end-acceptors (Plygr). The explication and the formulae of
the ChlF transients and JIP-test applied in this research are
shown in Table 1.

Table 1. Chlorophyll @ fluorescence parameters used in the fluorescence transient analysis.

Technical fluorescence parameters

F, Fluorescence emission from a dark-adapted leaf at the time t
Fy Minimal fluorescence from a dark-adapted leaf
Fy Maximum fluorescence from a dark-adapted leaf
F; Fluorescence intensity at the J-step (at 2 ms)
Fy Fluorescence intensity at the I-step (at 30 ms)
Fy Maximum variable fluorescence from a dark-adapted leaf. Fy, = Fy, — F,
Vy Relative variable fluorescence at 2 ms. Vy = (F,,, — Fo) / (Fyy — Fo)
Vi Relative variable fluorescence at 30 ms. V| = (F3q,s — Fo) / (Fy — Fo)
M, Slope of the curve at the origin of the fluorescence rise.
It is a measure of the rate of the primary photochemistry. My= 4(F3g9,s— Fo) / (Fyy— Fo)
Derived parameters

0po = TR/ABS =
[Fy — Fol /Fy = Fy/Fy

¥y, = ET)/TR,

Sro = RE(/ET,

AVyp = IP-phase

RC/ABS

Plxps

Plior

Trapping probability, or maximum quantum yield of primary photochemistry of a dark-adapted leaf. It is the probability
that an absorbed photon will be trapped by the PSII reaction centre.

Probability that a photon trapped by the PSII reaction centre enters in the electron transport chain. Wg, =1 -V

Probability that an electron is transported from the reduced plastochinone (PQ) to the electron acceptor side of PSI.
Opo=(1 =V /(1 -V =Ey-Fp)/(Fy-Fy

The amplitude of the relative variable fluorescence of the I-to-P-rise (= relative contribution of the I-to-P phase to the
OJIP-transient). AVip = 1 — V| =1IP phase

Number of active RCs for chlorophyll molecule constituting the antenna. RC/ABS = ¢p, (V;/M)

Performance Index (potential) for energy conservation from photons absorbed by PSII to the reduction of intersystem
electron acceptors. Pl gg = (RC/ABS) [@p, / (1 — ¢po)] [Wgo /(1 — Pgo)]

Performance index (potential) for energy conservation from the photons absorbed by PSII to the reduction of PSI
end-electron acceptors. Plygy = Plypg [0g, / (1 — Oge )]

Study sites and sampling procedures

This survey was carried out within the exploratory platform of
the FunDivEUROPE project, whose general description was
reported by Baeten et al. (2013) and Jucker et al. (2014). The
project investigated six of the most important forest types in

Europe, from boreal to Mediterranean regions: North Karelia
(Finland); Biatowieza (Poland); Hainich (Germany); Résca
(Romania); Colline Metallifere (Italy); and Alto Tajo (Spain).
The general ecological features of the forests and the tree
species compositions of the stands are reported in Table 2.
Moreover, we used in this study some data coming from the
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Table 2. Main features of the six study sites belonging to the explorative platform of the FunDivEUROPE project (Baeten et al., 2013, modified).
MAT = Mean Annual Temperature; MAP = Mean Annual Precipitation; Martonne Aridity Index: (annual precipitation / (mean annual
temperature + 10)); GSR = Global Solar Radiation, daily averaged for the period 2009-2013 (April — September), data from CGMS database of
interpolated meteorological data (AGRI4CAST, http://mars.jrc.ec.europa.eu/mars). (*) data of Leaf Area Index and mean basal area refer only
to monocultures (Co= coniferous species; TB= temperate broadleaf species; MO= Mediterranean oaks).

Forest name North Karelia Bialowieza Hainich Rasca Colline Metallifere Alto Tajo
Country Finland Poland Germany Romania Italy Spain
Latitude-Longitude 62.60° - 29.83° 52.72°-23.95° 51.10°-10.51° 47.32° - 26.03° 43.27° - 11.26° 40.77° - 1.95°
Altitude (m asl) 100-150 35-185 500-600 600-1000 250-550 960-1400
Main forest type Boreal Hemiboreal Beech Mountainous beech ~ Thermophilous Continental -
deciduous Mediterranean

Focal Tree Species

Picea abies

Picea abies

Picea abies

Picea abies

Castanea sativa

Pinus sylvestris

Pinus sylvestris Pinus sylvestris Fagus sylvatica Abies alba Ostrya carpinifolia Pinus nigra
Betula pendula Betula pendula Quercus sp. Fagus sylvatica Quercus cerris Quercus ilex
Carpinus betulus Fraxinus excelsior A. pseudoplatanus Quercus ilex Quercus faginea
Quercus robur A. pseudoplatanus Quercus petraea
Leaf Area Index (*) 2.775 (Co) 6.400 (Co) 4.840 (Co) 5.950 (Co) 3.380 (TB) 2.102 (Co)
(m?>m?) 2.338 (TB) 4.440 (TB) 6.813 (TB) 5.703 (TB) 4.535 (MO) 1.142 (MO)
Mean Basal Area (*) 24.74 (Co) 43.46 (Co) 34.97 (Co) 59.49 (Co) 28.48 (TB) 35.89 (Co)
(m? ha'') 15.64 (TB) 31.12 (TB) 34.74 (TB) 36.47 (TB) 27.50 (MO) 16.37 (MO)
GSR Apr.-Sept. 14,907 16,634 16,018 17,917 21,022 23,428
(kI m?2d)
MAT (°C) 2.1 6.9 6.8 6.8 13.5 10.2
MAP (mm) 629 627 775 800 850 499
Martonne Aridity 62.5 52.7 51 47.2 432 40.77
Index (mm °C™")
Topography Flat Flat Flat Medium to Medium to Flat-medium
steep slopes steep slopes slopes
Soil N 14.48 (Co) 14.44 (Co) 12.53 (Co) 12.96 (Co) 10.50 (TB) 9.00 (Co)
concentration (mg g')  6.85 (TB) 13.39 (TB) 13.75 (TB) 13.63 (TB) 10.19 MO) 10.28 (MO)
Soil C/N 29.29 (Co) 26.07 (Co) 28.51 (Co) 30.21 (Co) 25.61 (TB) 49.41 (Co)
22.71 (TB) 25.61 (TB) 27.53 (TB) 30.08 (TB) 35.27 (Mo) 34.15 (Mo)
Soil depth (cm) 80 80 50 30 60 40

experimental platform of the FunDivEurope project (the ex-
perimental site at Satakunta in Finland, Pollastrini et al., 2014).
In each country, 28 to 42 forest stands (30x30 m wide) with
different levels of tree species richness were selected (from
monospecific to five tree species). In each forest stand,
between six and 15 dominant trees for each species were
selected. Six trees were selected in monospecific stands, and
three trees per species were selected in the plots with the
other species richness levels. The trees were randomly
selected among those with the largest diameter at breast
height. In total, 1596 trees growing in 209 stands were
sampled.

The leaf sampling was carried out by means of tree climbers,
extension loppers and gun shooters according to the height of
the trees, the stand structure and the operational conditions in
each country. Branches 40-50 cm long with attached leaves
were sampled in the highest southern exposed part of the
crown, in the upper portion (top leaves, fully exposed to sun)
and at a lower part of the crown (bottom leaves). The cut
branches were immediately placed in hermetic plastic bags
and humidified to avoid dehydration. The bags with the
samples were then kept at a constant temperature in an
insulated box.

The form of sampling from the ground was applied in Spain
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and Finland. This method was the easiest, fastest and
cheapest one. With extension loppers (telescopic poles
equipped with scissors), it was possible to reach a height of
4-5 (8) m up to 14-18 m. Tree-climbing was applied in stands
with tall trees, as in Italy, Germany and Poland (mean height
of trees of 20-22 m). This sampling was expensive and
time-consuming. A tree climber can climb and sample from
8 to 12 plants per day, depending on the size and shape of the
stem and crown architecture and the site characteristics
(e.g. soil slope, the presence of shrubs and understory
vegetation that can make it difficult to reach the trees).
Finally, the branches were collected by shooting, with a
shotgun, in Romania. This method to collect leaves was rapid
and relatively easy, but it can be dangerous for human
activities in forests.
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In 2012, we sampled the forest stands in Italy, Germany and
Finland; in 2013, the leaves were collected in Spain,
Romania and Poland. The samplig period was between mid
June and mid August each year. Only mature, well-developed
leaves were sampled and measured. In the presence of mature
leaves and before the onset of the leaf senescence, we can as-
sume that the photosynthetic properties of the leaves were
relatively constant for the same tree species (excluding
specific conditions such as severe summer drought or attacks
of pathogen, Holland et al., 2014). As an example, in Fig. 1,
we showed the ChIF transients of mature and immature
leaves of Quercus faginea Lam. sampled in Spain in June
2013, to check the leaf development and to avoid including
ChlIF measurements from immature leaves in this study.
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Fig. 1. Example of chlorophyll @ fluorescence transients of mature and immature leaves of Quercus faginea collected in Spain.

Chlorophyll a fluorescence measurements

Among ChIF techniques, the prompt fluorescence and the
analysis of the fluorescence transient by means of the
JIP-test are the most efficient for screening purposes, since
PF combines speed of execution with manoeuvrability of the
instrument in field conditions. Measurements were done
using a HandyPEA fluorimeter (Hansatech Instruments Ltd.,
Petney, Norfolk, UK). The fluorescence rise O-J-1-P curves
was induced by 1-s pulses of red light (wavelength of 650
nm, intensity of 3500 pmol m2 s™).

When it is necessary to use more than one fluorimeter,
systematic errors can be introduced. The intensity of the light
flash is the most important source of differences between
instruments. Beside the adoption of common settings, it is

recommended to calibrate the instruments by means of
crossed exercises, consisting of the measurement of common
samples. In this way the instrumental differences can be
traced, and it is possible to apply correction factors to the
dataset (Bussotti et al., 2011). Our experience suggests that
Fy/Fy; is very robust and comparable among different
instruments and illumination conditions, as along with the
parameters calculated on the normalized ChIF transients
(V; and V;). The main problems of comparability, between
two or more fluorimeters, concern the absolute values of the
parameters (namely the extreme points of the transient F,, and
Fy) and the initial slope of the ChIF transient (M;). In
particular, this latter parameter affects the calculation of the
antenna size (ABS/RC) and its reciprocal RC/ABS (that is,
the number of the reaction centres of PSII for the total
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amount of chlorophyll), as well as the performance indices.
Special care must be taken when these parameters are used
for the comparison of results from different instruments.
The time of the day when the leaf sampling is performed is
an important variable to take into account when comparing
ChIF data between different studies. In field conditions, the
values of many fluorescence parameters vary according to
the time of the day, due to the duration of the sunlight
exposure of leaves (Desotgiu et al., 2012b). The exposure to
strong light intensity can trigger the photoinhibition of the
photosynthetic apparatus, which reduces its capacity to
convert the solar energy into electron transport (Takahashi
and Murata, 2008). The dark-adaptation of leaves prior to
ChIF measurements is performed using leaf clips, for a time
period of 20-30 minutes, which eliminates the dynamic
photoinhibition of leaves, but not their potential chronic
photoinhibition (Werner et al., 2002). Dark-adaptation of the
samples for longer periods (at least four-five hours) is
necessary to effectively reduce most components of the
photoinhibition of the leaves, thus reducing the margin of
error in the comparison between the ChIF properties
of leaves. Only under extreme winter conditions (e.g.
winter-acclimated boreal conifers or frost-acclimated
Mediterranean evergreen broadleaf trees/shrubs),
photoinhibitory processes may continue even after such a
long darkening period.

180 180

RESULTS AND DISCUSSION
Variability of ChlF parameters

The frequency of the distribution of the values of the selected
ChIF parameters, for all species and countries together, is
shown in Fig. 2. Many of the ChlF parameters show a
non-normal distribution of the values. Fy/Fy;, Yg, and AV}p
revealed a narrow range of distribution.

Factors of variation of the ChlF parameters within a tree
canopy, analyzed in this paper, include the age of the needles
in the coniferous species. The comparison between current
year (c¢) and previous year (c+1) needles of Picea abies
and Pinus sylvestris was carried out at the experimental
site of Satakunta, in Finland, in 2011. Differences and
correlations between c and c+1 needles are shown in Table 3.
Previous-year needles showed higher performance indices
(PI,ps and Pl;gr) than current-year needles. The values of
all the considered parameters were correlated between the
two age classes with p<0.01.

The influence of the position of the leaves in the canopy (top
or bottom leaves) has also been analyzed. The relationships
between the ChlF parameters measured in top and bottom
leaves were explored in all tree species grouped per
coniferous species and broadleaf species (Table 4).
Significant differences in the photosynthetic properties of
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Fig. 2. Distribution of the frequency of the values of the chlorophyll a fluorescence parameters in the European forests (all tree species in all
countries). The significance of the difference with respect to the normal distribution is indicated (per p<0.05 with Kruskas-Wallis (K-S) test and per
p<0.01 with Lillefors test).
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Table 3. Descriptive statistics (mean + standard deviation) of
chlorophyll fluorescence parameters in current (c) and previous year
(ct1) needles of Picea abies and Pinus sylvestris sampled at the
experimental site of Satakunta (Finland). The significance of the
differences tested using Kolmogorov-Smirnov test and correlations
(Spearman Test, r) between the two needle ages are indicate per p<0.05.
For ChIF parameters meaning see Table 1.

Table 4. Descriptive statistics (mean =+ standard deviation) of chlorophyll
fluorescence parameters in top and bottom leaves per functional groups of
tree species (Coniferours and broadleaved species) sampled in the
exploratory sites of the FunDivEurope project. The significance of the
differences tested using Kolmogorov-Smirnov test and the correlations
(Spearman Test) between the two leaf/needle positions in the canopy are
indicated per p<0.05. For ChlF parameters meaning see Table 1.

Needles age Leaf position
c c+1 Difference  Correlation Top Bottom Difference  Correlation
M+£sd M +£sd p r p M+sd M +£sd P r p
Picea abies Coniferous species
Fy/Fy 0.82 +£0.02 0.83 +0.02 0.027 0.8 <0.01 Fy/Fp 0.82 +0.02 0.82 +0.01 ns 0.86  <0.01
RC/ABS 5.73 +0.59 6.39 =+ 0.64 <0.001 034 <0.05 RC/ABS 6.27 +0.80 6.11 +0.78 <0.001 0.83  <0.01
Yo 0.62 +0.04 0.64 + 0.04 ns 0.55 <0.01 Yo 0.63 +0.07 0.64 + 0.05 ns 091 <0.01
AVip 023 +0.04 0.24 +0.04 ns 0.76  <0.01 AVip 0.28 +0.07 0.26 + 0.08 <0.001 0.87 <0.01

Plags 45.99 + 14.98 59.94 + 18.10 <0.001 0.47  <0.01

Plror 27.04 + 11.61 36.74 + 15.10 0.004 0.61 <0.01
Pinus sylvestris

Fy/Fy 0.83 +0.01 0.84 =+ 0.01 ns 0.34  <0.05
RC/ABS 537 +£0.42 6.28 + 0.49 <0.001 042 <0.01
ko 0.67 +0.03 0.68 +0.03 ns 0.53  <0.01
AVip 0.27 +0.03 0.27 +0.03 ns 0.37 <0.01

Plys  57.67+11.76 7731 1748  <0.001 04 <001

Plror 40.51 £ 11.74 51.38 + 16.89 0.001 0.58 <0.01

leaves were found for most of the parameters studied, with
RC/ABS, AV, and Plgp being higher in the top than in
bottom leaves, and Fy/Fy;, Wg, and Pl,zg being higher in
bottom than in top leaves. The values of ChlF parameters at
the two levels of the crown were significantly correlated
between them, with p<0.001, in all tree species and in all
countries.

The standard deviations and the standard errors of the ChlF
parameters were calculated per species at different levels of
aggregation: (i) within the trees (on the 16 measurements
taken for each sampled tree, including both top and bottom
leaves); (ii) among the trees standing in the same plot (six
trees in monocultures and three trees in mixed plots); and (iii)
among the plots in the same country. The results are reported
for Poland (Table 5). The variability of ChlF data observed at
tree species and country levels, expressed as a coefficient of
variation (percent of the standard deviation with respect to
the mean), reflects the findings already described by
Pollastrini et al. (2014), with Fy/Fy; being the most robust
parameter and PIs the most variable.

Plpps 57.95 £ 19.79 54.21 + 14.09 <0.001 0.87 <0.01

Plror 49.21 +£29.03 39.23 + 21.42 <0.001 0.84 <0.01

Broadleaved species

Fy/Fy 0.79 +0.03 0.80 + 0.02 <0.001 0.61 <0.01
RC/ABS 597 +0.84 580 + 1.01 <0.001 0.86  <0.01
Y, 0.60 +0.08 0.61 + 0.07 <0.001 0.85 <0.01
AVip 0.26 +0.06 0.23 +0.06 <0.001 0.85 <0.01

Plygs 4176 £ 1930 39.64 + 1558  <0.001 0.88  <0.01

Plyor 3151 +17.16 2436 = 13.91 <0.001 08  <0.01

Differences among functional groups of tree
species and countries

The differences between the ChIF parameters measured in
the functional groups of tree species (coniferous species,
temperate broadleaf species, Mediterrancan oak species,
Table 6), were analyzed in the whole sample (all tree species
in all countries). The coniferous species showed the highest
values of Fy/Fy; and Pl g and P11, whereas Mediterranean
oaks had the lowest Fy/Fy; values. The tree species with the
highest Pl ¢ values and related parameters (namely Fy,/Fy,
and Wg,) were in the central Europe countries (namely
Poland and Germany). In the opposite, the species with lower
Pl gs values occurred in the southernmost (Italy and
Spain) and northernmost (Finland) regions. No significant
differences between the ChlF parameters were found among
Mediterranean oaks in Italy and Spain.
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Table 5. Variability of the ChlF parameters per tree species in Poland. Standard deviation (sd) and standard error (es) are expressed as percent with
respect to the mean. sd% represents the coefficient of variation (CV). CV measures: (A) the variability among the leaves in the same crown (16 leaves
per tree); (B) the variability among trees of the same species in monospecific plots (six trees per plot); (C) the variability among the trees of the same
species in mixed plots (three trees per plot); (D) the variability among the trees of the same species in both monospecific and mixed plots (about 23
plots per species). For ChlF parameters meaning see Table 1.

A. Leaves within the crown B. Trees within the plot C. Trees within the plot D. Among the plots
n=16 n=6 n=3 n=23
sd (%) es (%) sd (%) es (%) sd (%) es (%) sd (%) es (%)

Betula pendula
Fy/Fp 1.42 0.44 1.46 0.60 1.06 0.64 0.95 0.20
RC/ABS 10.15 3.18 10.86 4.43 9.24 5.44 7.73 1.65
YEo 4.02 1.24 2.76 1.13 4.57 2.69 5.75 1.23
AVip 13.48 4.09 13.43 5.48 12.01 7.17 15.21 3.24
Plsgs 20.21 6.31 18.30 7.47 18.91 11.21 16.85 3.59
Pltor 28.61 8.76 27.67 11.30 25.63 15.12 30.57 6.52
Carpinus betulus
Fy/Fy 1.90 0.52 2.02 0.83 1.37 0.80 1.68 0.35
RC/ABS 11.47 3.11 6.63 2.71 5.57 3.28 5.39 1.12
Yo 5.26 1.42 7.94 3.24 4.28 2.45 6.08 1.27
AVpp 18.22 4.88 14.10 5.76 14.40 8.46 10.99 2.29
Plpgs 22.03 6.08 29.81 12.17 15.04 8.80 21.66 4.52
Plror 35.72 9.71 33.79 13.79 24.82 14.36 25.10 5.23
Picea abies
Fy/Fy 1.40 0.38 1.16 0.47 1.02 0.59 1.15 0.24
RC/ABS 16.11 441 7.60 3.10 6.14 3.54 6.32 1.32
YEo 5.65 1.55 2.56 1.04 3.43 1.98 2.79 0.58
AVip 15.99 437 6.92 2.82 11.00 6.35 11.95 2.49
Plsps 33.52 9.18 17.94 7.32 17.43 10.06 14.97 3.12
Plror 43.89 12.02 15.71 6.41 26.53 15.32 22.47 4.68
Pinus sylvestris
Fy/Fy 1.52 0.45 1.46 0.59 1.19 0.69 1.14 0.24
RC/ABS 16.66 4.90 11.33 4.62 10.18 5.88 10.64 222
YEo 3.70 1.07 3.58 1.46 3.38 1.95 2.77 0.58
AVip 14.01 4.00 8.15 3.33 11.83 6.83 12.33 2.57
Plsgs 29.13 8.53 2481 10.13 18.48 10.67 15.72 3.28
Pltor 39.11 11.30 26.31 10.74 26.07 15.05 23.73 4.95
Quercus robur
Fy/Fy 1.60 0.46 1.77 0.72 1.14 0.66 1.71 0.36
RC/ABS 12.60 3.60 5.04 2.06 8.34 4.82 8.04 1.68
Yo 4.63 1.33 433 1.77 4.21 2.43 6.33 1.32
AV 14.22 4.03 9.45 3.86 10.86 6.27 11.00 2.29
Plags 27.64 7.90 22.77 9.30 21.98 12.69 26.55 5.54

Plior 38.03 10.76 29.29 11.96 32.38 18.69 33.24 6.93
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Table 6. ChlF parameters (mean and standard deviation) per functional groups of tree species (C: coniferous species, TB: temperate broadleaved
species; MO: Mediterranean oak species) in the whole sample (all species in all countries) and per each country. The significance of the differences
between the functional groups and country were analyzed by means of two-samples Kolmogorov-Smirnov test. The significances between countries
(on the column) are reported for p<0.05. Different letters indicate the significant differences. For ChlF parameters meaning see Table 1.

Funct. Country RC/ABS Fy/Fy Ygo
group M sd M sd M sd
C All sites 6.22 +0.63 a 0.83 +£0.01 a 0.62 +0.05
TB All sites 573 +0.80 a 0.79 £0.02 b 0.59 +0.07
MO All sites 548 £1.49 a 0.76 +0.03 ¢ 0.53 +0.07
C Finland 6.25 +0.55 ab 0.82 +0.02 a 0.60 +0.05
Poland 6.29 +0.90 ab 0.83 +0.01 a 0.69 +0.04
Germany 6.98 £0.00 a 0.84 £0.01 a 0.70 +0.04
Romania 6.68 +0.53 ab 0.83 £0.01 a 0.63 +0.03
Spain 5.60 £0.61 b 0.82 +0.02 a 0.59 +0.05
TB Finland 524 £0.77 b 0.77 +0.04 b 0.50 +0.07
Poland 5.58 £0.85 b 0.80 +0.01 a 0.62 +0.04
Germany 6.97 £0.00 a 0.80 +0.01 a 0.66 £0.07
Romania 5.75 £0.47 ab 0.79 £0.01 b 0.62 +0.02
Italy 5.47 £0.67 b 0.78 £0.02 b 0.57 +0.05
MO Italy 6.59 +2.14 a 0.78 +£0.03 a 0.58 +0.06
Spain 5.12 £0.84 a 0.76 +0.04 a 0.51 +0.07

AVip Pl Plyor
M sd M sd M sd
a 0.26 +0.06 a 53.75 +14.28 a 41.01 +£22.82 a
a 0.24 £0.06 a 35.86 +14.33 b 2572 £1443 b
b 0.29 £0.03 a 26.76 £19.47 b 29.27 £1251 b
b 0.27 £0.07 a 47.92 +£12.70 b 43.17 +£2243 a
a 0.27 £0.06 a 72.15 £12.92 a 69.24 +3558 a
a 0.22 £0.02 a 66.09 £9.09 ab 2594 +6.00 a
a 0.20 £0.02 a 57.60 £13.55 ab 28.06 £7.50 a
b 0.26 £0.03 a 43.15 £16.96 b 32,78 +13.48 a
b 0.18 £0.04 a 2229 +£12.75 b 13.19 +£885 a
a 0.26 +0.07 a 39.02 +10.65 ab 32.80 £17.53 a
a 0.23 +£0.06 a 57.52 £16.06 a 2623 £17.09 a
a 0.21 £0.02 a 37.71 £7.07 ab 20.48 £4.92 a
ab 0.27 £0.07 a 28.83 £10.61 b 29.32 £1642 a
a 0.28 £0.04 a 42.13 £27.73 a 34.08 +16.19 a
a 0.29 £0.04 a 2195 +£12.43 a 28.95 +14.68 a

Relationships between ChlF parameters,
leaf traits and environmental factors

The multivariate relationships between ChlF properties of
tree species and their leaf functional traits and some
ecological features of the forest stands were assessed on
monocultures, to avoid the possible confounding factors due
to the ecological interactions between tree species. The
ecological and structural parameters of the stands were
selected from among those listed in Table 2 (latitude, global
solar radiation, Martonne aridity index, leaf area index, basal
area, C/N ratio in the soil and depth of the soil). The
functional leaf traits analyzed were the specific leaf area
(SLA), i.e. the projected leaf area per unit of leaf dry mass;
nitrogen concentration on a mass basis in leaves (N); the C/N
ratio in leaves; and the carbon isotope composition of leaves
(83C; it is a key parameter for exploring carbon sequestration
and strategies for efficient water use of trees under
water stress condition, Farquhar et al., 1982; Gessler et al.,
2001). All the foliar data were measured within the
FunDivEUROPE project from different research groups
(noted in Acknowledgements). The data of SLA were
partially from literature (Gratani and Foti, 1998; Bussotti et
al., 2000; Bréda, 2003; Bruschi et al., 2003; Legner et al.,
2014).

As far as the ChlIF parameters are considered, a preliminary
selection was carried out by exploring their relative

relationships. Fig. 3 shows the results of the principal
component analysis (PCA) applied on all the considered
ChlF parameters (all tree species, in all the countries).
Two clusters were identified: the first was on the principal
component 1; it explains 63% of the variability of the data
and includes Fy/Fy;, Wg,, RC/ABS and Pl,gg. The second
cluster was on the principal component 2; it explains 24.7%

PC2:24.70%

-1
PC1:63.06%

Fig. 3. Principal Component Analysis plot of the distribution of the
chlorophyll a fluorescence parameters in according to the principal
component 1 (PC1) and 2 (PC2). The clusters of the parameters are
highlighted. The scale on the axes (-1 to 1) indicates the loading values
of the individual parameter to the principal component.
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of the variability of the data and includes AV, and Plygq.
On the basis of these results, we decided to select F,/Fy
and AV, as representatives of the two main underlying
physiological processes reflected in the ChlF signature.

The results of the PCAs of the data sets for these ChIF
parameters together with leaf traits and environmental
factors, separately per broadleaf species and coniferous
species, are shown in Fig 4. In broadleaf species, three
clusters were identified. The first, on the principal

component 1 (PC1), includes the parameters AV p, GSR, 8"*C
and soil C/N. At the opposite position on the PC1, we found
the latitude, the index of aridity, soil depth and SLA. F/Fy,
is included in a cluster on the principal component 2, with
basal area and leaf area index of the stands. The leaf
properties and the stand parameters of the coniferous species
showed a similar behavior of broadleaf species, although the
distribution of the parameters was more scattered.

Broadleaves
1

@ BA
@ Fu/Fu @ LA

(=]
i Dep @@ SLA
™ @ c/N_L
o (o :
& 0
O
o

-1
PC1:46.40%

Coniferous species
1

@ o/N.L
x
m AVp
o (]
2 : ¢ 51t
g

@ Dep

PC1:41.72%

Fig. 4. Principal Component Analysis plot of the distribution of the chlorophyll a fluorescence parameters and stand parameters according to the
principal component 1 (PC1) and 2 (PC2). Broadleaves include both temperate broadleaf species and Mediterranean oaks. F /Fy; and AV, = see
Table 1; Lat = Latitude; GSR = Global Solar Radiation; MAI = Martonne Aridity Index; BA = stand basal area; LAI = Leaf Area Index of the stand;
Dep = soil depth; C/N_S = carbon/nitrogen ratio in the soil; C/N_L = carbon/nitrogen ratio (mass basis) in the leaves; SLA = Specific Leaf Area;
8'3C = carbon isotope composition of leaves. The scale on the axes (-1 to 1) indicates the loading values of the individual parameter to the principal

component.

The univariate correlations between the stand parameters and
the leaf parameters of trees, shown in Table 7 and Figs. 5-6,
show evidence of opposite patterns in Fy/F,; and AV}p in
relation to GSR (Fig. 5) and LAI (Fig. 6). Fy/Fy; was
enhanced in conditions of lower solar radiation intensity and
higher canopy closure, whereas AV, showed higher values
in open canopies, with leaves exposed to high radiation
intensity.

These results suggest that AV, was related to the factors that
indicate the “Mediterranean conditions”, i.e. high solar
radiation intensity and shallow soils, with a limited water
availability. This finding was coherent with the experimental
results obtained by Cascio et al. (2010) and Desotgiu et al.
(2012a, b) in Fagus sylvatica L. and Populus, where AV p
values were enhanced by high light intensity and drought
treatment, suggesting the onset of the photochemical
de-excitation processes in the leaves to manage the excess
of the absorbed solar radiation. F/Fy; decreased with
increasing of the solar radiation, from central Europe to
Mediterranean sites. The decrease of Fy/F); with increasing

GSR indicates a global strategy of plants for acclimation to
light (Adams and Demmig-Adams, 2004) and the dissipation
of the excess of the absorbed solar radiation. High
sunlight intensity is, indeed, the most powerful factor that
influences the ChlF parameters in tree species, inducing the
photoinhibition processes (Gilmore, 2004). Moreover, the
significant relation between Fy/Fy; with the density of the
forest stand (high LAI and stand basal area) suggests that this
parameter may be indicative of the overall forest fertility and
productivity.

CONCLUSIONS

The terrestrial assessment of the ChlF properties and of other
foliar features in high forest canopies has indisputable
difficulties, mainly due to the difficulty of reaching the
canopies and, consequently, the cost for the leaf sampling.
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Table 7. The correlation matrix (coefficient of correlation of Spearman, r) between the stand parameters and leaf parameters. The results are reported
for p<0.05. Lat = Latitude; GSR = Global Solar Radiation; C/N_S = Carbon/ Nitrogen ratio in the soil; Dep S = soil depth; MAI = Martonne
Aridity Index; BA = basal area of the stand; LAI = Leaf Area Index of the stand; C/N_L = Carbon/Nitrogen ratio (mass basis) of leaves;
8"3C = carbon isotope composition of leaves; Fy/Fy; and AV = see symbols in Table 1.

Lat 1.00
GSR -0.95 1.00
C/N_S -0.65 0.65 1.00
Dep S 0.61 -0.51 -0.43 1.00
MAI 0.83 -0.88 -0.55 0.54 1.00
BA ns ns ns ns ns 1.00
LAI 0.23 -0.27 -0.55 0.21 0.25 0.61 1.00
C/N_L ns ns 0.36 ns ns ns ns 1.00
§13C -0.70 0.73 0.49 -0.54 -0.73 0.13 -0.18 ns 1.00
Fy/Fy 0.23 -0.25 -0.06 0.24 0.24 0.44 0.25 0.40 -0.07 1.00
AVip ns 0.23 0.49 ns -0.35 ns -0.25 ns 0.36 ns 1.00
Lat GSR CN S Dep S MAI BA LAI CN L e Fy/Fy AVpp
Broadleaves Broadleaves
0.84 0.4
° o © ® °
[ ° [}
0.80 - g8 o 03 - ° 8 s
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g ® ) <
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Fig. 5. Univariate correlation (Spearman correlation coefficient, r) between the selected ChlF parameters and Global Solar Radiation in broadleaved
species (including both temperate broadleaf species and Mediterranean oaks) across European forests. The significant value of the correlation is

indicated (p).

However, there are some potential applications. The
measurement of ChlF parameters at the canopy level can
support large-scale surveys as a tool to validate the remote
sensing data. ChlIF is assessed with remote sensing on
light-adapted canopies (passive fluorescence, Meroni et al.,
2009) and cannot be directly comparable with the JIP-test
parameters, measured from the ground, on dark-adapted
samples. Among the parameters measured on dark-adapted
leaves, Fy,/F\, correlates with the Photosynthetic Reflectance
Index (Pefiuelas et al., 1995), which is used in remote
sensing surveys. To enhance the comparability between the
terrestrial and remote sensing surveys, it is therefore
necessary to promote further studies aimed at combining
the JIP-test findings with remotely assessed parameters

(Serbin et al., 2012).

Another potential application of ChlF concerns the
large-scale and long-term surveys of forest condition (i.e. the
ICP-Forests program, Meining and Fischer, 2011). The
foliar analysis that is currently applied to assess the
nutritional status of trees (Jonard et al., 2015) can gain
positive inputs from the ChlF analysis and from a more
complete assessment of the functional leaf traits.

Finally, the ChlIF analysis can be used to assess the responses
of trees to silvicultural interventions, thus making it possible
to define the best forestry practices on a physiological basis.

24000
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Fig. 6. Univariate correlation (Spearman correlation coefficient, r) between the selected ChlF parameters and Leaf Area Index in broadleaf species
and coniferous species across European forests. Broadleaves include both temperate broadleaved species and Mediterranean oaks. The significant value

of the correlation is indicated (p).
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