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ABSTRACT - Sand petrographic changes record the interplay between allogenic (e.g., eustatic, climatic, tectonic)
and autogenic (e.g., transport, hydraulic sorting, post-depositional alteration) processes that also govern sequence-
stratigraphic architecture. The consequence is that compositional trends vary within the systems tract that forms the
framework of the high- and low-rank depositional sequences constituting the late Quaternary successions of the Roman
basin, a basin supplied by the Tiber River throughout the Pleistocene. The relationship between sediment supply and
sediment composition is well evidenced in the Late Lower Pleistocene to Holocene deposits of the high-rank Ponte
Galeria Sequence (PGS). This sequence fed by the Tiber River and its tributaries records the dramatic change in sediment
composition caused by the introduction of pyroclastic and volcaniclastic material derived by the Pleistocene volcanic
complexes of the Roman Magmatic Province. Three main petrofacies (A-C) were recognized in the PGS that have a
strong correspondence with the lowstand (LST), transgressive (TST), and highstand (HST) system tracts deposits of
the PGS. Petrofacies A (feldspatho-litho-quartzose to feldspatho-quartzo-lithic) reflects erosion of carbonate and
siliciclastic sources with minimal volcanic input during LST. Petrofacies B (feldspathic to litho-feldspathic/feldspatho-
quartzo-lithic) captures the abrupt volcaniclastic pulse and recycling associated with Pleistocene volcanism during TST.
Petrofacies C (feldspatho-quartzo-lithic) best records downstream reworking and Tiber river-mouth processes during
HST. In particular, in the modern highstand, upstream sands show a siliciclastic lithic signature, whereas downstream
sands are enriched in carbonate and volcanic lithics; coastal hydrodynamics partition detritus into two populations,
concentrating coarser pyroxenes in higher-energy settings and finer feldspars in lower-energy environments, while outer-
shelf/slope deposits are largely biogenic and weakly river-influenced. Overall, compositional changes in correspondence
with the key stratigraphic surfaces mark paleogeographic reorganizations and changes in sediment pathways. Because
multiple drivers often act at once (e.g., tectonism, volcanism, and local autogenic effects), petrographic analysis should
be integrated with facies, texture, and process data to isolate the forcing mechanisms better. These results demonstrate
that sedimentary petrography can play an important role in the sequence-stratigraphic interpretation of a sedimentary
succession, strengthening links between modern routing systems and the ancient record.
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1. INTRODUCTION

Sedimentary petrography has traditionally been applied
to provenance analysis to reconstruct the tectonic setting
of source terranes (Dickinson, 1985) and to document
compositional variations across stratigraphic successions
in response to major paleogeographic reorganizations.
Numerous studies have shown that sand composition can
change across stratigraphic surfaces of different hierarchy

and sequence-stratigraphic significance (Garzanti, 1991;
Ito, 1991; Amorosi, 1995; Zuffa et al., 1995; Marchesini
et al, 2000; Lawton et al, 2003; Basu et al., 2009;
Garzanti et al., 2011; Villasefior et al., 2020). However, its
integration into sequence-stratigraphic analysis remains
relatively underexplored (Zuffa et al., 1995; Amorosi and
Zuffa, 2011). A combined petrographic and sequence-
stratigraphic approach can enhance paleogeographic
reconstructions and clarify the relative roles of tectonics,
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eustasy, and climate in controlling sediment supply and
dispersal pathways.

The composition of sandy sediments is regulated by
both allogenic processes, such as tectonics, climate, and
base-level fluctuations, and autogenic processes, such as
sediment mixing, hydraulic sorting, and reworking. These
processes operate over different temporal and spatial scales:
long-term tectonics and climate oscillations can drive
compositional changes within high-rank depositional
sequences over millions of years (Zuffa et al., 1995; Garzanti
et al., 2003), whereas short-term changes in sediment
sources, routing, and depositional processes may dominate
within low-rank sequences and across individual systems
tracts (Amorosi and Zuffa, 2011). Not all sequences or
systems tract boundaries are marked by sharp petrofacies
changes, and compositional transitions may be gradual
or absent altogether. Disentangling these effects requires
high-resolution facies analysis, chronological control, and
quantitative compositional data.

A source-to-sink perspective provides a powerful
framework for understanding the processes that govern
sediment production, transport, storage, and final
deposition (Covault et al., 2013; Amorosi et al., 2016).
Provenance studies based on petrographic modes can
track sediment from source regions whose physiography,
lithology, and tectonic history dictate the initial detrital
signature through transfer zones and into depositional
sinks. Along the sediment-routing system, this primary
signal is progressively modified by chemical weathering,
mechanical breakdown, mixing, and selective transport
(Young et al., 1975; Nesbitt and Young, 1996; Garzanti et
al., 2013; Garzanti, 2016). Nearshore and deep-marine
environments further alter grain composition and
texture through wave, tide, and current reworking, as
well as diagenetic processes after burial (McBride, 1985;
Garzanti et al,, 2009, 2015 a,b). Understanding these
transformations is essential to isolating the provenance
signal from environmental overprints.

Quaternary continental-margin successions offer
particularly valuable opportunities for such integrated
studies. In these relatively young deposits, the
stratigraphic architecture is often well constrained,
source areas are known, and the timing of sea-level
fluctuations is tied to orbitally driven glacial-interglacial
cycles (Allen, 2017). This allows for more confident
attribution of compositional changes to specific
drainage reorganizations or shifts in sediment supply.
Modern analogues can be analyzed to quantify the
influence of individual processes, providing calibration
for interpreting the ancient record and reducing the
uncertainties introduced by post-depositional alteration.

In the Mediterranean region, modern sedimentary
systems have been extensively characterized in terms of
provenance, petrography, and depositional environments
(e.g., Critelli and Le Pera, 1994, 2002; Garzanti et al,,
2009, 2015 a,b). However, relatively few studies have
linked modern compositional datasets directly to their
preserved stratigraphic successions within a detailed

sequence-stratigraphic framework (Garzanti et al., 2011;
Tentori et al., 2016, 2018, 2021, 2022). The Quaternary
succession of the Roman Basin provides an ideal case
study for such an approach, as it has been framed into
a detailed sequence-stratigraphic scheme (Milli, 1997,
1994; Milli et al., 2008, 2013, 2016). In fact, this basin
preserves well-dated Pleistocene to Holocene fluvial,
coastal, and deltaic, and shelfal deposits associated with
the Tiber River and documents the role played by glacio-
eustasy, tectonic uplift, volcanic activity, and autogenic
processes in conditioning the sand composition of this
Quaternary succession (e.g., Tentori et al., 2016, 2018).
This review paper synthesizes results from two
complementary case studies (see Tentori et al., 2016,
2018), which include i) a high-resolution petrographic
analysis of Late Lower Pleistocene to Holocene deposits
of the high-rank composite Ponte Galeria Sequence
(PGS), and ii) a compositional source-to-sink study
of the modern Tiber River system that constitutes the
product of the Holocene highstand sedimentation of the
Tiber Depositional Sequence, which in turn represents
the last of the low-rank sequences that form the PGS.
By comparing the modern system with its Quaternary
counterpart, we explore how compositional trends are
recorded across different stratigraphic surfaces, evaluate
the relative influence of allogenic and autogenic controls,
and develop a conceptual model linking provenance,
sediment composition, and stratigraphic architecture in a
glacio-eustatically influenced continental-margin setting.

2. GEOLOGICAL SETTING

The Roman Basin develops along the central sector of
the Latium Tyrrhenian margin. It stretches in the NW-SE
direction for approximately 135 km north and south of
the Tiber River (Fig. 1). It began to develop from the Late
Pliocene due to the extensional tectonics connected to the
opening of the back-arc Tyrrhenian Basin, in turn related
to west-directed Apennine subduction (Malinverno and
Ryan, 1986; Patacca et al., 1990; Doglioni et al., 2004). The
basin is one of the NNW-SSE/NW-SE and subordinate
NE-SW half-graben basins occurring along the Latium
margin that were filled with syn-rift and post-rift clastic
and volcaniclastic sediments (Funiciello et al., 1976;
Cavinato et al., 1992; Mariani and Prato, 1988; Barberi et
al., 1994) that were essentially transported and deposited
by a Pliocene to Pleistocene fluvial system similar to
the modern Tiber River and its tributaries (Fig. 2). The
evolution of the Roman Basin has been accompanied by a
continuous regional tectonic uplift (Milli, 1997; Bordoni
and Valensise, 1998; Giordano et al., 2003) and intense
volcanic activity, which reached its climax during the
Middle-Upper Pleistocene with the development of the
potassic-rich volcanic complexes of the Roman Magmatic
Province (Sabatini and Albani complexes) (Conticelli and
Peccerillo, 1992; Cioni et al., 1993; Karner et al., 2001;
Peccerillo, 2005).

The consequence of this is that the stratigraphic setting
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Fig. 1 - Simplified geological sketch of the central Tyrrhenian margin of Italy. (1) Messinian-Holocene sedimentary deposits; (2)
Pliocene-Pleistocene lavas and volcaniclastic deposits; (3) Mesozoic—-Cenozoic sedimentary deposits; (4) main buried faults; (5) strike-
slip faults; (6) normal faults; (7) major thrusts. The black square indicates the fluvial downstream and marine study area (modified

after Tentori et al., 2016).

of the Roman Basin reflects the close interaction between
tectonic uplift, volcanic activity, and glacio-eustatic sea-
level fluctuations related to Quaternary climatic changes
(Cavinato et al., 1992; De Rita et al., 1994, 2002; Milli,
1994, 1997; Giordano et al., 2003; Mancini and Cavinato,
2005; Milli et al., 2008). The stratal architecture is, in fact,
characterized by several depositional units constituting
low-rank  (high-frequency) depositional sequences
(Mitchum and Van Wagoner, 1991; Posamentier and Allen,
1999; Catuneanu et al., 2011), with durations ranging
from 30 to 120 kyr, stacked to form two composite high-
rank sequences (low-frequency) named the Monte Mario
Sequence (MMS; lower Pleistocene) and the Ponte Galeria
Sequence (PGS; Late Lower Pleistocene to Holocene)
respectively (Milli, 1997; Milli et al.,, 2013, 2016) (Fig.
3). The MMS deposits are known mainly through the
stratigraphy of wells and limited outcrops and consist of
coastal to transitional-shelf systems that developed during
the late lowstand and transgressive systems tracts of the
MMS. The absence of HST deposits is due to the erosion
related to the sea-level fall that generated the sequence
boundary of the PGS. The latter, in fact, constitutes a
polygenic erosional surface formed during the sea-level
fall between MIS 31 and MIS 20, along which the PGS

deposits overlie the shelfal mud of the MMS.

The PGS crops out extensively between the city of Rome
and the Tyrrhenian Sea, and contains fluvial, fluvio-
lacustrine, barrier-lagoon, and transitional-shelf systems
organized to constitute the lowstand (LST), transgressive
(TST), and highstand (HST) systems tracts (Fig. 4). The
occurrence in the PGS of pyroclastic and volcaniclastic
deposits, deriving from the Albani and Sabatini volcanic
complexes (Sottili et al., 2010; Marra et al., 2011, 2014),
together with strontium isotopes data, was used to
constrain the age and duration of the twelve low-rank
sequences (from 5 to 80 m thick) that form the PGS.

The boundaries of the low-rank sequences are marked
by sharp erosional surfaces recording basinward and
downward facies shifts and by subaerial exposure and
paleosol development in interfluvial areas. In particular,
the low-rank sequences from PGO1 to PG3 constitute the
LST of the PGS; sequences from PG4 to PG8 are assigned
to the TST, while the PG9 sequence, also known as the
Tiber Depositional Sequence (TDS), developed entirely
during the HST of the PGS (Milli et al., 2016) (Fig. 4).
Note that the PGS shows an overall seaward stacking of
low-rank sequences (Fig. 4), a trend opposite to that it
would have been if controlled by glacio-eustatic alone.
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Fig. 2 - The map shows the track of the Tiber River and the main geologic units cropping out within its catchment. Sample locations
that include the Tiber River (TR), its tributaries (TRT), foreshore (TRC), shoreface (TS), and continental shelf (TC), are indicated by
numbered filled circles (modified from Tentori et al., 2016).
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Fig. 3 - Chronostratigraphic and sequence-stratigraphic scheme of the Quaternary deposits of the Roman Basin (after Milli et al., 2013,
2016). HST: highstand systems tract; TST: transgressive systems tract; LST: lowstand systems tract.

This suggests that the present stacking pattern of PGS is
an expression of the combined effects of eustatic sea-level
changes and regional tectonic uplift; the latter would have
forced the seaward migration of the low-rank sequence
equilibrium points, thus helping to define the final
stacking pattern of PGS (Milli, 1997; Milli et al., 2008).

Among the twelve low-rank sequences forming the
PGS, the Tiber Depositional Sequence is the most
complete and developed during thelast glacial-interglacial
cycle of post-Tyrrhenian age (last 120 kyr) (Milli et al.,
2013, 2016) (Fig. 5). The lower boundary is an erosional
surface formed during the sea-level fall following the
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MIS 5.5 highstand. The upper boundary corresponds to
the modern depositional surface. The TDS succession,
which ranges from less than 1 m to 80 m thick, records
the transition from a wave-dominated estuary to a wave-
dominated delta. Its internal architecture comprises a
lowstand systems tract formed during valley incision
and early infilling with fluvial, lagoonal, and beach
deposits; a transgressive systems tract characterized by
retrogradational stacking pattern of a sinuous fluvial
system, a few bayhead deltas, a barrier-lagoon system,
and a shelf depositional system, and a highstand systems
tract represented by the progradation of the wave-
dominate Tiber delta, downlapping onto the present
outer shelf (Bellotti et al., 1994; Milli et al., 2016).

The ancient fluvial system that supplied the PGS
during the Quaternary was probably equivalent to the
present Tiber River system. The latter, which originates
in the Apennine mountains, flows for 406 km, draining
an area of 17,375 km?. The catchment includes carbonate,
siliciclastic, and volcanic rocks ranging in age from
Mesozoic to Quaternary. The Apennine belt contains
ophiolitic sequences and Meso-Cenozoic pelagic to
platform carbonates, associated with synorogenic
turbiditic sediments deposited during the Oligocene-
Miocene in a foreland-basin system. The sandy turbidites
are feldspatho-quartzose to litho-feldspatho-quartzose,
with common metamorphic, plutonic, sedimentary,
and volcanic lithic fragments (Gandolfi et al., 1983;
Valloni and Zuffa, 1984; Gandolfi and Paganelli, 1993;
Gandolfi et al., 2007; Amendola et al., 2016; Stalder et
al., 2018). The Tiber catchment lies within the Latium-
Campania Superprovince (Garzanti et al., 2002), and the
composition of its sands reflects recycling of Miocene
turbidites, exposure of Mesozoic carbonates, and
Quaternary potassic and ultrapotassic volcanism of the
Roman Magmatic Province. Modern Tiber sands and
deltaic deposits contain quartz, feldspars, and minor
terrigenous lithics from foredeep turbidites; limestone
and chert from the Umbria pelagic succession; and
subordinate volcanic detritus, including rare volcanic
lithics and crystals of leucite and sanidine (Garzanti et al.,
2002). These same components, in variable proportions,
are observed in PGS deposits.

3. METHODS

This study integrates fieldwork and laboratory analyses
to investigate compositional variability in both ancient
and modern deposits of the Tiber River system within
the framework of the Ponte Galeria Sequence (PGS).
Fieldwork in the Roman Basin targeted low-rank
depositional sequences of the PGS, with facies analysis and
systematic sampling from newly measured and previously
described sections into two quarries (Tiberi and ESI
quarries), and at the Torre in Pietra outcrop (Milli, 1997;
Milli and Moscatelli, 2001; Tentori et al., 2016) (Fig. 6).
Twenty-nine sand samples were collected from the Tiberi
quarry (TQ1-TQ15) (Fig. 7), ESI quarry (EQ1-EQ11)

(Fig. 8), and Torre in Pietra (TO1-TO3), encompassing
Early to Middle Pleistocene deposits from PGI1 to PG7
(Fig. 9). Sampling was designed to capture petrographic
variability across sequence boundaries and within facies
associations corresponding to different systems tracts
to evaluate the relative influence of autogenic processes
(sedimentary processes, provenance mixing, hydraulic
sorting) and allogenic controls (tectonism, eustasy,
volcanism).

The TDS (PG9) was sampled in greater detail due to its
stratigraphic completeness and relevance for highstand
conditions. Eighteen stream-sand samples were collected
from the modern Tiber River (TRI1-TR12) and its
major tributaries (TRT1-TRT6) at approximately 30 km
intervals from the headwaters to the lower reaches, with
tributaries sampled just upstream of their confluence with
the main river (Fig. 2). Seven additional sand samples
were collected from the swash zone of beaches north and
south of the Tiber mouth (TRC1-TRC7) to assess the
effects of littoral drift, wave, and current reworking and to
compare the composition of modern coastal sands with
the HST coastal deposits of older low-rank sequences
with those of the TDS.

Offshore sampling of the TDS targeted the delta-front
and prodelta settings. Twenty-one sand samples were
collected from gravity cores on the delta front at various
intervals (Fig. 10), allowing detailed stratigraphic and
compositional analyses to track changes through time
(Milli et al., 2016). An additional twenty-one samples
were collected from three gravity cores (TC6, TC7, TC8)
retrieved from the submerged delta sector off the river
mouth. Core TC6 was recovered from an incised gully on
the continental slope at 240 m water depth, while TC7
and TC8 were drilled on the continental shelf near the
shelf break at 155 m and 126 m water depth, respectively
(Di Bella et al., 2013) (Fig. 11). Data from these cores
were compared with published results from the Ocean
Drilling Program (ODP) Site 974, Leg 161 (Marsaglia
et al., 1999), previously interpreted as containing Tiber-
derived sediment.

In total, 67 thin sections from PGS and modern
samples and 52 thin sections from the TDS offshore cores
were prepared and stained for potassium and calcium
feldspar following the method of Marsaglia and Tazaki
(1992). Petrographic point-counting was performed
with the Gazzi-Dickinson method (Ingersoll et al., 1984),
counting 400 points per slide. Lithic, monomineralic, and
biogenic grains were classified according to Zuffa (1980,
1985, 1987, 1991), Marsaglia (1992), and Marsaglia et al.
(1999). For TDS oftshore samples, grains were grouped as
noncarbonate extrabasinal (NCE), carbonate extrabasinal
(CE), and carbonate intrabasinal (CI) after Zuffa (1980).

Medium-sand fractions were selected for compositional
analysis to maintain consistency with previous provenance
studies (e.g., McBride and Picard, 1987). To evaluate
potential grain-size dependence, selected samples were
also analyzed in fine and very fine sand fractions, including
TQ4, TQ7, TQ12, TQ15, EQ2, EQ5, TR11, and 15 fine-
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Fig. 6 - Field photographs showing the environmental and sequence-stratigraphic interpretations of the deposits cropping out in the
ESI quarry (A), the Tiberi quarry (B), and the Torre in Pietra locality (C-D). Scale indicators: man (B), pencil (C), and hammer (D)

(slightly modified from Tentori et al., 2016).

grained TDS samples from delta-front and prodelta
settings. Modal compositions were plotted on QFL ternary
diagrams following Garzanti (2016), with nomenclature
from Crook (1960), Dickinson (1970), and Weltje (2006),
and on lithic proportion diagrams for provenance
interpretation (Zuffa, 1980, 1987, 1991; McBride and

Picard, 1987; Veermesch et al., 2016).

Grain roundness was measured to assess resistance to
transport and mechanical abrasion in both fluvial and
coastal settings. Mean roundness values were determined
for medium-sand monocrystalline quartz and carbonate
lithic fragments [Lsc(cry)+Lsc(mic)], following McBride
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Fig. 7 - Stratigraphic log of Tiberi quarry showing the sampled intervals (TQ), the inferred depositional environment, and the sequence-
stratigraphic interpretation (modified after Tentori et al., 2016).

and Picard (1987). The first 30 grains encountered during The combined datasets from ancient and modern
point counting were assigned numerical values from 1 environments were used to construct models of
(very angular) to 6 (well-rounded), and mean roundness compositional trends from source to sink, enabling
values were calculated for each sample for comparison direct comparison between modern sediment-routing
across the modern river, coastal transects, and Pleistocene dynamics and their preserved Quaternary counterparts

deposits of the Tiber succession. in the PGS and TDS.



11

Daniel Tentori, Salvatore Milli / Journal of Mediterranean Earth Sciences 17 (2025), 1-26

ESI QUARRY

&

> 9
N S

U
S

Paleoenvironmental Sequence
Samples Interpretation Stratigraphy
CE1
CE2 fluvio-palustrine
deposits composed of
volcaniclastic sediments
CE3 with intercalated HST |PG5
paleosoils (pl)
SB |
fluvio-palustrine 0
CE5 deposits composed of
volcaniclastic sediments | HST (PG4| O-
with intercalated _
CE4 paleosoils (pl) SB
CE7 o
lower shoreface PG3| ©
CE6 deposits c
SB
o
S
(o
o
w
lagoon deposits @©
—
()
©
)
washover HST |PG2
CES deposits _,G_J,
c
CE11 o
beachface o
CE9 deposits
CE10 upper shoreface
d it
eposts mfs+rs [+SB
shelf-transition
deposits
TST |PG1
upper shoreface
deposits

-~ planar and tabular cross-stratification
=== hummocky cross-stratification \_ _ shell and shell debris

U U trace fossils

~ ~ oysters 4 4 roots

Fig. 8 - Stratigraphic log of ESI quarry showing the sampled intervals (EQ), the inferred depositional environment, and the sequence-
stratigraphic interpretation (modified after Tentori et al., 2016).

4. RESULTS

The sand samples from the Ponte Galeria Sequence
(PGS) exhibit wide variability in quartz, lithic, and
feldspar proportions, with quartz and/or lithics generally

dominating over feldspar except in a few cases (Fig. 12).
Modal compositions range from feldspatho-quartzo-
lithic to feldspatho-lithic-quartzose, with subordinate
teldspatho-quartzose, litho-quartzose, quartzo-lithic,
litho-feldspathic, feldspathic, and lithic types. Ancient
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and modern samples were plotted separately by systems
tract on QFL, Lm-Lv-Ls, and NCE-CE-CI ternary
diagrams (Zuffa, 1980) to examine relationships between
composition and sequence stratigraphic position (Figs.
13, 14). On these plots, the lowstand (LST), transgressive
(TST), and highstand (HST) systems tracts are not cleanly
separated, showing significant compositional overlap,
particularly for the LST coastal-marine facies from the
Tiberi Quarry.

Better discrimination was achieved using the parameter-
ratio approach of Ito (1994), originally applied to forearc
facies in the Boso Peninsula, Japan. In figure 15, TST
samples form a distinct cluster, whereas HST samples
show a transitional spread from the TST cluster and
minor overlap with LST samples at low Lv/Lt values. This
allowed the definition of three petrofacies: Petrofacies A
(LST), Petrofacies B (TST), and Petrofacies C (HST).

Petrofacies A is characterized by abundant quartz,
significant feldspar, and generally minor carbonate
and metamorphic lithic fragments, with few samples
rich in volcanic lithic grains (mean=NCE91CESCI1).
Petrofacies B contains abundant feldspar, significant
volcanic lithic fragments, and minor quartz. The volcanic
lithics show highly altered glassy groundmass, and PG5
samples are dominated by disaggregated soil aggregates,
feldspar (>50%), and pyroxene. This petrofacies has a
strong noncarbonate extrabasinal signature (mean=
NCE98CE2CI0). Petrofacies C is rich in volcanic-lithic
and siliciclastic sedimentary fragments and contains

significant extrabasinal carbonate grains (mean=
NCE74CE26CI0); pyroxenes are notably abundant in the
coastal deposits.

Modern Tiber River and tributary sands (TR1-TR12;
TRT1-TRT6) and foreshore samples (TRCI-TRC7)
are described in detail in Tentori et al. (2016). Offshore
samples from the delta front and prodelta provide
additional insights into the composition of recent
highstand deposits (Tentori et al., 2018).

In the upper and lower shoreface deposits of the delta
front, the dominant components are monomineralic
quartz and feldspar grains, along with sedimentary lithic
fragments. Pyroxene and micas (biotite, muscovite,
chlorite) are common accessory minerals. Minor
constituents include opaque and non-opaque dense
minerals, serpentine grains, and alterites-opaque to
semi-opaque finely crystalline masses produced during
weathering, lacking internal structures and potentially
derived from altered monominerals or lithic fragments
(Johnsson, 1990). Polycrystalline grains include quartz
and chert, and carbonate bioclasts, both intrabasinal
(mainly foraminifera) and extrabasinal, are common,
being particularly abundant in cores 56 and 58. Siliciclastic
sedimentary lithics consist of feldspathic and lithic
siltstone, with minor mudstone; carbonate lithics include
sparitic and micritic limestones. Volcaniclastic lithics
display felsitic, vitric, and lathwork textures, with pumice
and colorless, black, brown, and altered glass, and tuff
fragments; phenocrysts include feldspar and pyroxene.
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Fig. 11 - Lithology, sequence-stratigraphic interpretation, and location of the samples in the TC6, TC7, and TC8 continental shelf cores.
Core locations are shown in figure 2. Modified from Di Bella et al. (2013).

Pyroxene grains are especially common (~20%) in
medium-grained samples close to the river mouth (cores
TS62, TS58, TS27) and inshore locations (TS19) but drop
below 5% in finer sands. Micas are more abundant (~10%)
in distal, fine-grained samples (TS58A, TS58B, TS56A,
TS56D) compared to <5% in proximal medium sands.
Volcanic lithic fragments are abundant in both medium-
grained samples (TS65B, TS65C, TS58A, TS19C, TS13C)
and fine-grained samples (TS56A, TS56D, TS27D).

On the continental shelf and slope, samples from
gravity cores TC6, TC7, and TC8 (Fig. 11) are dominated
by intrabasinal carbonate bioclasts (50-100%) (see also
Di Bella et al., 2013). Exceptions occur in some TC6
intervals, which contain 20-40% monomineralic quartz
and feldspar, with minor micas, pyroxene, amphibole,
and dense minerals. Bioclasts include mollusks,
echinoderms, red algae, bryozoa, and foraminifera, often
diagenetically altered to siderite or unidentified minerals.
Polycrystalline quartz and chert grains are present, while
lithic fragments are relatively rare and include sparitic
and micritic carbonate, siliciclastic, altered volcanic, and
low- to medium-grade metamorphic types.

The combined dataset demonstrates that both ancient
PGS sands and modern deltaic deposits preserve
clear petrofacies trends linked to systems tracts while
also recording significant spatial variability related to
depositional setting, grain size, and sedimentary reworking.

5. DISCUSSION

The integrated petrographic dataset from the Ponte
Galeria Sequence (PGS) and the modern Tiber system
resolves three recurrent petrofacies that align with
sequence-stratigraphic position and with shifts in forcing
mechanisms through Quaternary time. In the high-rank
PGS, Petrofacies A typifies lowstand (LST) fluvial and
coastal sands and reflects erosion of siliciclastic turbidites
in the upper drainage and carbonate successions in the
middle to lower basin, with minor volcanic lithic input
linked to the earliest, sporadic Sabatini eruptions. The
close compositional and textural match between coeval
beachface and fluvial sand indicates strong direct river
control on the shoreface during lowstands, whereas along
the modern coast, compositional maturity increases
down-drift under sustained coastal reworking from
the Middle Pleistocene to the Present. Petrofacies B,
which characterizes transgressive (TST) fluvial and
fluvio-lacustrine deposits where marine outcrops are
absent, captures the rapid and voluminous arrival of
volcaniclastic detritus from Sabatini explosive activity.
The preponderance of altered vitric fragments and
liberated K-feldspar and pyroxene records pedogenic
overprint and chemical weathering in volcanics-rich
units (Nesbitt and Young, 1996), consistent with soil
formation on ash- and tuff-mantled surfaces. Petrofacies



15
Daniel Tentori, Salvatore Milli / Journal of Mediterranean Earth Sciences 17 (2025), 1-26

Fig. 12 - Photomicrographs from the Tiberi quarry (A-B), the ESI quarry (C-D), and modern Tiber River sands (E-F), highlighting key
grain types. A) Lower-shoreface sample TQ9 with feldspar (F), monocrystalline quartz (Qm), and micritic carbonate lithic fragments
(Lsc). B) Upper-shoreface sample TQ10 with feldspar (F), pyroxene (Pyr), volcanic lithic fragments (Lv), and micritic carbonate (Lsc).
C) Beachface sample EQ1 with scarce carbonate lithic fragments (Lsc), quartz (Qm), and feldspar (F). D) Fluvio-palustrine sample
EQ10 with pyroxene (Pyr) and cutan fragments (Cu) produced by soil alteration. E) Sample TR3 with serpentine (Serp), feldspar (F),
and siltstone lithic fragments (Lsi). F) Sample TR5 with quartz (Qm), feldspar (F+PI), and micritic carbonate lithic fragments (Lsc)
(from Tentori et al., 2016).

C belongs to highstand (HST) fluvial and coastal deposits lithic clasts release phenocrysts, especially pyroxene,
and reflects progressive reworking of volcanics-rich while coastal processes winnow extrabasinal carbonate
strata; preferential abrasion and dissolution of glass in fragments relative to their riverine supply.
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Fig. 13 - Ternary plots (A, B) used for the petrographic classification of the studied sand samples. Scheme A follows Garzanti (2016),
which is based on the nomenclature of Crook (1960) and Dickinson (1970), and later adopted by Ingersoll (1983) and Weltje (2006).
Q = quartzose; F = feldspathic; L = lithic; IFQ = litho-feldspatho-quartzose; fLQ = feldspatho-litho-quartzose; IQF = litho-quartzose-
feldspathic; fQL = feldspatho-quartzo-lithic; qLF = quartzo-lithic-feldspathic; qFL = quartzo-feldspatho-lithic (from Tentori et al., 2016).

These petrofacies document how tectonic uplift,
volcanism, and glacio-eustatic sea-level oscillations
imprint differently on stratigraphic architecture and on
sand composition. Regional uplift modulated source-
rock exposure and the proportion of terrigenous detritus
delivered across all systems tracts, whereas volcanism
peaked during transgression, counteracting the typical
TST reduction in clastic supply by injecting abundant
juvenile debris via fall and pyroclastic density currents,
with subordinate input from lava erosion. Eustasy
governed base-level and river energy (Milli, 1997; Milli
et al, 2008), strongly influencing sediment supply
and coastal redistribution, especially where highstand
shore-parallel currents enhanced lateral sorting. During
lowstands, minimized accommodation and bypass
favored a close source-sink linkage, explaining wide
compositional scatter that likely tracks subcatchment-
scale variations in rainfall and discharge, as in modern
analogs (e.g., Leombruni et al., 2009). With the ensuing
transgression, volcaniclastic influx reached a maximum,
diluting carbonate sedimentary lithics; syndepositional
and post-depositional alteration of vitric components
further modified these signatures (Castorina et al., 2015).
Reworking in marginal-marine settings during highstand
progressively reduced volcanic lithic proportions, with
beach sands showing increased quartz and decreased
extrabasinal carbonates relative to fluvial counterparts as
waves and wind intensified textural and compositional
maturity.

Translating these trends to the constituent low-
rank sequences clarifies time-scale dependencies and
preservational biases. Pre-volcanic PG01-PG3 contain
sparse tephra and are dominated by monomineralic

quartz over lithic fragments; at the LLST-TST transitions,
reduced fluvial flux during relative sea-level rise, combined
with eolian and wave abrasion and longshore/rip-current
reworking, preferentially removed softer extrabasinal
carbonate grains while quartz survived, with HST
conditions broadly restoring LLST-like NCE/CE and
Q/L proportions. Upsection, increasing volcanic lithics
and phenocrysts register the progressive volcaniclastic
contribution to the paleo-Tiber. Syn-volcanic PG4-
PG8 reflect a dual provenance-direct juvenile input
from explosive eruptions plus cannibalization of older
pre-volcanic units, accentuated by uplift and sea-level
change-yielding low sedimentary and high volcanic lithic
contents and promoting seaward stacking. Post-volcanic
PGY, represented by modern fluvial-to-coastal sediments,
captures the present connectivity between the inner/middle
catchment and the river mouth (Figs. 16 and 17). Upstream
sands integrate Jurassic ophiolites, Jurassic-Oligocene
carbonates and siliciclastics, and Miocene foredeep
turbidites, supplying quartz, K-feldspar, plagioclase, dense
minerals, and siliciclastic and metasedimentary lithics, with
serpentine textures indicating both direct ophiolitic erosion
and recycling through Oligo-Miocene turbidites (see also
Garzanti et al., 2002; Amendola et al., 2016). Middle-basin
sands retain similar Q/F and dense-mineral proportions
but lose serpentine, consistent with recycling of Miocene
turbidites and Umbria-Marche carbonates. Downstream,
K-feldspar rises relative to plagioclase, reflecting the
high-K Roman Magmatic Province signature; carbonate
lithics decline by dilution and abrasion during transport
(McBride and Picard, 1987), with the highest grain-
roundness values reached near the coast. In Rome and the
lower basin, volcaniclastic deposits and subordinate lavas
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Fig. 15 - Compositional variation of PGS petrofacies, expressed
through parameters and ratios following Ito (1994) (from Tentori
etal., 2016).

contribute feldspar and pyroxene both as detrital grains
and as phenocrysts within lithics, though these lithics are
highly labile to dilution and abrasion (Cameron and Blatt,
1971; Critelli et al., 1997). Along the Lazio shoreline, beach
sands reflect a mixture of Tiber input, deltaic reworking,
and local supply; quartz increases relative to the river,
pyroxene becomes prominent north of the mouth where
small volcanic-draining rivers feed the coast, vitric
fragments weather to release phenocrysts, and siliciclastic
lithics likely derive from coastal outcrops of metamorphic-
lithics-bearing turbidites and are transported south by
longshore drift (Bellotti et al., 1993).

Process overprints that modify primary provenance
signals are pervasive and quantifiable. Chemical
weathering and pedogenesis reduce carbonate and
volcaniclastic lithic percentages in both outcrop and soils
(McBride, 1985), as shown by recalculated QFL excluding
carbonate lithics (QFL-c), which isolates volcanic
contributions without the confounding dissolution effect.
During Sabatini paroxysm (PG4-PG8), glassy debris
is intensely altered in paleosols, leaving K-feldspar and
pyroxene enrichment and largely altered plagioclase
within clay-rich horizons, with bulk geochemistry
diverging from reworked tephra (Nesbitt and Young,
1996; Borrelli et al., 2012; Castorina et al., 2015). In the
post-volcanic coast, phenocrysts are concentrated relative
to volcanic lithics, consistent with coastal reworking that
both liberates dense phases and preferentially destroys
labile vitric fragments. Hydraulic sorting imposes
predictable grain-size-composition relationships: across
ancient quarries and modern river samples, finer fractions

carry less quartz and more feldspar and lithics; fine sand
enriches in K-feldspar relative to plagioclase, and lithic
trends vary by local mixing and episodic tephra input
(see, for example, Garzanti et al., 2009; James et al., 2007;
Marsaglia et al., 2010; Gargon et al., 2014; Garzanti et al.,
2015 a,b). Mechanical abrasion further removes labile
clasts and increases roundness down-system: quartz and
carbonate grains evolve from subangular upstream to
subrounded downstream; carbonate lithics-and micrite
more than sparite-round faster than quartz, and beach
samples achieve the highest roundness due to cumulative
wave and eolian reworking (Fig. 18) (see also McBride
and Picard, 1987; Picard and McBride, 1993; McMaster et
al., 2010; Dott, 2003; Garzanti et al., 2015 a,b).

Linking inland to offshore, the modern Tiber system
defines three end-member petrofacies from river to shelf.
River sands span lithic to feldspatho-litho-quartzose fields
and reveal a compositional break at the Corbara Dam:
above the dam, multistage recycling of Miocene turbidites
dominates with common siliciclastic and carbonate
lithics; below, carbonate and volcaniclastic rock fragments
from Mesozoic successions and the Roman Magmatic
Province increase, and the Nera (carbonate) and Aniene
(volcaniclastic) tributaries drive a downstream decline in
mineralogical maturity (MI=Qt/[Qt+F+Lt]) (Garzanti,
2017; Garzanti et al, 2002). On the coast, foreshore
sands become quartz- and pyroxene-rich under eolian/
marine winnowing, while shoreface sands are feldspar-
and volcanic-lithic-rich due to hydraulic concentration
in lower-energy settings and partial sheltering from dune
reworking (Bellottietal., 1994; Garzantietal.,2002). Grain-
size belts parallel to the shore-from coarse/medium in the
foreshore and shallow shoreface to fine/very fine beyond
~5 m depth-map directly onto compositional zonation
and mixing among dune, soil, and fluvial populations
(Bellotti et al., 1993; Bellotti and Tortora, 1996; Zaghloul
etal., 2009; Reddad et al., 2016; Parra et al., 2012; Bender-
Whitaker et al., 2018). On the shelf and slope, intrabasinal
carbonate allochems dominate nearly to exhaustion of
extrabasinal fractions, especially in TC7-TC8, whereas
TC6 in an incised gully retains higher noncarbonate
extrabasinal grains and micas, reflecting focused riverine
influence and the hydraulic concentration of platy grains
in distal, lower-energy settings (Di Bella et al., 2013).

Comparison with deep-marine Pleistocene sands at
ODP Site 974 refines the source-to-sink routing picture
(Fig. 17). QFL and QmKP fields resemble modern Tiber
shoreface and fluvial compositions, but the Site 974 lithic
suite lacks the sedimentary lithics that typify the present
coastal system, implying selective abrasion during long
submarine transport or climatic overprinting in the
source (Marsaglia et al., 1999). Volcaniclastic intervals at
Site 974 record high-K tephra from the Tuscan-Roman-
Campanian provinces (McCoy and Cornell, 1990), while
metamorphic lithics likely arrived from eastern Sardinia
via canyon-to-basin pathways feeding the Vavilov Basin
(Gamberi and Marani, 2009; Gamberi et al., 2009). We
infer that Pleistocene basin-plain deposition at Site 974
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Fig. 16 - Photomicrographs illustrating representative grain types in Tiber System sands. A-B) Upstream basin sample containing
serpentine (Serp), plagioclase (P), extrabasinal carbonate bioclasts (CE), and lithic fragments of claystone (Lsa) and siltstone (Lsi).
C-D) Middle basin sample with claystone (Lsa) and metamorphic (Lm) lithic fragments. E-F) Lower basin sample showing quartz (Q),
pyroxene (Pyr), K-feldspar (K), carbonate (Lsc) and volcanic (Lvl) lithic fragments. G-H) Coastal sample near the Tiber River mouth
containing intrabasinal carbonate bioclasts (CI), alterites (alt), and carbonate lithic fragments. Each pair shows plane-polarized light
on the left and cross-polarized light on the right (from Tentori et al., 2018).
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Fig. 17 - QFL, QmKP, LmLvLs, and NCE-CE-CI ternary plots for fluvial, coastal (m = medium-grained sand; f = fine-grained sand), and
continental shelf to slope petrofacies of the TDS, based on ODP Leg 161, Site 974 data (Marsaglia et al., 1999) (from Tentori et al., 2018).

preferentially coincided with relative lowstands, when
river mouths connected efficiently to slope conduits and
multiple volcanic sources were active, whereas during the
present highstand Tiber sand is largely trapped on the
coast and inner shelf.

Finally, modern anthropogenic modification complicates
source-sink connectivity and the provenance signal. The
Corbara Dam, built in the 1950s, partitioned the Tiber into
two hydrographic sub-basins, reduced sediment discharge,
and shifted the coastal sand signature to reflect primarily
the Paglia plus lower-Tiber reach, a pattern evident in the
clustering of river and marine samples (Fig. 19). More
broadly, dams and natural lakes sequester upland detritus,
producing counterintuitive petrofacies in downstream
tributaries and emphasizing that, in many modern deltas,

the effective “sources” of marine sand are the lower drainage
basins rather than the entire catchment (Syvitski and
Milliman, 2007; Syvitski et al., 2005; Romans et al., 2016).
These observations underscore a central implication of this
study: stratigraphic stacking patterns and sand petrography
may record different aspects of the same forcing history-
uplift and eustasy dominating architecture, volcanism and
reworking dominating composition-and misclassification
of coeval versus non-coeval volcanic grains can blur
interpretations of volcanic forcing versus recycled source
changes. Integrating petrofacies with texture, grain-size
partitioning, and independent chronostratigraphy provides
a practical pathway to separate allogenic from autogenic
signals in both Quaternary and ancient successions.
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Fig. 18 - A) Variation in mean roundness of Tiber River fluvial sand from headwaters to lower reaches, showing an overall downstream
increase for both quartz and carbonate grains. Ranges for TRC beach samples (detailed in B) are included for comparison. B) Roundness
of beach sands along the Latium coast, with the highest values near the river mouth (TRC5), where wave reworking is likely strongest.
The grey arrow indicates the dominant direction of alongshore drift (after Bellotti et al., 1993). C) Histogram comparing the mean
roundness of quartz and carbonate grains from modern and ancient fluvial and beach deposits. Ancient fluvial quartz is rounder than
its modern counterpart, and ancient fluvial carbonates are consistently rounder than modern ones. Quartz roundness in ancient and
modern beach samples is similar in both range and mean, whereas carbonate grains in beach settings show a wider roundness range

than quartz (from Tentori et al., 2016).
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6. CONCLUSIONS

Tectonism, volcaniclastic input, and sea-level variations
were the dominant allogenic controls on the sequence-
stratigraphic evolution of the Latium Tyrrhenian
extensional margin, with their combined effects recorded
in the sand composition of both high-rank and low-
rank depositional sequences of the Ponte Galeria
Sequence (PGS) and in the modern Tiber River system.
These drivers, however, acted in concert with autogenic
processes-sediment mixing, reworking, and facies-related
textural variability-that often mask or modify primary
provenance signals. Interpreting compositional trends is,
therefore, most straightforward when considering high-
rank sequences spanning long time intervals (~1 Ma),
where the signal-to-noise ratio of allogenic processes
is higher. In contrast, the shorter duration and higher
preservation potential of low-rank sequences (<100 ka)
result in greater facies heterogeneity and superposition
of local processes, complicating the separation of time-
dependent signals from depositional overprints.

In the PGS, volcanic activity exerted a particularly strong
control, dividing the succession into pre-volcanic, syn-
volcanic, and post-volcanic phases. Explosive eruptions
during the syn-volcanic interval supplied abundant juvenile
detritus directly to fluvial, coastal, and deltaic environments,
dramatically altering petrofacies and mineral proportions.
Post-volcanic tectonic uplift reorganized the drainage
network, altered sediment supply, and maintained a strong
influence over compositional trends, often overriding the
effects of glacio-eustatic fluctuations.

The modern Tiber River system detrital modes show
fluvial sand composition reflecting mixing of siliciclastic
(~50-70%), carbonate (~10-30%), and volcanic (~15%)
source lithologies, with marked petrofacies contrasts
between the upper basin-dominated by siliciclastic
sedimentary lithics from Miocene foredeep turbidites-
and the lower basin, where carbonate and volcanic
lithics are more abundant. Hydraulic sorting and
reworking of coastal dune sand and paleosol-derived
volcaniclastic debris further modify compositions in
the coastal zone: foreshore sands are enriched in well-
sorted monomineralic quartz and pyroxene, whereas
shoreface deposits are richer in feldspar and volcanic
lithics hydraulically concentrated by alongshore currents.
On the continental shelf and slope, modern sediments
are overwhelmingly intrabasinal carbonate bioclasts,
with extrabasinal signatures limited to sporadic river-
influenced events or bypass via incised gullies.

Comparison with Pleistocene deep-marine sands at
ODP Site 974 reveals marked differences from modern
river and coastal petrofacies, implying multiple sources
and different dispersal pathways under varying volcanic,
tectonic, and sea-level conditions. These differences
underscore the importance of recognizing that autogenic
processes-especially in highstand conditions-can dominate
compositional patterns even when the stratigraphic
architecture is strongly influenced by allogenic forcing.
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Fig. 19 - This compositional biplot (Gabriel, 1971) displays both
data (samples) and parameters (rays; Q, total quartz; K, K-feldspar;
P, plag; Lc, carbonate lithics; Lm, metamorphic lithics; Lv, volcanics;
Hm, dense minerals). The length of each ray is proportional to
the variability of the parameter in the dataset; the angle between
two rays reveals whether the corresponding parameters are well
correlated (0°), uncorrelated (90°), or inversely correlated (180°)
(from Veermesch et al., 2016). Note that downstream fluvial
samples cluster with marine sand (from Tentori et al., 2018).

From both the ancient and modern systems, a key
implication is that petrofacies can be linked directly to
depositional environments and systems tracts, enabling
the prediction of lithological and textural properties away
from control points. This has both scientific and applied
significance, as compositional and textural data underpin
reservoir and aquifer characterization. However, the study
also highlights the limitations of using petrography in
isolation to determine sequence-stratigraphic architecture,
especially where multiple forcing mechanisms operate
simultaneously or where unconformities are not associated
with clear compositional shifts.

Ultimately, a robust interpretation of sediment
compositional trends requires integrating qualitative
petrographic analysis with quantitative sediment budget
estimates and coupling provenance studies with detailed
knowledge of catchment geology, geomorphology,
climate, and depositional processes. Modern analogs
such as the Tiber River system provide critical calibration
for ancient successions, helping to identify environmental
biases and post-depositional alterations that can obscure
primary provenance signals.
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