
ANNALI DI BOTANICA
Ann. Bot. (Roma), 2017, 7: 11–24

ANNAL I  DI  BOTANICA
C O E N O L O G Y  A N D  P L A N T  E C O L O G Y

V
o
l
u
m
e

7

2
0
1
7

Dipartimento 
 di Biologia Ambientale

ANNAL I  DI  BOTANICA

Vo l u m e  7 ,  2 0 1 7

Pietro Romualdo Pirotta, founder, 1884

Publ i shed in  Rome ( I ta l y )

ISSN 0365 -0812

Vo l u m e  7 ,  2 0 1 7

Journal homepage: http://annalidibotanica.uniroma1.it

doi: 10.4462/annbotrm-13804

IntroductIon

Identifying spatial patterns in species diversity is relevant 
for developing biodiversity conservation and monitoring 
strategies (Caley et al., 2014). In spatial ecology, statistical 
models relate ecological process or patterns (such as species 
diversity) to environmental properties, eventually allowing 
their representation as distributional maps (Elith et al., 2006; 
Elith & Graham, 2009; Blasi et al., 2011; Attorre et al., 
2014; Martellos et al., 2014; Amici et al. 2015). Since plant 
species richness is one of the most common indicators of 

total species diversity, understanding its spatial variation is 
relevant to develop conservation and management strategies. 
Both explanatory and predictive power of ecological models 
are strongly influenced by the selection of appropriate 
predictors (Austin, 2002; Austin et al., 2006). At local 
or plot scale, patterns of plant diversity are associated to 
local factors, such as topography and soil type, as well as 
disturbance and competitive interactions (Tilman, 1982; 
Ellenberg, 1988, Ibáñez et al., 2014), while, macro-climate 
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and latitude shape plant diversity at larger spatial scales 
(Elith & Leathwick, 2009).
The analysis of how the spatial configuration of sampling 
units influences species richness estimates has become an 
important issue (Kühn, 2007), since species richness is one 
of the simplest and most popular diversity measures (Chao 
& Jost, 2012; Chiarucci et al., 2011, Bacaro et al. 2016). 
Spatial autocorrelation (SAC) is associated with biological 
patterns and processes, and it must be taken into account 
while modelling ecological data at large scale (Bacaro 
& Ricotta, 2007). Indeed, as stated by Kühn (2007), “if 
spatial autocorrelation is ignored we simply do not know 
if we can trust the results at all”. Therefore, the presence 
of residual spatial autocorrelation should always be tested 
for in spatial ecology. If SAC is not taken into account, 
residual errors will contain unexplained spatial patterns, 
leading to Residual Spatial Autocorrelation (RSA). Hence, 
assumptions on independently and normally distributed 
errors (common to most statistical procedures) are violated, 
thus inducing biased Type I error estimates, due to degrees 
of freedom inflation (Clifford et al., 1989; Legendre et al., 
2002). Furthermore, parameter estimates may be biased, or 
their magnitude inverted (Lennon, 2000; Bino et al., 2008, 
Bacaro et al. 2016). Hence, understanding the interaction 
between SAC and spatial scaling of species-environment 
relationships is a mandatory task in ecology (De Knegt et 
al., 2010, Bacaro et al. 2016).
Geostatistical principles are commonly applied in ecology for 
taking into account autocorrelated data structures (Bacaro & 
Ricotta, 2007; Bacaro et al., 2011; Jiménez-Alfaro & Iriondo, 
2014). The inclusion of spatial variance is known to improve 
model effectiveness (Diggle & Ribeiro, 2007). In this paper, 
geostatistical modelling was applied to a dataset of vascular 
flora collected in the Province of Siena (Tuscany, Central 
Italy) in order to: 

a) identify the environmental factors that underlay the spatial 
variation of plant species richness in the study area;

b) understand the influence of the spatial scale at which 
predictor variables are measured on the modelling process.

By using a multi-scalar approach, the predictive power of a 
set of variables on species richness was evaluated, once the 
spatial structure of sampled data was modelled. We moved 
from the hypothesis that the predictive power of variables 
changes with the spatial scale at which these explicative 
variables are calculated. Indeed, in some cases, the 
relationship between species richness and predictor variables 
can change in magnitude and/or direction when measured at 
different spatial scales.

MaterIals and Methods

Study area

The study was carried out in the Province of Siena (Fig. 
1), an area of 3,821 km2 in Tuscany (Central Italy, centroid 
coordinates: longitude 11° 26′ 54′′ E, latitude 43° 10′ 12′′ 
N, datum WGS84). The area has a North-West / South-
Est orientation and its elevation ranges between 59 and 
1685 meters a.s.l.. It is characterized by low hills (89% 
of territory is between 59 and 546 meters), and protected 
areas cover 1,109 km2 (29% of the whole Province). 49% 
of the territory is dominated by annual or perennial forage 
crops, while 24% is dominated by deciduous oakwoods 
(Bartolozzi et al. 1995). Other land use categories cover the 
rest of the area, creating a complex landscape mosaic. Such 
environmental diversification promotes the establishment 
of peculiar micro-climatic conditions, producing a wide 
range of habitats, some of which are included in the Habitat 
Directive 92/43/CEE.
Forests mostly occur in hilly and mountainous areas. The 
dominant species are oaks (Quercus ilex L., Q. pubescens 
Willd., Q. cerris L.), pines (Pinus pinaster Ait., P. pinea L.), 
chestnut (Castanea sativa Mill.), beech (Fagus sylvatica 
L.) and spruce (Abies alba Mill.).

Figure 1. Study area: province of Siena (Tuscany, Central Italy).
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Hence, in our analysis, each macro-plot was considered 
as 4 grouped 10x10 m plots.

3) 55 plots were sampled in the framework of a project 
aimed at investigating riparian Alnus glutinosa dominated 
woods (Landi & Angiolini, 2010). 

Total species richness was considered as the main response 
variable. Data were collected between 2000 and 2011. 
Vascular plants names were standardized among the three 
studies by using Pignatti (1982) and Tutin et al. (1993). Field 
activities took place in late spring-early summer in all datasets. 

Predictor variables

37 variables were considered as potential predictors (Table 1). 
They were grouped in: 1) environmental (climate, topography, 
geology and primary productivity); 2) landscape (human 
disturbance, fragmentation and land use dynamics), and 3) 
spatial (plot coordinates).

Sampling design and data collection

Few studies focused on patterns of plant diversity in 
Mediterranean forests at a regional scale, as well as on their 
relationships with environmental and spatial determinants 
(e.g. Brunet et al., 2000; Kolb & Diekmann, 2004), hence, 
sampling was focused on forest habitats. A composite dataset of 
424 10x10 m plots was built by collecting data from different 
published vegetation surveys. Each sampling campaigns 
differed in the study area, shape (square) and area of the plots 
(10x10 m) was always the same. More in details, the whole 
analysed dataset were set up as follows:

1) 276 plots were randomly selected within the 21 Protected 
Areas (PA) included in the “Mo.bi.SIC.” project (refer 
to Chiarucci et al., 2008 for details on sampling design). 

2) further 93 plots were obtained by the “MonITO–TopModel” 
project, ended in 2001 (Chiarucci & Bonini, 2005). In this 
case, the sampling design was characterized by 20x20 
m macro-plots, divided in four 10x10 m adjacent plots. 

Spatial scale 100 250 500 750 1000 Units

Variable Mean St.dev. Mean St.dev. Mean St.dev. Mean St.dev. Mean St.dev.

Slope 11.75 6.1 11.56 5.01 11.24 4.06 11.19 4.01 11.03 3.29 degrees

Elevation 442.3 207.05 442.16 204.66 443.25 203.59 235.45 110.34 168.04 57.58 meters

Temperature 13.2 1.05 13.21 1.04 13.2 1.05 13.21 1.04 13.2 1.03 °C / month

NDVI mean 0.42 0.12 0.42 0.09 0.42 0.08 0.4 0.09 0.35 0.12 -

NDVI st.dev. 0 0 0.06 0.04 0.07 0.04 0.11 0.04 0.15 0.05 -

Insolation time 12.88 0.97 12.91 0.82 12.97 0.68 12.99 0.63 13.03 0.56 hours

Rainfall 71.20 3.82 71.19 3.82 71.25 3.79 71.25 3.8 71.24 3.82 mm / month

Perimeter sum 587.7 240.65 2200.68 1086.16 6859.64 3517.93 15435.32 5619.87 24948.41 10687.69 meters

Perimeter mean 858.98 361.97 876.67 386.78 902.04 395.12 950.45 401.12 1048.48 490.82 meters

Artificial rate 0.0004 0.0040 0.09 0.14 0.09 0.13 0.07 0.06 0.03 0.03 -

Agricultural rate 0.08 0.22 0.12 0.24 0.13 0.24 0.13 0.23 0.15 0.2 -

Mean perimeter area ratio 1 0.9 1.13 1.38 2.15 1.46 5.39 4.77 8.54 5.23 -

Number of patch 2 1.55 4.42 3.81 10.4 10.7 19.45 18.6 32.94 30.4 -

Area mean 6853.1 3289.56 25717.1 19697.63 48002.17 45070.85 51876.98 47654.34 57653.95 53611.38 meters2

Mean shape index 6.01 2.53 9.18 4.59 14.47 7.4 20.66 9.82 27.28 11.58 -

Table 1. Descriptive statistics of predictor variables. Units of measure are reported in the last column.
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Grain resolutions of cells adopted 

To investigate whether and how predictors calculated at 
different spatial scales could influence the explicative power 
of models, the study area was divided into grids with cells of 
different size: 100, 250, 500, 750 and 1000 m. The finer grid 
was chosen taking into account the coarsest resolution of 
the predictor variables. Only those cells covered by forests 
for more than 50% (according to IV level of Corine Land 
Cover 2006) were used for prediction. Predictors’ means 
and standard deviations calculated at each spatial scale are 
presented in Table 1. 

Model development

A geostatistical modelling approach was applied to take in 
account both the combined effect of ecological predictors 
and SAC on species richness. A gridded map of observed 
species richness was produced assembling the plots from 
the three datasets for each grid scale (as defined above). The 
modelling process followed three steps: 1) data normalization; 
2) development of a generalized linear spatial model; 3) 
redundancy analysis.

Data normalization

Counts (the number of species in a cell) are usually modelled 
assuming a Poisson distribution (together with log link 
function in order to avoid predicted values lower than 0). 
However, over-dispersion (occurring when the ratio between 
the mean and the variance of the response variable exceeds 
the value of 1) implies the need for normalizing the dataset, 
and to deal with transformed Gaussian models (Csontos et 
al., 2007). Thus, since the number of species showed over-
dispersion at all the spatial scales considered, a Box-Cox 
normalization was used (Legendre & Legendre, 1998). The 
lambda (λ) parameter was estimated by maximizing the log-
likelihood profile. Furthermore, a Bonferroni outliers test 
(Cook & Weisberg, 1982) was applied to remove potential 
outliers from the model.

Generalized linear spatial model

The response variable (species richness) in each grid cell 
was expressed as: 

 (xi , yi) : i = 1,...., n  [1]

where xi identifies the spatial location (in two-dimensional 
space, longitude and latitude) and yi is the plant richness 
value associated with xi. A geostatistical (isotropic) model 
can be defined as:

 Yi = S(xi) + Zi : i = 1,....., n [2]

Environmental features 

Mean annual precipitation and mean annual temperature (as 
well as their standard deviation) were derived from climatic 
maps of Central Italy at 5 km resolution (provided by LaMma, 
research center for the Environmental Monitoring and 
Modelling for Sustainable Development). Slope, aspect and 
insolation time were derived from a 20 m resolution Digital 
Terrain Model using GRASS modules r.slope.aspect and r.sun 
(Neteler et al., 2012). Geological classes were derived from 
a 1:100000 geologic map of Italy. Normalized Difference 
Vegetation Index (NDVI) was calculated from two ortho-
Landsat ETM+ images (path 192, row 029-030, acquisition 
date June 20th 2000; Bands 1-5 and 7, spatial resolution 30 m), 
acquired from Global Land Cover Facility site hosted by the 
University of Maryland (http://glcf.umd.edu/, Tucker, 2004). 
June was chosen as reference month, since it is the one with 
the maximum vegetation spread in Mediterranean areas (e.g., 
Rocchini & Vannini, 2010). NDVI was calculated as: λNIR – 
λR / λNIR + λR, where λNIR is the reflectance in the NIR part of 
the spectrum (0.76 – 0.90 μm electromagnetic window) and λR 
is the reflectance in the Red part of the spectrum (0.63 – 0.69 
μm electromagnetic window). Both NDVI standard deviation 
- as a proxy of environmental heterogeneity (e.g., Levin et 
al., 2007; Kumar et al., 2009) - and mean - as a proxy of Net 
Primary Productivity - were used (Rocchini et al., 2010). 

Landscape features, complexity and forest change

Land use categories were derived from the IV levels of 
Corine Land Cover Map 2006 (http://land.copernicus.eu/). A 
high resolution map for land use (scale 1:10.000) was used to 
extract the following landscape variables: number of patches, 
average patch area, patch perimeter sum, average patch 
perimeter, mean shape index, mean perimeter area index, 
agricultural ratio and artificial ratio. These are assumed to be 
proxies of landscape fragmentation in its various components 
(habitat loss, habitat reduction, species diversity decrease; 
Amici et al., 2015). The variable “forest landscape change” 
refers to changes in land use in the province of Siena occurred 
between 1954 and 2000. It was derived from maps (Geri et 
al., 2010, 2011) developed through a cross-classification 
procedure among georeferenced aerial photos taken in 1954-
1955 by the Italian military geographic institute (for details on 
the classification procedure refer to Geri et al. (2010, 2011). 
Three land-use classes were taken into account: ‘‘Forests’’, 
‘‘Agricultural areas’’ and ‘‘Semi-natural areas’’.

Spatial features

Latitude and Longitude were used to test the presence of 
spatial autocorrelation in the distribution of plant species 
richness (Dormann, 2007; Kühn, 2007). 
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where 

 { S(x) : x ∈ R } [3]

is a Gaussian process with a spatially varying mean μ(x) 
defined by a classical linear regression model such as: 

 μ(x) = β0 + βj pj   [4]

with pj (j=1,....,s) expressing the jth explanatory variable p. 

Its variance is given by: 

 σ2 = Var{S(x)} [5]

and by a positive-defined correlation function 

 ρ(u) = Corr {S(x), S(x’ )} [6]

defining the way correlation decays to zero for increasing 
distances occurring between observations at locations x and x’. 
The term Zi in the model formulation represents mutually 
independent N(0, τ2) random variables (see Diggle & 
Ribeiro, 2007) for mathematical and statistical details. 

A generalized linear spatial model was then fitted as follows: 

a) Explanatory variables for modelling the large-scale 
variation in plant diversity were chosen via Akaike 
Information Criterion (AIC). 

b) A reduced linear model describing the spatially varying 
mean related with the number of plant species was then 
calculated. The best predictor subset was obtained, and 
regression coefficients estimated. 

The residuals of the model were tested for spatial autocorrelation, 
and a suitable family of correlation functions was chosen 
(Hoeting, 2006). The spatial relationships for residuals were 
modelled computing an empirical semivariogram for a vector 
of distance classes h. The following parameters for depicting 
autocorrelative spatial structure (theoretical semivariogram) 
were estimated (Diggle & Ribeiro, 2007): nugget (τ2, the 
intercept of the variogram), sill (τ2+ σ, expressed as the 
difference between the asymptote and the nugget), and range 
(φ, indicating the distance at which the theoretical variogram 
reaches its maximum). A practical range was also defined 
as the distance at which the correlation function reaches the 
value of 0.05. Since the estimation of spatial parameters 
strongly depends on the selection of the correlation function 
ρ(u), different fits of a parametric Matern (1986) function 
of order k were obtained. Hence, the correlation function 
which maximized the likelihood estimation was selected. 
The estimates of parameters in the trend surface (model 
spatial component) were updated using an optimization 
function (Nelder & Mead, 1965), followed by an estimation of 
maximum likelihood of covariance parameters using residuals 
(Ribeiro & Diggle, 2001). In this process, the inclusion of 
one or more explanatory variables could drastically change or 

Figure 2. Sampling points depicted as circles with radius proportional 
to plant species richness. Coordinates are in UTM -WGS84 zone 32N.

reduce the correlation structure of residuals (Hoeting, 2006). 
Cross-validation statistics by leave-one-out procedure were 
used to assess the bias and the accuracy of the final spatial 
model. Universal kriging (Krige, 1976) was then used to 
predict expected plants richness (and its variation) in each grid 
cell. For each cell, the kriging error (r) was calculated as the 
difference between the predicted species richness (v*) and the 
observed value (v): 

r = v* - v [7]

Kriging errors were standardised and used for comparing 
errors at different spatial scales, and for selecting the models 
with minimized bias.

Redundancy analysis ordination

Redundancy analysis (RDA, Legendre & Legendre, 1998) 
was used to assess the amount of variation explained by 
the three groups of predictors (environmental, landscape 
and spatial). The following components of variation were 
extracted from each model:
1. Pure effect of Environmental factors;
2. Pure effect of Landscape factors;
3. Pure effect of Spatial factors;
4. Joint effect of Environmental and Landscape factors;
5. Joint effect of Environmental and Spatial factors;
6. Joint effect of Landscape and Spatial factors; 
7. Unexplained variance.

Variance partitioning was performed for each spatial scale. 
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The pure effect of each explanatory variables group was 
extracted for investigating its contribution to the total 
explained variance at different spatial resolutions explored 
(Amici et al., 2015). Analyses were performed by using the 
R software (R Development Core Team, 2015). The vegan 
package (Oksanen et al., 2011) was used for RDA analysis, 
while the geoR package (Ribeiro & Diggle, 2001) for the 
geo-spatial analyses.

results

Plants species richness 

Mean species richness for the whole dataset was 24.46 
(minimum 3, maximum 70, see Figure 2 for species richness 
distribution in the survey area). Count data resulted not normally 
distributed (Fig. 3), and, for this reason, Poisson models were 
applied. However, over-dispersion parameter resulted higher 
than 1 and the Box-Cox normalization was applied. Model 
coefficients (obtained by maximum likelihood analyses) were 
calculated for each spatial scale, and are reported in Table 2. 
Figure 4 shows the distribution of observerd vs. predicted 
species richness values at each spatial scale. At the coarsest 
scale, maximum likelihood was the smallest, while its R2 value 
was the highest (Table 2). 
Some model predictors showed constant coefficients estimates, 
while others varied, sometimes also changing their magnitude 
(Table 3). All coefficients for land use classes showed a stable 

Figure 3. Frequency distribution of plants species richness values. The 
red line suggest the expected normal distribution curve.

Figure 4.“Observerd vs. predicted” species richness value for all the 
predictive model developed. Regression line is in blue, while LOESS 
smooth line in red.

pattern, while the significance of geologic classes varied with 
the spatial scale. Landscape and environmental variables 
increase their contribute to the total explained variance at 
the coarser spatial scales (starting from 750 m), while being 
scarcely or not significant at finer scales. In general, the 
individual role of predictors changed changing the spatial 
scale, with the exception of land use classes.

a)

b)

c)

d)

e)
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Category Variable 100 meters pr(>|t|) 250 meters pr(>|t|) 500 meters pr(>|t|) 750 meters pr(>|t|) 1000 meters pr(>|t|)

intercept -2.0996 -3.5892 -3.1874 -10.7135 -23.1809 *

En
vi

ro
nm

en
ta

l

313 1 - - - - 0.2947 - - - -

3111 1 - - - - - - - - 0.1541 ***

3112 1 - - - - - - - - 0.3638 ***

3113 1 - - - - - - 1.2854 * - -

3114 1 0.3403 * - - -0.7802 0.3061 . - -

3115 1 - - -0.7580 *** 0.2750 ** -0.8640 . -1.0244 ***

3111 1 0.1612 ** 0.1311 . 0.5057 0.2237 * - -

3112 1 0.3377 ** 0.3073 0.2612 ** 0.4109 * - -

312 1 - - - - 1.4964 - - - -

3116 1 1.4457 * 1.4913 . -0.6884 * - - 2.0320 **

Flood deposits 2 -0.6849 * -0.8065 * -0.2459 * - - -0.7661 *

Sands and congl. 2 - - - - - - 0.2581 . -0.4258 *

Clays 2 0.3814 - - 0.4811 . 0.2526 * 0.3442 *

Limestone and dolomite 2 0.5438 ** 0.4657 - - 0.5529 . 0.4516 *

Congl. and sandstones 2 -0.2087 -0.2530 * 0.0033 . -0.2515 * -0.3016 *

Slope - - - - - - 0.0309 0.0373

Elevation - - 0.0020 *** 0.7311 *** 0.0037 ** 0.0073 ***

Temperature 0.0010 * 0.6418 ** 1.4156 * 0.9429 *** 1.7676 ***

NDVI mean 0.5066 * 1.5720 * -0.2273 *** 0.8976 *** 1.1343 **

NDVI standard deviation - - 0.5430 * 0.8900 . - - - -

Insolation time - - - - -0.0110 * - - - -

Rainfall -0.0097 *** -0.0011 ** - - 0.0054 ** - -

La
nd

sc
ap

e

Perimeter sum - - - - - - - - 0.1095 ***

Perimeter mean - - - - - - - - 0.4198 **

Artificial rate - - - - - - 0.5187 ** 0.6490 **

Agricultural rate - - - - - - 0.6046 * 1.4595 ***

Mean per. area ratio -0.0001 -0.0001 - - 0.0006 ** - -

Number of patch 0.2722 * - - - - -0.0092 . -0.0124 ***

Area mean - - - - 0.0148 . - - - -

Mean shape index - - - - 0.4028 ** - - - -

La
nd

 u
se

 d
yn

am
ic

s

Forest - Forest -0.0146 . -0.2203 . -0.2783 ** -0.2095 * -04054 ***

Forest - Semi-natural areas 0.2801 *** - - - - - - 0.2601 **

Forest - Agricultural - - 0.4625 ** 0.4501 * 0.3656 ** 0.4006 .

Semi-natural - Semi-natural - - 0.6528 - - - - 0.7046 .

Agricultural - Forest - - 0.6558 * 1.3087 *** 0.4024 * 0.5790 *

Agricultural - Semi-natural 1.1833 * 1.4720 *** 1.3476 *** 1.5859 *** 1.3298 ***

Agricultural - Agricultural 0.6674 *** 0.7647 *** - - 0.5973 ** 0.6000 *

Sp
at

ia
l τ2 0.7177 0.8427 0.8300 0.7642 0.8708

σ2 0.5610 1.2160 0.5543 0.4812 0.7764

Ф 11739.5375 18800.9998 26647.7449 29407.4980 58815.0037

R-squared 0.5399 0.5705 0.5755 0.5896 0.6059

Number of variables 17 19 21 23 24

Table 2. Predictors’ coefficients and their significance at different spatial scale. At bottom spatial parameters derived from the maximum likelihood 
analysis are listed.1 Please refers to the Corine land cover IV legend (ISPRA).2 Please refers to 1:100000 geologic map of Italy legend (ISPRA)
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The variance explained by spatial structure was smaller at 
larger spatial scales, while pure environmental variance 
showed its maximum at 500 m. Models at the coarser scale 
had the highest values of total explained variance, and of 
environmental-plus-landscape explained variance (Table 3). 
In general, the spatial arrangement of plots is an explicative 
factor, especially at smaller spatial scales, while it is less 
relevant at coarser scales. The amount of variance explained 
by spatial structure ranged between 24% and 29% (Table 3).

Spatial autocorrelation parameters showed high variability. 
The trend for φ (maximum distance of spatial autocorrelation) 
was a steady increase of spatial autocorrelation distance, 
when increasing the sampling spatial scale (Table 2). Total 
explained variance for each model was higher after the 
inclusion of spatial autocorrelation (Table 2). Table 3 shows 
values of variance related to each group of variables. 

Spatial scale Environ. Landscape Env. + 
Land. Space Total

100 meters 0.21 0.09 0.25 0.29 0.54

250 meters 0.27 0.09 0.29 0.28 0.57

500 meters 0.28 0.08 0.30 0.28 0.58

750 meters 0.27 0.09 0.32 0.26 0.59

1000 meters 0.30 0.12 0.37 0.24 0.61

Table 3. Variance partition table. Total explained variance (R2) 
was derived by cross-validation procedure of spatialised models. 
Spatial variance was calculated subtracting total variance, explained 
by not spatialized linear model, from total variance, explained by 
spatialized models. Other variance values (Environmental, Landscape, 
Environment al+Landscape) were calculated by RDA, performed on 
not spatialised linear models.

Table 4. Descriptive statistics of species richness predicted values 
for the finest and the coarsest spatial scales. Descriptive statistics of 
the mean prediction error and of its standardised value are reported 
at the bottom.

Spatial Scale 100 meters 1000 meters

Predicted Species Richness

Min 0.2 8.0

Max 75.2 54.6

Median 30.9 21.6

Mean 31.0 23.6

St.dev. 9.9 8.3

Standardized error

MSE -0.015 0.001

VSE 0.016 1.112

Error

Mean -0.1273 -0.1231

Variance 128.1552 103.3721

Figure 5. Predicted Plant species richness distribution maps at a) 100 m 
and c) 1000 m cell resolution. b) and d) present the associated kriging 
error variance. 

a)

b)
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Predicted Plant Species Richness

Maps in Figure 5 show the predicted species richness as well 
as its error variance at the finer (100 m) and coarser (1000 
m) spatial scale. Descriptive statistics of predicted species 
richness are reported in Table 4, along with kriging error and 
its standardised value in cross–validation. The values for the 
larger spatial scale are always lower. The mean of standardized 
errors was similar, but the variance was higher for the 100 m 

spatial scale (Table 4). Different species richness values for 
the same areas (Figure 5a and 5c) are evident especially in the 
North-Est side of the study area. The variance associated with 
prediction (Figure 5b and 5d) shows the highest values at the 
coarser spatial scale, which, on the contrary, has the lowest 
average values of species richness (Table 4). 

dIscussIon

The different role of predictors in determining plant 
species richness 

Species richness is an emergent property of natural systems, 
which arises from multiple ecological determinants (Currie, 
1991). In this study, predictive models explained more than 
50% of the total variance in the distribution of plant species 
richness, a robust result, especially if taking into account the 
high heterogeneity of the landscape characterising the study 
area (De Dominicis, 1993).
Model prediction power considerably increased when spatial 
autocorrelation was taken into account, stressing its key role 
in species diversity modelling. The importance of distance-
based relationships is related to the dispersal ability of species, 
as well as to the complex inter-specific relations which can 
occur within or between communities (Pottier et al., 2007, 
Bacaro et al. 2012). Another explanation can be related to 
the spatial structure of the sampling design (Fortin & Dale, 
2005). Since the sampling cells were derived from projects 
focused on monitoring protected areas, some portions of the 
survey area were over-sampled, thus possibly increasing 
spatial autocorrelation (Dormann, 2007).
Environmental variables explained a higher variance than 
landscape variables at any spatial scale. The relevant role 
of geology is justified by its influence on the structure of 
ecosystems, since the study area is relatively heterogeneous 
from a geo-lithological point of view.
Plant species richness resulted also strongly related to 
temperature, as can be deduced in Table 2 (it was included 
in all the models performed), and already highlighted in 
several other works (Rosenzweig, 1995; Levin et al., 2007), 
which relate a low number of species in an area with the 
limit of available energy (Currie, 1991). Mean temperature, 
positively correlates with species richness in our models. 
A similar trend – but with a different relevance – was 
observed between elevation and temperature, while varying 
spatial scale. These two variables are strictly related, and 
so is their effect on species richness (Rey-Benayas, 1995). 
Shorter growing season at higher elevations, together with 
colder average temperature, limits species richness in 
forest habitat (Bacaro et al., 2008). However, temperature 

c)

d)
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is a proximal environmental predictor for species richness, 
while elevation is a distal one (Austin, 2002). This may 
explain why temperature model coefficient had always a 
greater value than altitude. Furthermore, the coefficient 
value of temperature increased almost monotonically with 
spatial scale, maybe due to the nature of temperature data, 
derived by spatial interpolation of sparse meteorological 
stations. While producing smoothed temperature surfaces, 
representative of regional climatic trends, this interpolation 
overlooks temperature spatial variability at smaller scales.
NDVI is one of the most important environmental factors 
associated with species richness. It correlates well with plant 
biomass, net primary productivity, tree density and canopy 
cover, which are all relevant proxies of species diversity 
in forest ecosystems (Evans et al., 2005; Gillespie, 2005). 
On the contrary, NDVI standard deviation – a proxy of 
environmental heterogeneity (Levin et al., 2007; Kumar et 
al., 2009) – showed a relatively low importance at the coarser 
spatial scales. Thus, productivity, rather than heterogeneity, 
seems to be correlated with plant species richness in forest 
habitats. 
Landscape structure, although secondary to environmental 
variables, contributed to explain the observed species 
richness spatial pattern. Consistently with previous studies 
(Amici et al. 2015), this investigation demonstrates that the 
relationship between local plant species richness in forests 
and landscape variables generally increases with increasing 
the spatial scale. A wider spatial scale is likely to increase 
the probability of including those landscape features which 
act as determinant or barriers for plant dispersal. Our results 
show a moderate increase in the explained variance for total 
species richness with landscape metrics calculated over an 
increasing extent.
Changes in land use are amongst the most relevant 
transformations of Earth’s surface (Gillanders et al., 2008). 
Plant communities developed after afforestation of abandoned 
lands differ from ancient forests as far as soil properties 
modification (Glatzel, 1991), and relative colonisation rates 
of species (Brunet & Von Oheimb, 1998) are concerned. 
In our study, semi-natural land use classes derived from 
the transformation of agricultural areas showed a positive 
relationship with plant species richness. 
In the same way, the proportion of urban and agricultural 
surface were positively related with species richness at the 
coarser spatial scales. These patterns can be interpreted 
considering that within forest communities, forest specialized 
taxa are likely to be intrinsically more vulnerable to the 
surrounding landscape composition (e.g., the number and 
amount of different habitat types) and configuration (the 
spatial arrangement of such habitat types) than open habitat 
species, or species that are only partly dependent on forest 
habitat (e.g. those species which naturally occur at forest 
edges).

Human presence in forest habitat causes forest fragmentation, 
and a relevant edge effect. Consequently, heterogeneity 
increases and more ecological niches become available 
(Marcantonio et al., 2013). While the exclusion of these two 
variables at smaller scales may seem counter-intuitive, the 
dominant land use of small forest patches may be trivial in 
affecting species diversity, since it is easily masked by the 
surrounding land use dynamics.

The role of spatial resolution in species richness 
modelling

Over the past years, the techniques for modelling ecological 
properties have become more and more effective, and detailed 
maps of environmental variables have become available (e.g. 
Nagendra & Rocchini, 2008). This is a relevant advantage 
when investigating the relationships between environment 
and species, since a detailed knowledge of the spatial 
variation of environmental variables allows a more detailed 
investigation of diversity distribution patterns. However, the 
predictive power of models is expected to vary by changing the 
resolution at which predictor variables are sampled. Therefore 
uncertainty, as well as the importance of certain variables, can 
increase or decrease as a function of spatial scale.
Modelling bias is a relevant issue when estimating the 
biodiversity of an area (Rocchini et al., 2010). Models can 
be relevant to research and to biodiversity management only 
if they are reliable, and errors are 1) assessed, 2) minimized 
and 3) reported in ecological literature (Rocchini et al., 
2010). We assessed the kriging variance (KV), as well as 
mean and variance of prediction error, for each model. These 
uncertainty estimates are reported for the smallest and largest 
spatial scales only, since the other values were mid-points 
between the two. The maximum KV is measured in areas 
with maximum distance from sampling cells, or nearest to the 
boundary of the study area. This trend is particularly evident 
due to the clustering of sampling points inside protected areas, 
consequence of the clustered sampling designs. 
Spatial richness pattern generated by the models become 
increasingly congruent with observed data at the coarser 
spatial resolution, as evidenced by other studies (Graham 
& Hijmans, 2006). The mean prediction error and its 
standardized value, estimated by cross-validation, were 
minimized at 1000 m spatial scale. Therefore, the model 
at the coarser spatial scale revealed the lowest associated 
degree of uncertainty, underlying the challenging nature of 
modelling species richness at finer spatial scales. Averaging 
predictors at larger spatial scale results in filtering out fine scale 
random noise generated by multiple sources of uncertainty 
(sampling, interpolation, etc), which otherwise may mask 
the existing relationships between these predictors and 
species richness. 
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Predictive variables and spatial scale 

A central issue in ecology is related to the role of scale in 
determining patterns of species diversity (Scheiner, et al., 
2000). In our study, increasing the spatial extent for averaging 
predictor variables values lead to geostatistical models with 
an increased predictive power. We observed a marked scale 
dependency of predictor variables in modelling procedures, 
which could indicate the presence of key ecosystem processes. 
This dependency should be considered in ecological modelling, 
and needs to be incorporated into any general theory which 
aim at explaining the relationship between species diversity 
and environment (e.g. Pastor et al., 1996). The importance of 
environmental and landscape variables increases with spatial 
scale, since factors such as disturbance and fragmentation 
affect species richness at a coarser scale. From a probabilistic 
point of view, using a wider spatial scale, landscape metrics 
are expected to include those elements acting as determinant 
or barriers for plants dispersal (Amici et al., 2015). Hence, 
the relationship between plant community and landscape 
predictors grows in strength with the spatial scale (Wu et al., 
2000; Millington et al., 2003).

conclusIons

Kriging regression allows to couple the most common 
correlative model algorithms (e.g. GLM) with an intuitive 
and robust assessment of the spatial structure of the modelled 
variable, and model uncertainty is easily visualized through 
the kriging variance. Hence, we suggest this framework as 
a valuable tool to model and predict the spatial pattern of 
species richness.
We adopted geostatistical models to identify the best spatial 
scale for predicting plant species richness in relation to 
environmental and landscape variables measured at that 
specific spatial scale. The main outcome was that the 
variance explained by models increased with the spatial 
resolution of the predictor variables. At coarser spatial 
scales, landscape fragmentation and heterogeneity become 
key factors associated with species richness, linking richness 
with ecological processes that take place at medium-large 
spatial scale. However, the marginalization of noise when 
averaging the predictors across larger extent should be also 
considered as a factor contributing in decreasing uncertainty.
A high variability in variable selection and in their importance 
was observed at different spatial scales. This could indicate 
that there is not a “better” spatial scale for sampling all 
predictors, and each predictor should be sampled individually 
at an adequate spatial scale. From an applied point of view, 
understanding the effects of specific predictors on species 

diversity at community scale could help in promoting 
effective environmental policies and landscape management 
practices. For instance, sustainable forest harvesting and 
management should take into account landscape structure. 
In addition, the knowledge of correlates of species diversity 
can help in finding possible proxies, or surrogates, useful in 
routine assessments, large-scale monitoring, and predictive 
modelling of plant diversity (Austin, 2002).
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