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ABSTRACT - Water erosion is a critical environmental and economic issue, causing soil fertility loss and land 
degradation, recognized globally as one of the most severe natural threats. Algeria’s high topography, diverse vegetation, 
and heavy rainfall make it particularly vulnerable to water erosion. This study employs the Revised Universal Soil Loss 
Equation (RUSLE) model integrated with geographic information systems (GIS) to analyze the Ksob watershed from 
2017 to 2023. It examines seasonal and interannual variations in the vegetation cover management (C factor), assesses 
the impact of changes in land use and land cover (LULC) on soil erosion, and investigates the relationship between the 
C factor and soil erosion. Findings indicate significant soil loss variations due to changes in vegetation cover: reduced 
vegetation increases erosion rates, while dense vegetation mitigates them. Despite cultivated land expanding from 
25.39% to 35.84% during the study period, the average annual soil loss rose by 11.21%, from 9.06 t ha-1 yr-1 to 10.08 t ha-1 
yr-1. Spatial analysis revealed that low erosion classes covered approximately 70% of the area, with summer and autumn 
identified as the most erosive seasons, showing rates over 10 t ha-1 yr-1. The study confirms a strong relationship between 
vegetation cover and erosion rate.
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1. INTRODUCTION

Soil erosion presents a substantial environmental and 
economic challenge, leading to detrimental impacts 
such as water quality decline, soil fertility loss, and land 
degradation (Mahleb et al., 2022). Globally, it is recognized 
as one of the most severe natural threats (Gwapedza et 
al., 2021). This issue is especially acute in regions across 
Africa, Latin America and Asia, as highlighted by the 
Food and Agriculture Organization (FAO) (Nourizadeh 
et al., 2024).

Algeria is particularly susceptible to water erosion, 
which affects an area of 10 million hectares per year 
(Mazour and Roose, 2002) due to the country’s high 
topography, varied vegetation cover, and heavy rainfall. 
Human actions including urbanization, infrastructure 
development, and deforestation aggravate the effects of 
soil loss on the environment and the economy (Dechen 
et al., 2015; Bollati et al., 2016; Polidoro et al., 2021). 
However, water remains the main driving force behind 
erosion (Wang et al., 2018).

The rate of soil erosion is influenced by various factors, 
including human activities, land management practices, 
population growth, climate change, and changes in land 
use and land cover (LULC) (Ochoa et al., 2016; Rodrigues 
and Costa, 2021; Valkanou et al., 2022). Changes in 
LULC are particularly significant for soil erosion, and 
having access to accurate maps of these changes is crucial 
for identifying critical erosion points and ensuring 
sustainable soil management (Chaves et al., 2020).

More accurate modeling and estimation of soil erosion 
rates are now possible thanks to developments in 
informatics technology, particularly remote sensing and 
geographic information systems (GIS), as well as access 
to high-quality geospatial data (Belasri and Lakhouili, 
2016; Tadesse et al., 2017; Negese et al., 2021). Numerous 
models and approaches for assessing soil erosion have 
been developed by the scientific community, including 
the Universal Soil Loss Equation (USLE) (Wischmeier 
and Smith, 1965, 1978), the Revised Universal Soil Loss 
Equation (RUSLE) (Renard et al., 1997), the Soil and 
Water Assessment Tool (SWAT) (Arnold et al., 1998), and 
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the European Soil Erosion Model (EuroSEM) (Morgan et 
al., 1998). Due to their simplicity and low computational 
requirements, empirical models like RUSLE are among 
the most widely used across various regions, particularly 
in Algeria (Sahli et al., 2019) and in Mediterranean and 
European areas (Van Rompaey et al., 2001; Fernández 
and Vega, 2016). These models, whether empirical, 
conceptual, or physical, allow for the quantification of 
erosion while providing the flexibility needed to address 
the specific demands of regional studies.

The RUSLE model integrates five critical factors: 
rainfall erosivity (R factor), slope length and steepness 
(LS factor), soil erodibility (K factor), vegetation cover 
management (C factor), and conservation practices (P 
factor). RUSLE is known for its straightforward structure, 
ease of comprehension, and adaptability to large-scale 
applications (Koirala et al., 2019; Santana et al., 2021; Sifi 
et al., 2024). It can also assess erosion in a matrix format 
(Phinzi and Ngetar, 2019). However, its limitations 
include a primary focus on rill and inter-rill erosion, 
while other forms of erosion, such as lateral erosion of 
river channels, are not accounted for (Vandekerckhove et 
al., 1998; Xu et al., 2012).

Considering the diverse factors influencing soil erosion, 
this study aims to achieve several specific objectives: 
(1) to analyze seasonal and interannual variations in C 
factor in the Ksob watershed over the period 2017 to 
2023, (2) to examine the impact of changes in LULC on 
the estimation of soil erosion, and (3) to investigate the 
possibility of finding a significant relationship between C 
factor and soil erosion rates. By achieving these objectives, 
the study hopes to provide practical recommendations 
for sustainable soil management in the Ksob watershed, 
thus contributing to reducing the environmental and 
economic impacts of soil erosion in this vulnerable 
region.

2. MATERIALS AND METHODS

2.1. STUDY AREA
The Ksob watershed in central Algeria is a sub-basin of 

the extensive Hodna basin. The watershed covers an area 
of 1418 km2, with a broad plateau in the center and very 
steep terrain in the mountains, ranging in altitude from 
595 m to 1903 m (Fig. 1). It lies between 35°48’ and 36°09’ 
north latitude and 4°28’ and 5°09’ east longitude.

The Gravelius compactness coefficient of the watershed 
is 1.59, and its perimeter measures 214 km. It experiences 
an average rainfall of 303 mm, characterized by spatio-
temporal irregularity and high intensity. All morphometric 
parameters and hydro-climatological analyses of the 
watershed are described in previous works (Sakhraoui and 
Hasbaia, 2023).

The slope map (Fig. 2), generated from a Digital Elevation 
Model (DEM) with a 10-meter spatial resolution obtained 
from Sentinel-1 satellite data (accessible at https://scihub.
copernicus.eu/), illustrates that 76.58% of the total area 
consists of low and very low slopes (0-10%) (refer to table 
1). Moderate slopes cover 12.54% of the land area. Steep 
slopes ranging from 12.5% to 25% are predominantly 
located in the south-southeastern part, occupying 10.30% 
of the watershed area and posing a high risk of erosion.

The central part of the basin is primarily dedicated to 
agriculture, with cereals covering approximately 70% of 
the area (Benkadja et al., 2015). Matorral and grasslands 
occupy 25% of the land, and forests cover approximately 
5%. These land use patterns render the watershed highly 
vulnerable to soil erosion, especially during heavy rainfall 
events.

2.2. DATA SOURCE AND RUSLE MODEL
A systematic approach is essential for accurately 

understanding and predicting the processes and factors 

Fig. 1 - Study area locations.
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driving soil erosion. In this research, the RUSLE model 
was applied to estimate soil erosion rates in the Ksob 
watershed. The RUSLE equation, as outlined by Renard 
et al. (1997), was utilized to effectively integrate these 
variables for precise erosion assessment.

A=R∙K∙LS∙C∙P	 (1)

Where A represents the average annual soil loss (t ha-1 
yr-1), R is the rainfall erosivity factor (MJ.mm ha-1 h-1 yr-1), 
K is the soil erodibility factor (t h MJ-1 mm-1), LS indicates 
the slope length and steepness factor (dimensionless), 
C is the crop and management factor (dimensionless), 
and P represents the conservation practice factor 
(dimensionless). The implementation of the RUSLE 

model methodology involves employing GIS tools to 
streamline the process and generate maps at a spatial 
resolution suitable for the study, set at 10 meters. ArcGIS 
10.2 software was utilized to create soil erosion rate maps 
for the Ksob watershed (Fig. 3).

2.2.1. Rainfall erosivity (R factor) 
The R factor quantifies the erosive potential of rainfall in 

causing water erosion. Various methods exist to estimate 
the R factor, chosen based on data availability and specific 
study area requirements. In the Ksob watershed, the 
Diodato (2004, 2005) formula was employed, utilizing 
parameters such as average annual rainfall (P), longitude 
of the station (L), and annual maximum daily rainfall 
(d). This formula was selected due to its suitability 
demonstrated in prior studies (Sakhraoui and Hasbaia, 
2023).

Rainfall data from rain gauging stations within and 
around the Ksob watershed, collected by the National 
Agency for Hydraulic Resources (NAHR), spans the years 
1975 to 2015. The Diodato (2004, 2005) model, which is 
used to estimate rainfall erosivity (R factor), is defined by 
the following equation:

R=b0∙P∙√d ∙(α+b1∙L)	 (2)

Where P represents the average annual rainfall in mm, 
d is the annual maximum daily rainfall in mm, and L 
denotes the site’s longitude in degrees. The constants are 
given as b0=0.117 MJ mm ha-1 h-1, α=2.00 day0.5 mm-0.5 

Designation
Classes of
slope (%)

Area (km2) Area (%)

Very low slopes 0-5 580.28 40.92

Low slopes 5-10 505.60 35.66

Moderate slopes 10-15 177.83 12.54

High slopes 15-30 146.02 10.30

Very high slopes > 30 8.27 0.58

Total 1418 100

Tab. 1 - Classes of slope in the Ksob watershed.

Fig. 2 - Slop map of the Ksob watershed.
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and b1=-0.015 day0.5 mm-1.5. The R factor values were 
computed individually for each station and spatially 
interpolated across the entire basin using inverse distance 
weighting (IDW). This method was identified as optimal 
for interpolating various climatic variables and has been 
widely applied in the literature (Gayen et al., 2020; Degife 
et al., 2021; Sifi et al., 2024).

2.2.2. Soil erodibility (K factor) 
The K factor plays an important role in estimating soil 

loss and guiding soil conservation efforts. It reflects the 
soil’s inherent susceptibility to erosion, which is influenced 
by its physical properties and characteristics (Chang et al., 
2016). This factor is calculated using four key parameters: 
the soil’s sand, silt, and clay percentages, as well as its 
organic matter content. These parameters collectively 
define the erodibility of the soil, capturing how easily it 
can be detached and transported by erosive forces.

In this research, the K factor data were obtained from 
SoilGrids, a global soil information database provided by 
ISRIC World Soil Information (available at https://www.
isric.org/explore/soilgrids). The data used have a spatial 
resolution of 250 meters and pertain to the top 0-0.15 m 
soil layer. This dataset has been utilized in various studies 
by researchers investigating soil erosion dynamics and 
conservation practices (Baskan, 2021; Sourn et al., 2022).

The equation (3), formulated by Sharpley and Williams 
(1990), has been applied in studies conducted by Neitsch 
et al. (2011), Al Rammahi and Khassaf (2018), and Sourn 
et al. (2022), to estimate this factor.

K=fsand∙fsilt-clay∙foc∙fhisand	 (3)

Where: fsand is a parameter that reduces the K value for 

soils with coarse sand content, fsilt-clay indicates a lower soil 
erodibility parameter for soils with high clay content, foc 
moderates K values for soils containing organic carbon, 
and fhisand decreases K values for soils with very high sand 
content.

(4)

(5)

(6)
 

(7)

Where the variables msil, msan, mcla, and moc respectively 
indicate the percentage of silt, sand, clay, and organic 
carbon content in the soil layer.

2.2.3. Topographic factor (LS factor) 
The LS factor assesses the combined influence of slope 

length (L) and slope steepness (S) on soil erosion dynamics 
(Belkendil et al., 2018). It is crucial in evaluating and 
modeling soil erosion susceptibility, as it considers the 
impact of terrain features on the erosion process (Vergari 
et al., 2019). 

Equation (8) developed by Mitasova et al. (1996) for 
estimating the LS factor has been widely adopted in the 
literature, including studies by researchers such as Atoma 
et al. (2020), and Damian and Rafał (2023).

8)

Fig. 3 - Data Sources and RUSLE model for soil erosion estimation in the Ksob Watershed.
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Where sin (slope) is the sin of the slope degree value.
The topographic parameters required for applying the 

aforementioned equation were obtained using a DEM 
derived from “Sentinel 1,” developed by the European 
Space Agency (ESA). This DEM, with a spatial resolution 
of 10 meters, was accessed through the Copernicus Open 
Access Hub (https://scihub.copernicus.eu/) in October 
2022.

2.2.4. Crop management (C factor) 
The C factor presents the cover and cultivation factor 

and describes the ratio of soil erosion of a randomly 
cultivated area to that of a plowed fallow (Wischmeier 
and Smith, 1978). it is probably the most complex factor 
of RUSLE and is the main focus of this study. The C factor 
is a dimensionless factor between 0 and 1, primarily 
depending on the percentage of plant cover and the 
growth phase (Renard et al., 1997). 

In recent years, remote sensing and GIS methods have 
often been used to determine the C factor on a catchment 
scale. They are used for large areas and above all for 
different land use systems, and therefore often go beyond 
agriculture. Approaches such as Normalized Differenced 
Vegetation Index (NDVI) are used to infer vegetation 
cover and its evolution from satellite data (Puente et al., 
2011; Liu et al., 2020; Singh et al., 2023).

The NDVI formula utilizes the near-infrared (NIR) and 
red (Red) spectral bands, as expressed below in equation 
(9):

(9)

NDVI values can vary from -1 to +1. The negative 
values are associated with surfaces such as water, snow, 
or clouds, which reflect more in the red band than in the 
near-infrared. Bare soils, which reflect similarly in both 
bands, typically produce NDVI values between 0 and 0.15. 
Vegetation cover yields positive NDVI values, generally 
ranging from 0.15 to 1.0, with denser vegetation resulting 
in higher NDVI values (Meusburger et al., 2010).

In this research, the C factor is assessed using equation 
(10) proposed by Van et al. (2000), a method that has been 
widely adopted by several researchers for its effectiveness 
in quantifying vegetation cover impacts on soil erosion 
(Durigon et al., 2014; Guerra et al., 2016; Macedo et al., 
2021).

(10)

Where the constants are given as α=2 and β=1 (Van et 
al., 2000).

The C factor and NDVI were computed seasonally 
(January, April, July, and October) for each year (2017 
and 2023) using Sentinel-2 satellite images, which 
have a spatial resolution of 10 meters (sourced from 
the USGS, http://earthexplorer.usgs.gov/). This dataset 
provided historical LULC cover information, facilitating 
the analysis of land surface changes over time. To 

evaluate the influence of LULC on soil erosion, the C 
factor was calculated after NDVI acquisition, supported 
by a comprehensive literature review. C factor values 
for different land use categories were derived from 
authoritative sources such as Morgan (2005) and FAO 
(2012), utilizing values documented in the literature (Tab. 
2). According to Lillesand and Kiefer (2000) state that 
image classification techniques are primarily designed 
to automatically categorize each pixel in an image into 
specific LULC classes.

2.2.5. Conservation support practice (P factor) 
The P factor represents a conservation strategy that can 

influence soil erosion within a specific soil management 
context. By reducing runoff velocity, techniques such as 
terraces, contours, silt fences, and strip cropping reduce 
the potential for soil erosion (Wischmeier and Smith, 
1978). This factor is dimensionless and ranges from 0 to 
1, with 0 indicating no supportive practices (no erosion 
control) and 1 indicating the implementation of highly 
effective erosion control practices. In the study area, 
the absence of significant erosion control measures 
necessitated assigning a P factor value of 1 across the 
entire watershed.

2.3. ANNUAL EROSIVE POTENTIAL (A FACTOR) 
Soil erosion in the watershed was classified according to 

the criteria established by Morgan (2005) and Gemechu 
et al. (2016), as detailed in table 3. The results of the 
classification were analyzed and compared with the Soil 
and Water Conservation Bulletin information.

The annual soil erosion potential (A factor) for the 
Ksob watershed is determined by multiplying the five 
parameter layers using ArcGIS 10.2.2 software. This 

LULC class Description C factor
range

Water Areas covered by water, including 
rivers, lakes, reservoirs 0 - 0.05

Urban area
Areas characterized by high human 

activity, infrastructure, and built 
structures

0.05 - 0.1

Trees

Area encompassed natural forests, 
plantations, and other areas 

where trees are the predominant 
vegetation

0.1 - 0.2

Vegetations Areas included croplands, pastures, 
and orchards 0.2 - 0.5

Rangland
Areas primarily covered by 

grasses, forbs, and shrubs, with 
minimal tree cover

0.5 - 0.9

Bare land Areas with low or no vegetation 
cover 0.9 - 1

Tab. 2 - The C factor range for different LULC classes.
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process generates the results in raster format (*.tiff), 
following the standard RUSLE equation.

3. RESULTS AND DISCUSSION

3.1. RAINFALL EROSIVITY (R FACTOR)
The R factor is a crucial parameter in the RUSLE 

model, quantifying the erosive power of rainfall in soil 
erosion modeling. The R factor was evaluated using 
the Diodato (2004, 2005) formula, which considers the 
distribution of annual maximum daily rainfall, average 
annual rainfall, and the station’s longitude in degrees. This 
method provides a reliable estimate of the R factor. The 
rationale for selecting this estimation method is detailed 
in previous research by Sakhraoui and Hasbaia (2023).

As illustrated in figure 4, rainfall erosivity across the Ksob 
watershed varies from 252 to 504 MJ mm ha-1 h-1 yr-1, with 

an average value of 413 MJ mm ha-1 h-1 yr-1, as determined 
by data from various rainfall stations (Fig. 8). The areas 
with the highest R factor values, exceeding 400 MJ mm 
ha-1 h-1 yr-1, account for more than 67% of the watershed 
and are primarily located in the central and eastern parts 
of the study area. These regions are characterized by 
elevated altitudes and exhibit an increasing gradient of 
rainfall aggressiveness from east to west. In contrast, the 
lowest R factor values are found in the western part of 
the watershed, an area marked by lowlands with a semi-
arid climate and lower altitudes, covering less than 33% 
of the watershed. The range of R factor values observed 
in the Ksob watershed is consistent with findings from 
other regions in Algeria, such as the Wadi Mina watershed 
(Benchettouh et al., 2017) and the Soummam watershed 
(Sahli et al., 2019).

3.2. SOIL ERODIBILITY (K FACTOR)
The K factor indicates the soil’s susceptibility to 

detachment and transportation by water, influenced by 
properties such as texture, structure, particle size, and 
organic matter content. In the Ksob watershed, the K 
factor was estimated using the Sharpley and Williams 
(1990) model, which considers soil composition and 
organic matter levels. 

The spatial analysis identified five distinct soil 
categories (Tab. 4), with erodibility values ranging from 
0.224 to 0.282 t h MJ-1 mm-1 across the watershed. The 
highest erodibility values were observed in the eastern 

Tab. 3 - Soil erosion classes.

Soil erosion classes Rang values (t ha-1 yr-1)

Very low < 3

Low 3 - 10

Moderate 10 - 25

High 25 - 50

Very high > 50

Fig. 4 - Spatial distribution of the rainfall erosivity factor (MJ mm ha-1 h-1 yr-1).
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part, covering 17.46% of the area (Fig. 5). These soils are 
particularly prone to erosion due to their low stability 
and infiltration capacity, leading to increased runoff and 
soil loss. The remaining 82.54% of the watershed, situated 
in the central and southern regions, exhibits medium 
erodibility.

The range of K factor values observed in the Ksob 
watershed is consistent with findings from other regions 
in Algeria, such as the Soummam watershed (Sahli et al., 
2019) and the Wadi Medjerda watershed (Allaoui et al., 
2023).

3.3 TOPOGRAPHIC FACTOR (LS FACTOR)
The topographic factor (LS factor) is a combined 

metric that includes two key elements: slope length and 
slope steepness. These factors are pivotal in determining 
the runoff and water erosion dynamics in the Ksob 
watershed. As both the length and steepness of the 
slope increase, the erosion rate also escalates due to the 
cumulative effect of runoff moving downslope. The LS 
factor map reveals values ranging from 0 to 42.66, with 
an average value of 0.146 (Fig. 6). This map distinctly 
mirrors the topographical characteristics of the watershed 

Tab. 4 - K factor values of different soil types in the Ksob watershed (t h MJ-1 mm-1).

Fig. 5 - Spatial distribution of the erodibility factor (t h MJ-1 mm-1).

Soil types Sand
topsoil (%)

Silt
topsoil (%)

Clay
topsoil (%)

Organic 
carbon (%) fsand fsilt-clay foc fhisand

K
values

Area 
(km2)

Area
(%)

Calcic 
Cambisols 40.10 36.33 23.57 1.08 0.36 0.86 0.90 0.99 0.277 140.27 9.89

Calcic 
Cambisols 38.20 37.63 24.17 1.08 0.36 0.86 0.90 0.99 0.282 106.55 7.51

Haplic 
Xerosols 40.66 34.37 24.97 1.20 0.35 0.85 0.87 0.99 0.261 619.71 43.70

Lithosols 40.84 34.27 24.89 2.41 0.35 0.85 0.75 0.99 0.224 550.76 38.84

Calcic 
Yermosols 48.41 29.75 21.84 0.64 0.33 0.85 0.98 0.99 0.269 0.71 0.05
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as depicted in Fig. 2. Areas with low LS values (less than 
0.10) dominate 62.92% of the Ksob watershed, primarily 
located in the central and north-northeastern regions. 
These regions correspond to lower elevations, ranging 
between 600 to 1000 meters above sea level. Conversely, 
regions with higher LS values (greater than 0.2) indicate 
more rugged terrain characterized by steep slopes, with 
elevations reaching up to 1900 meters. These areas are 
limited in extent, covering no more than 13% of the 
watershed (refer to table 5). Such regions are particularly 
susceptible to water erosion due to the steep and rugged 
topography.

The range of LS factor values observed in the Ksob 
watershed aligns with findings from other regions in 
Algeria, such as the Wadi Sahouat basin (Toubal et al., 
2018) and the Saf Saf watershed (Khanchoul et al., 2022).

3.4. CROP MANAGEMENT (C FACTOR)
The C factor represents the influence of vegetation 

cover, crop residues, and land management practices on 
minimizing soil erosion. It quantifies how these factors 
collectively affect the rate of erosion. Vegetation indices 
derived from satellite data have proven to be effective 
proxies for assessing land cover in large basins and have 
been applied in various regions (Tanyas et al., 2015; 
Benavidez et al., 2018). In light of the results derived from 
these satellite-based indices and the C factor classification 
(refer to table 2), six distinct land cover classes were 
delineated within the watershed, which is predominantly 
composed of vegetation and rangeland.

The estimated C factor values range from 0 to 1, 
reflecting the degree of protection provided by vegetation 
cover against soil erosion. Over the period from 2017 
to 2023, the interannual average C factor was calculated 
to be 0.654. This value indicates a moderate level of 
vegetation cover in the Ksob watershed (Fig. 7).

The spatial distribution analysis of the C factor over the 
period from 2017 to 2023, reveals significant trends in 
the watershed area. A key observation highlights that the 
majority of the watershed area has a relatively low level 
of vegetation, coupled with an increased susceptibility 
to water erosion, especially during the months of July 
and October, when the C factor often exceeds 0.7. This 
observation is particularly relevant in a semi-arid context, 
where rainfall is limited and temperatures are high 
during these periods. These meteorological conditions 
contribute to a reduction in vegetation cover and an 

Classes of LS Area (km2) Area (%)

0-0.05 557.13 39.29 

0.05-0.1 335.07 23.63 

0.1-0.2 345.57 24.37 

0.2-1 156.55 1.04 

> 1 23.68 1.67 

Total 1418.00 100.00

Fig. 6 - Spatial distribution of the topographic factor.

Tab. 5 -Distribution of LS Factor classes in the Ksob watershed.
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increase in soil exposure to water erosion.
In contrast, an analysis of the months of January and 

April shows lower C factor values, averaging around 
0.51. This finding suggests an increased vegetation 
development during these periods. Specifically, the 
low value of the C factor in January and April can be 
attributed to increased vegetation growth, especially 
due to the conversion of rangeland into vegetated land. 
This change in vegetation cover indicates potential land 
restoration efforts or agricultural practices conducive to 
vegetation growth, which could help reduce the region’s 
vulnerability to water erosion.

3.4.1. Land use changes
Fig. 8 illustrates the different land use cover and their 

evolution in the study area between 2017 and 2023, while 
table 6 presents the data on LULC changes. Historically, 
rangeland has been the predominant land use type in 
the watershed, accounting for over 50% of the total 
area. Vegetation, primarily located in the northwestern 
and southeastern parts of the study area, constitutes the 
second most significant land use type, covering 31% of the 
total area. Together, these two land use types encompass 
approximately 81% of the total area. In contrast, trees, 
water bodies, urban areas, and bare land account for 8%, 
3%, 5%, and 2% of the total area, respectively. The land 
use cover in the study area has experienced significant 
changes in recent years.

Over the years, the ratio of cultivated land has risen 
steadily, from 25.39% in 2017 to 33.74% in 2019, reaching 
35.84% in 2023. At the same time, the land area has also 
increased, from 360.08 km2 in 2017 to 508.21 km2 in 
2023. This growth is mainly due to land reclamation and 
the recovery of rangeland and unused land. In contrast, 
the proportion of rangeland will continue to decrease, 
from 57.81% in 2017 to 47.07% in 2023, with the area 
decreasing from 819.68 km2 in 2017 to 667.49 km2 in 2023, 

including rangeland recovery and reforestation efforts. 
The proportion of urban areas increased from 3.88% in 
2017 to 5.07% in 2023, with an area that increased from 
55.02 km2 in 2017 to 71.90 km2 in 2023, reflecting rapid 
economic development and increasing urbanization 
in central Algeria. The proportion of water areas varies 
significantly over this period, which can be explained by 
climate change and rainfall variability. On the other hand, 
tree cover and bare land have changed little.

3.5. CONSERVATION SUPPORT PRACTICE (P 
FACTOR)

The conservation practices P factor assesses the 
effectiveness of measures aimed at reducing surface 
runoff and soil erosion (Wischmeier and Smith, 1978). 
Typically, P factor values range from 0 to 1, with lower 
values indicating more effective erosion control. However, 
in the Ksob watershed, the absence of widespread anti-
erosion infrastructure and cultivation practices results 
in minimal impact on erosion reduction. Consequently, 
a P factor value of 1 has been assigned across the entire 
watershed, reflecting the lack of effective erosion control 
measures. This approach is consistent with practices 
used by other Algerian researchers in similar soil erosion 
studies (Bouhadeb et al., 2015; Bensekhria and Bouhata, 
2022).

3.6. ESTIMATION OF ANNUAL SOIL EROSION (A) 
USING RUSLE MODEL

Using the generated RUSLE factor maps, the average 
annual soil loss for the Ksob watershed was estimated for 
the years 2017 to 2023. The statistical analysis of soil loss 
during this period is presented in table 7. Results indicate 
that the estimated average annual soil loss increased 
from 9.06 t ha-1 yr-1 in 2017 to 10.08 t ha-1 yr-1 in 2023, 
marking an 11.21% rise in soil loss over the study period. 
This upward trend in soil erosion can be linked to various 

Fig. 7 - Interannual spatial distribution of the C factor.
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factors, including land use changes, climatic fluctuations, 
and other human activities.

The analysis of the area and soil erosion classes revealed 
notable changes in the Ksob watershed from 2017 to 
2023. In 2017, the distribution of erosion classes was 
as follows: very low (40.26%), low (32.04%), moderate 
(20.98%), high (4.47%), and very high (2.25%). By 2023, 
the distribution had shifted to very low (35.99%), low 
(33.46%), moderate (23.19%), high (4.82%), and very 
high (2.55%) (Tab. 8, Fig. 9).

The results indicate that the Ksob watershed is 
generally characterized by mean erosion rates similar 
to Mediterranean basins (Lupia Palmieri et al., 1995). 
The most significant changes occurred in the very low, 
moderate, and very high soil erosion classes, while the 

low erosion class experienced the least change. The 
predominant erosion classes in the watershed, accounting 
for approximately 70% of the study area, are categorized 
as very low and low erosion classes.

These changes highlight a slight decline in the very low 
erosion class and a rise in the moderate and very high 
erosion classes, suggesting a trend towards greater soil 
erosion over time.

The erosion rates obtained in this study fall within 
the same range as those reported in previous research 
on other watersheds in Algeria, notably by Toubal et al. 
(2018). These findings are also comparable to results 
observed in Mediterranean and European regions where 
similar studies have been conducted. For example, in 
Italy, studies by Lupia Palmieri et al. (1998, 2001) revealed 

Fig. 8 - Spatial distribution and seasonal changes in the vegetation cover factor.
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comparable erosion rates under similar geographic and 
climatic conditions. Likewise, in Portugal, research 
by Ferreira et al. (2015) and, in Tunisia, studies by 
Gaubi et al. (2017) confirm similar erosion rate values, 
underscoring common dynamics in Mediterranean 
regions. These comparisons indicate that the erosive 
processes observed in the Ksob basin align with general 
trends in Mediterranean areas.

The spatial distributions of the Ksob watershed’s 
predicted seasonal soil loss rates in 2017 and 2023 are 
shown in figure 10. In 2017, the months from July to 
October (corresponding to the summer and autumn 
seasons) were identified as experiencing the highest 

erosion rates, with monthly average soil loss rates 
exceeding 11 t ha−1 yr−1. Conversely, the least soil erosion 
was observed during April (spring season), with an 
average monthly rate of 5.95 t ha−1 yr−1. The regions most 
impacted by soil erosion were predominantly situated in 
the northern and eastern areas of the watershed. These 
regions consist of barren mountainous land, which is 
highly susceptible to erosion due to precipitation in the 
absence of vegetation cover.

In 2023, the months of April through October showed 
the highest impact of erosion, with average monthly soil 
loss rates exceeding 10 t ha−1 yr−1. The minimal influence 
of soil loss was observed in January (winter season), with 

Land use type
2017 2019 2021 2023 E1 E2 E3 E4

(Km2) (%) (Km2) (%) (Km2) (%) (Km2) (%) (%) (%) (%) (%)

Water 34.33 2.42 99.47 7.01 39.20 2.76 19.07 1.34 189.73 -60.59 -51.35 -44.45

Urban area 55.02 3.88 66.36 4.68 67.83 4.78 71.90 5.07 20.62 2.20 6.00 30.68

Trees 103.64 7.31 126.63 8.93 92.41 6.52 128.81 9.08 22.18 -27.03 39.40 24.29

Vegetation 360.08 25.39 478.36 33.74 433.23 30.55 508.21 35.84 32.85 -9.44 17.31 41.14

Rangland 819.68 57.81 630.83 44.49 771.20 54.39 667.49 47.07 -23.04 22.25 -13.45 -18.57

Bare land 45.25 3.19 16.35 1.15 14.14 1.00 22.51 1.59 -63.88 -13.51 59.24 -50,25

E = 100 × (areaj+1 - areaj)/areaj, j: is the stands for the year in various time frames. 
E1 (2017-2019), E2 (2019-2021), E3 (2021-2023) and E4 (2017-2023).

Tab. 6 - Area of land use changes between 2017 and 2023 in the Ksob watershed.

Tab. 7 - Statistics parameters of soil loss rate (t ha-1 yr-1).

Parameter Soil loss 2017 Soil loss 2019 Soil loss 2021 Soil loss 2023 E1 (%) E2 (%) E3 (%) E4 (%)

Minimum 0.00 0.00 0.00 0.00

Maximum 309.23 286.38 299.23 302.66

Average 9.06 8.63 9.78 10.08 -4.76 13.34 3.02 11.21

Ecartype 18.31 16.49 16.70 19.05

CV 2.02 1.82 1.84 2.10

Tab. 8 - Area of soil erosion class changes in the Ksob watershed.

Soil erosion 
classes

2017 2019 2021 2023 E1 E2 E3 E4

(Km2) (%) (Km2) (%) (Km2) (%) (Km2) (%) (%) (%) (%) (%)

Very low 570.84 40.26 596.95 42.10 532.56 37.56 510.40 35.99 4.57 -10.79 -4.16 -10.59

Low 454.34 32.04 461.25 32.53 466.04 32.87 474.42 33.46 1.52 1.04 1.80 4.42

Moderate 297.51 20.98 272.81 19.24 317.37 22.38 328.78 23.19 -8.30 16.33 3.60 10.51

High 63.41 4.47 56.80 4.01 67.05 4.73 68.29 4.82 -10.44 18.06 1.85 7.69

Very high 31.89 2.25 30.20 2.13 34.98 2.47 36.11 2.55 -5.33 15.86 3.23 13.22

Total 1418.00 100.00 1418.00 100.00 1418.00 100.00 1418.00 100.00
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Fig. 9 - Changes in soil erosion surface class and C factor between 2017 and 2023.

Fig. 10 - Spatial distribution and seasonal changes in soil loss rates (t ha−1 yr−1).
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an average monthly rate of 8.69 t ha−1 yr−1. The regions 
most affected by soil loss were consistent with the findings 
from 2017, primarily concentrated in the northern and 
eastern areas of the watershed.

Many authors have highlighted the major impact of 
soil erosion during periods of heavy rainfall, especially 
toward the end of spring and the beginning of summer. 
For instance, Papy and Douyer (1991) identified this 
phenomenon in northwestern Europe, and Vandaele et 
al., (1995) observed similar results in Belgium. However, 
in the case of the Ksob watershed, data analysis reveals 
that erosion rates are particularly high in autumn and 
summer, exceeding those recorded in spring and winter. 
This difference could be attributed to the region’s specific 
climatic and hydrological characteristics (Mediterranean 
zone), where autumn and summer rainfall, often in the 
form of intense downpours, lead to increased runoff and 
erosive force. These observations underscore a shift in the 
seasonal distribution of erosion, with a broader period of 
heightened erosion risk in 2023 compared to 2017. The 
continued susceptibility of the western-southern and 
central areas of the watershed underscores the necessity 
for specific soil conservation strategies aimed at alleviating 
ongoing soil erosion and degradation in these regions.

Seasonal variations in the C factor relative to the 
corresponding soil loss rate have been graphically 
represented in figure 11 to evaluate their influence on soil 
erosion. The results indicate a clear relationship between 
vegetation cover and erosion rate. When vegetation cover 
is dense (low C factor values), the erosion rate decreases. 
Conversely, when vegetation cover is sparse (high C 
factor values), the erosion rate increases.

The analysis shows that the summer and autumn 
seasons are particularly erosive compared to the winter 
and spring seasons. This pattern can be explained by the 
seasonal decrease or absence of vegetation cover during 
the warmer months, which increases soil exposure and 

susceptibility to erosion. During winter and spring, 
increased vegetation cover helps protect the soil, resulting 
in lower erosion rates. These findings underscore the 
critical role of vegetation in mitigating soil erosion. 
During periods of low vegetation cover, soil conservation 
measures such as mulching and cover cropping could be 
particularly beneficial in reducing soil loss. Furthermore, 
understanding these seasonal dynamics can inform the 
timing and implementation of conservation practices 
to maximize their effectiveness throughout the year. 
The annual variation of the soil loss rate concerning the 
different LULC classes has been represented in figure 12.

The findings of this study indicate that the most 
significant areas of soil loss are located in vegetated lands 
and mountainous regions, collectively accounting for 
over 50% of the watershed area. From 2017 to 2023, soil 
loss in the study area has intensified, particularly in the 
northern and southeastern mountainous regions, where 
forest soil loss has markedly increased. Overall, soil loss 
on cultivated land remains high, with the most severe 
erosion occurring on rangeland.

Several factors have contributed to the increase in 
soil loss observed between 2017 and 2023. One primary 
cause is the decrease in water bodies, which leads to 
less soil moisture and higher susceptibility to erosion. 
Water bodies have a crucial role to play in preserving soil 
stability and moisture. Their reduction has left large areas 
of soil dry and more susceptible to erosion. Additionally, 
the expansion of urban areas has disrupted the natural 
landscape. Urbanization often leads to the removal of 
vegetation and the compaction of soil, which reduces its 
ability to absorb water. This increases surface runoff and 
accelerates erosion.

The overexploitation of land has also significantly 
contributed to the increase in soil loss. Intensive 
agricultural practices, deforestation, and the conversion of 
land for development have degraded large areas, turning 

Fig. 11 - Seasonal variations in the C factor relative to the corresponding soil loss rate.
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them into unusable land such as sand and salt soils. This 
degradation destroys surface vegetation, which is essential 
for protecting soil from erosion. Without vegetation, the 
soil becomes loose and easily eroded by wind and water.

4. CONCLUSION

Soil erosion is a natural process that fluctuates over time, 
significantly influenced by variations in conditioning 
factors such as precipitation and, notably, vegetation 
cover. In this context, the present study examined 
seasonal and interannual variations in the C factor to 
determine soil loss in the Ksob watershed from 2017 to 
2023. By using an empirical model such as RUSLE and 
high-resolution data (10x10 m) for the C and R factors, 
the study was able to obtain accurate results. Variations 
in the C factor, related to vegetation cover, were shown 
to have a significant impact on soil loss estimates. A 
decrease in vegetation cover, indicated by high values 
of the C factor, leads to increased erosion rates, whereas 
dense vegetation cover, indicated by low values of the C 
factor, helps to mitigate erosion. During the study period, 
the proportion of cultivated land grew significantly, rising 
from 25.39% in 2017 to 35.84% in 2023. Concurrently, 
the average annual soil erosion rate in the Ksob watershed 
escalated by 11.21%, increasing from 9.06 t ha-1 yr-1 in 
2017 to 10.08 t ha-1 yr-1 in 2023. This increase can be 
attributed to several factors, including declining water 
bodies and the expansion of urban areas.

The Ksob watershed has experienced significant 
changes in erosion classes between 2017 and 2023. The 
results indicate that the most significant changes occurred 
in the very low, medium, and very high erosion classes, 
with the very low and low erosion classes dominating, 
representing approximately 70% of the total area. It 
was observed that the summer and autumn seasons are 
the most erosive, with average monthly soil loss rates 
exceeding 10 t ha-1 yr-1. In contrast, minimal erosion is 
observed in the spring.

To assess the impact of seasonal variations in the 
C factor on soil loss rates, a comparative analysis was 

conducted in this study using a comparison graph. The 
results show a clear relationship between vegetation cover 
and erosion rate: when vegetation cover is dense (low C 
factor values), the erosion rate decreases. Conversely, 
when vegetation cover is sparse (high values of factor C), 
the erosion rate increases.

The critical necessity for focused soil conservation 
measures in the most impacted areas, rangeland and 
mountainous regions, in particular, is highlighted by 
the spatial analysis of erosion. Reforestation, contour 
farming, and terrace construction are a few techniques 
that can be used to stabilize the soil and lessen erosion. 
To reduce future soil erosion, it is also essential to address 
the sources of land degradation, such as overexploitation 
and inappropriate land use.

The study concludes by emphasizing how critical it 
is to comprehend the causes of soil erosion and put 
into practice practical soil conservation measures. The 
sustainability of land use practices and watersheds is 
contingent upon our capacity to efficiently control and 
alleviate soil erosion.
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