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Abstract 
The creation of a process ontology for biology is one of the most ambitious and important projects of current philosophy of  
biology. Process ontology is usually seen as opposing mechanistic ontology which currently dominates biology. However, the 
terms ‘process’ and ‘mechanistic’ are not always clearly defined in current debates. In this paper I provide a new definition of 
‘mechanism’ and ‘mechanistic ontology’ based on the most abstract definition of ‘machine’—von Foerster’s ‘non-trivial machine’ 
that is related to Turing machine. I argue that the main methods of modeling used in systems biology rest upon the implicit 
assumption that organisms abide by the non-trivial or Turing machine logic. By showing that organisms and machines obey 
two incompatible logics of causality I demonstrate the limits of this assumption. The paper concludes by introducing an organ-
ism-centered concept of process and arguing that Whitehead’s process metaphysics offers a way of understanding organisms as 
exemplifications of a specific category of process.
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1. Introduction: the main ontologies  
of western intellectual tradition in biology

Every scientific theory is based on a specific ontology. 
Each is explicitly or at least implicitly underlain by a 
priori metaphysical assumptions about the entities, 
their essential properties, and their relations that gener-
ate the natural phenomena under consideration. Those 
assumptions are the most fundamental propositions 
that many if not all natural sciences share. They are 
defended against all attempts to revise them and can 
therefore survive even the introduction of radical new 
ideas and theories such as the second law of thermody-
namics, the evolution of the species, and the theory of 
relativity. The history of western sciences and philoso-
phy can be considered as an adventure of ideas borne 
by three main ontologies succeeding one another.

The transition from the metaphysical pluralism of 
competing Presocratic schools to classic Greek philos-
ophy in Athens of the 4th century B.C. is due to the 
emergence of the concept of substance (οὐσία, ousia) 
as introduced by Plato and refined by Aristotle. In his 
early work Categories Aristotle made the seminal dis-
tinction between two kinds of substance. As ‘first sub-
stance’ he described each individual actual being such 
as a particular human or tree. Under ‘second substance’ 
he understood a universal abstract entity, such as ‘oak’ 
or ‘redwood,’ which is predicable of a first substance.1 
It is the essence, i.e., the reason of all its essential fea-
tures, which must be attributed to an individual being 
in order to characterize it. In Aristotle’s Categories the 
term ‘second substance’ is used in the same sense as  

1	 When saying “this tree is a redwood” we ascribe second substance, 
i.e., the species redwood, to a first substance, i.e., a particular tree  
(“this tree”).
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the term eidos (εἶδος) is used in Physics and Metaphysics. 
In these later writings eidos has the meaning of ‘species’ 
or ‘form.’ A particular eidos specifies many particular 
first substances (Aristotle 2006, 1037a 29-30). In these 
works the term ‘form’ (eidos) means the essence of actual 
beings and not just their external shape which Aristotle 
called ‘morphé’ (μορφή).2 In the case of organisms ei-
dos refers to the biological species to which they belong 
(Aristotle 2008, 198a 20-198 b3). Under the influence of 
Aristotelian substance ontology eidos became the main 
principle of reasoning about nature. It was considered 
to be the active principle that forms matter, the latter 
being understood as a pure potential, i.e., an entirely 
passive principle. Thus in Aristotle’s theory of causality 
eidos is conceived of as a cause, the so-called ‘formal 
cause.’ It always acts on matter to some end, called ‘fi-
nal cause’ or ‘telos’ (τέλος). The central role of form (ei-
dos) in explaining organism formation and persistence 
makes it the primary common element in the biological 
thought of ancient, medieval, and early modern times. 

The decline of this ontology begins with the scien-
tific revolution initiated by the introduction of the Co-
pernican heliocentric system in the renaissance. In the 
17th century philosophers and physicists replaced final 
and formal cause with blind3 mechanical contact-forces 
(Bacon, Galileo, Hobbes, Descartes) or, equally blind, 
action-at-a-distance-forces (Newton). Their ontology 
can be labeled as ‘mechanistic systems ontology’ or just 
‘mechanistic ontology.’ For principal reasons, since its 
very origin, this ontology considers Aristotelian final 
and formal cause (eidos) as being entirely superfluous. 
Mechanistic ontology totally reverses the main princi-
ple of Aristotelian philosophy of nature by reducing 
essential features of any actual being to its material el-
ements and their interactions. Mechanistic systems on-
tology is not free from overlapping with substance on-
tology. It rather emerged after the ancient and medieval 
concept of substance was essentially transformed. Des-
cartes’ radical reformulation of the concept of substance 
through his extremely influential distinction between 
extended and non-extended substances divided Aris-
totle’s first substances into two ontologically different 
groups, bodies and minds. This is clearly a non-Aris-
totelian way of thinking. More importantly, both kinds 
of Cartesian substance were conceived of as some-
thing that “exists in such a way that it does not depend  

2	 Aristotle sometimes uses the term ‘morphé’ as meaning both 
external shape and essence.

3	 In this context ‘blind’ means devoid of any determination with 
respect to consequences or sensitivity to the larger context.

on anything else for its existence”, i.e., as a self-suffi-
cient being (Descartes 1984, §51). As such it requires no 
relation to anything else in order to exist, which is clear-
ly orthogonal to Aristotle’s substance ontology.4 

In the 17th century Newton succeeded in describing 
the dynamics of the solar system without any refer-
ence to any kind of formal or final cause. Newtonian 
mechanics provided an example of mechanistic sys-
tems ontology par excellence. In the mid of 18th centu-
ry, based on Newtonian mechanics, Kant showed that, 
contrary to Newton’s suspicion, even the explanation of 
the solar system’s generation could be explained with-
out recourse to any non-mechanical cause. Another 
important milestone in the deconstruction of substance 
ontology came with the historization of the species 
concept in Darwinism. Since its emergence, evolution 
theory has been mainly interpreted as a denial of the 
constancy of biological taxonomic forms, and thereby a 
radical refutation of Aristotelian form (eidos). 

Most contemporary biologists and philosophers of 
biology accept some version of materialism stemming 
from this mechanistic ontology. Its triumph in biolog-
ical thought began with Descartes’ attempt to explain 
the formation of the embryo and the sustainment of an 
organism in terms of mechanical contact forces between 
elementary extended substances, i.e., bits of matter, in 
his work Description du corps humaine (1996, 252-255). In 
the mid of the 19th century, the Germans Carl Ludwig, 
Hermann von Helmholtz, and Emil du Bois-Reymond 
tried to base physiology on Descarte’s methodology, 
assuming that the function of a whole organism can 
be explained by summing the results obtained from 
the analysis of the properties of isolated organs (Roth-
schuh 1968, 259). In 1865 French physiologist Claude 
Bernard created a considerably more synthetic view. 
He introduced the earliest version of ‘organicism,’ ac-
cording which living beings consist of diverse materi-
al processes that determine each other synergistically 
(Ibid. 272). Due to his emphasis on synergism Bernard 
may be considered the first non Cartesian materialistic 
physiologist. In the early 20th century, with the advent 
of theoretical biology as an initially neo-vitalistically 
oriented discipline, substance ontology experienced a 
renaissance in organism theory. This ended, however, 
with the establishment of mathematical theoretical bi-
ology early in the 1930’s—preceded in the late 1920’s 
by the first quantitative systems theoretical formalisms 

4	 Aristotle thought of the cosmos as an eternal organism that was organized 
according divine logic. Therefore all  first and second substances are 
internally related to each other as are the parts of an organism.
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describing electrical networks (Janich and Weingarten 
1999, 90)—and especially with the rise of molecular bi-
ology twenty five years later. In the 1990’s, due to the 
emergence of synthetic and systems biology (see be-
low), biological reasoning became even more systemic. 
Currently, Aristotle’s ontology, especially his concept 
of form (eidos), has been effectively banned from bi-
ology and the philosophy of biology (Griffiths 2002, 
72; Sober 1980, 249). Nevertheless, in the last decades 
seminal philosophers have revived a kind of biological 
essentialism, though one that should not be seen as a re-
naissance of Aristotelian ‘second substance’ or form of 
any other kind of substantialism (Kripke 1980; Putnam 
1975; Wiggins 1980). Recently Devitt has defended the 
“idea that biological natural kinds, particularly a spe-
cies such as dogs, have intrinsic underlying natures” 
(2010, 648), however without committing himself to Ar-
istotelian essentialism (Ibid. 651).

Currently, a new ontology that explicitly refutes all 
versions of both mechanistic and substantialist thought 
is being introduced in the philosophy of biology. For 
example, Bapteste and Dupré argue in the favor of a 
network logic that abandons species centered explana-
tions (2013, 386) and sees stable biological units, such 
as organisms, cells, and genes, as entities “stabilized 
either by a single type of process, or by multiple types 
of processes” (Ibid. 396, see also: Dupré 2012, 70f). 
Similar positions are championed in evolutionary de-
velopmental biology (Oyama et al. 2001). The biologist 
Gernot Falkner, the biological anthropologist Terrence 
W. Deacon and I have also introduced non-mechanistic 
ways of thinking about organisms as processes (Deacon 
2012; Falkner and Falkner 2014; Koutroufinis 2014a,b, 
2013, 2009; Koutroufinis and Wessel 2011).5 It is too 
early, however, to judge whether a paradigm shift in 
biological reasoning lies ahead. It is certain, neverthe-
less, that many process-centered approaches in current 
biological thought are inspired by a third major type 
of ontology found in western thought, which is labeled 
process ontology. It emerged in the early 20th century in 
the writings of Alfred North Whitehead but was clearly 
anticipated in the works of William James, Henri Berg-
son,6and Charles Sanders Peirce. 

5	 Falkner anchors his perspective of organism on Whitehead’s 
metaphysics. Deacon represents an emergentistic process-
oriented theory about the origins of life and semiosis. He is 
sympathetic to Whitehead’s ontology but rejects one of its 
essential features: pan-experientialism. I focus on principal 
limitations of organism theories based on dynamical systems 
theories and suggest different ways of going beyond them.

6	 Bergson is often considered to be a vitalist. This is a 
misinterpretation, since vitalism, in the strict sense of this term, 

This essay is based on two main convictions: first, 
that a process ontology for biology requires above all a 
process-centered understanding of the concept of organ-
ism and, second, that this can be achieved only on the 
basis of a philosophically elaborate concept of ‘process’ 
that considerably differs from naïve meaning of this 
word in both scientific and everyday language. These 
are absent in today’s systems biology and theoretical 
approaches to life in general. This paper is an attempt to 
change this situation. In section 2, I suggest a way to dis-
tinct systems biology from theoretical biology. In section 
3, I point out the principal limitations of contemporary 
systems biology. In section 4, I provide a definition of 
the terms ‘mechanism’ and ‘mechanistic ontology’ using 
von Foerster’s concept of non-trivial machine that he has 
introduced as synonym of Turing machine. Then I show 
that on the one hand, the modeling and mathematical 
formalisms used in systems biology, all contemporary 
machines, and dynamic systems theory, and on the oth-
er hand, organisms result from two radically different 
logics of causal organization. In section 5, I suggest a 
metaphysically neutral concept of process based on the 
logic of organismic causality. Whitehead’s metaphysics 
is introduced as a possible way to apply this concept of 
process to organisms. Finally, in section 6 (conclusion), I 
suggest the introduction of a new theoretical biology on 
the basis of process ontology.

2. Theoretical biology and systems biology: 
Models explaining causality and models 
describing behavior

Theoretical biology began in the early 20th century 
with the works of German (or German speaking) biolo-
gists, such as the vitalist Johannes Reinke, the Kantian 
Jakob von Uexküll and the materialist Julius Schaxel. 
Its aim was to develop a philosophically consistent 
foundation for biology. In its beginnings theoretical 
biology was what philosophy of biology is today. In 
the 1920s, Alfred Lotka and Vito Volterra developed 
mathematical models of population dynamics. These 
approaches became the forerunners of the systematic 
mathematization of theoretical biology, such as devel-
oped in the works of Ludwig von Bertalanffy, Nico-
las Rashevsky, Erwin Schrödinger, and Alan Turing.  

presupposes some kind of substance ontology. In his major works 
on philosophy of nature and mind, Creative Evolution, Matter and 
Memory, and Time and Free Will Bergson takes a decisive process 
philosophical perspective and reformulates central metaphysical 
issues in opposition to substance ontology.
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With the development of theories of non-linear dynam-
ic systems and the derivative concepts of self-organi-
zation, chaos and complexity with works of William 
Ashby, Heinz von Foerster, Ilya Prigogine, Hermann 
Haken, and Stuart Kauffman theoretical biology be-
came a mathematical discipline—which is why it is 
often referred to as ‘biomathematics’ (Kauffman 1995, 
1993; Murray 1993; Goodwin 1994; Goldbeter 1997; No-
ble 2006). As a result, the originally wide range of topics 
became much more limited. Today theoretical biology 
has largely been reduced to mathematical modeling 
and computer simulations of biological processes.

In the 1990s another biological discipline emerged—
systems biology. Since it supports a change of attention 
from molecular detail to systems theoretical consid-
eration of organismic processes, it is in an important 
respect antagonistic to molecular biology. The central 
task of systems biology is the study of complex cellu-
lar processes. Since a main aim of this discipline is to 
contribute to improving understanding and medical 
treatment of diseases like cancer and Parkinson, there 
is a narrow connection of systems biology to the medi-
cal-pharmaceutical research and industry.

Most models used in empirical biosciences are mod-
els for describing the behavior of systems. The criteri-
on of their value is whether they facilitate the further 
research by enabling predictions and formulating new 
hypotheses. In mathematical theoretical biology, as it 
was introduced by Lotka, Voltera, von Bertalanffy, and 
Turing, first one had to have a certain hypothesis about 
a causal mechanism which, in the second step, would 
be translated into a mathematical formalism. In carry-
ing this out, a single method was applied: biological 
systems were considered as dynamical systems. As such 
they could be represented by systems of coupled dif-
ferential equations and solved under certain parameter 
values that had to be given. In contrast, in systems biol-
ogy a variety of different methods may be applied at the 
same time if this helps outlining a causal mechanism, 
the corresponding formalism, and the parameters that 
allow making the desired predictions (MacLeod and 
Nersessian 2013). Utility rather than theoretical stringency 
is the criterion for assessing theoretical adequacy in systems 
biology. Thus it should be seen as being closer to engi-
neering than to science. It is not surprising that many 
systems biologists do not consider their discipline to be 
theoretical biology (Laubichler 2005, 111).

Another way to consider the essential difference 
between theoretical and systems biology in respect to 
the theory of organism is to make a clear discrimina-
tion between two kinds of models (Gutmann 1995, 19f.;  

Janich and Weingarten 1999, 86ff.). First, there are mod-
els for explaining how the behavior of a system is gen-
erated. Those models are developed for explaining the 
internal causality of a system. Newton’s model of the 
solar system, for example, qualifies as a model that 
aims at explaining the causal relations between celestial 
bodies. Second, there are models that aim at describing 
the known behavior of a system, so that predictions of 
new behaviors emerging under new conditions can be 
made. The ancient astronomy that was based on the 
mathematics of epicycles provided a model describing 
the behavior of the solar system without explaining the 
underlying causality (gravitational attraction). Systems 
biology may content itself with making models that pre-
dict the behavior of biological systems in a way that sup-
ports the development of new biomedical applications. 
In contrast, the role of theoretical biology should be to 
suggest models that explain the causality of organisms. 
The easiest way to proceed to this difficult enterprise is 
showing first a principal theoretical reason why systems 
biological models should be considered as models for 
predicting the behavior and not as models for explain-
ing the causality of organisms.

3. On principal limitations of formal models 
of organismic dynamics

Aided by the theory of dynamic systems, the mod-
ern paradigm of self-organization has become a main 
pillar of mathematical theoretical biology and systems 
biology as well. A system is defined as a dynamic sys-
tem if its state at any given moment can be described 
as a limited set of time-dependent, or state variables 
x(t) = x

1
(t), x

2
(t), ..., x

n
(t), for which a function F can be 

formulated by stating mathematically the connection 
between states at times t and t + δt, where δt is a time 
step that may be infinitesimally small. The properties of 
this function are presumed to reflect the causal relation-
ships at work within the system. The set of state vari-
ables [x

1
(t), x

2
(t), ..., x

n
(t)] defines an abstract space, the 

system’s so-called ‘state-space.’ Usually, every state x(t) 
in a stable dynamical system can be calculated from its 
preceding state x(t - δt).7 It is important to keep in mind 
that the development of a dynamic system is not merely 
the result of time-dependent variables x(t), but depends 

7	 This is sometimes not possible in unstable systems because 
some states have more than one possible successor state under 
actual (natural) conditions. But even these systems allow, at least 
in principle, the calculation of all potential future states of the 
system’s development given its state at a certain time.



Organism, Machine, Process 27

also on a group of quantities the value of which cannot 
be varied by the system’s dynamics. The most abstract 
formula for a dynamic system must therefore be:

x(t + δt) = F[x(t), q, p, δt]; p = p
1
, p

2
, ..., p

m 

(Formula 1)

This formula is a slight variation of a formula provid-
ed by the theorists of self-organization Werner Ebeling 
and Igor Sokolov (2005, 40). The letter q represents a set 
of so called ‘independent variables.’ They are the initial 
and boundary conditions of the system, i.e., quantities 
that are externally imposed on the dynamic system. 
Boundary conditions include the material and energetic 
gradients that remove dynamic systems from the state 
of thermodynamic equilibrium. They determine the 
system’s energetic and material openness. The letter p 
represents a set of parameters. Some parameters repre-
sent the degree of activity of specific molecules in sys-
tems-biological simulations, while others represent the 
rate coefficient of reactions in chemical kinetics. Some 
other parameters are abstract relationships, summa-
rizing the causal relations between variables of the cell 
such as volume, temperature, pressure, pH-value, etc. 
Parameters are either constants or entail many constants 
the value of which cannot be varied by the system’s dy-
namics. In biological modeling, parameters are either 
experimentally derived or estimated or simply taken 
from the literature (Voit 2000, 146-173). In most cases all 
independent variables and parameters are preset by the 
experimenters or model makers and are held constant in 
experiments and corresponding computer simulations. 
In other words, they are externally fixed factors that cannot 
be varied by the system’s own dynamics. The reason for this 
is that those quantities canalize the development of the 
state variables x(t) in the state-space so that they are log-
ical presuppositions of the systems possible dynamics.

3.1. Examples of formal models  
in systems-biology

Systems biologists can employ a variety of different 
methods depending on the problem to be solved (Ma-
cLeod and Nersessian 2013, 536). Systems biologists who 
model processes as systems of differential equations of-
ten focus on the modeling of the dynamics of genetic, 
metabolic and signal pathways (Downward 2001; Elow-
itz and Leibler 2000; Ferrel and Xiong 2001; Gardner et 
al. 2000; Meinhardt and Gierer 2000; Murray 1993; Tyson 
et al. 2003; Van Hoek 2008). They also study the behavior 
of larger network systems constituted by coupling these 

pathways, such as might occur in embryogenesis (Collier 
et al. 1996; Goldbeter 1997; Goodwin 1994; Guidicelli and 
Lewis 2004; Karr et al. 2012; Meinhardt 2003; Meinhardt 
and Gierer 2000; Murray 1993; Nijhout 2003; Panning et 
al. 2007; Turing 1952). From the perspective of the the-
ory of dynamic systems, the final-state-directedness of 
embryogenesis, cell cycles, and other final-state-directed 
phenomena is thereby reduced to the dynamics of an 
enormously complex system of positively and negative-
ly coupled biomolecular reactions. 

In order to demonstrate how this approach works, 
I will introduce an exemplary case of the mathematical 
analysis of a biological system implemented with ordi-
nary differential equations. Based on the Operon-mod-
el of Jakob and Monod, Gardner et al. presented a 
model for the mutual regulation of the activity of two 
genes. This model is often considered as a milestone of 
synthetic biology.8 Both genes transcribe a so-called re-
pressor protein which blocks the activity of the other 
gene, so that both genes inhibit each other. The dynam-
ics of this system consists of two interwoven negative 
feedback relationships that can be described by two 
state variables, U and V, which are associated with the 
concentrations of each repressor protein, respectively. 
The variation of the concentrations of both proteins can 
be represented by two coupled differential equations 
(Gardner et al. 2000, 339).

(Formula 2)

(Formula 3)

These coupled non-linear equations are so-called 
‘dimensionless’ equations.9 The quantities α1, α2, β, and 
γ are the parameters. Their value is determined by the 
experimenters. Certain combinations of the four pa-
rameters lead to a bistable behavior, meaning that two 
stable alternative terminal states—in the language of 
dynamical systems theory: two attractors—are possible. 

8	 This is asserted in the editorial article of Nature “Ten years of 
synergy” that was published in 2010. 

9	 In dimensionless equations the quantities have to be recast 
by judicious scaling so that no units need appear. In the two 
equations provided by Gardner et al. the left sides seem to have 
the quality of rate and the right sides the quality of concentration. 
However U and V do not represent concentrations and τ does not 
represent time. The two sides of the equations can be reconciled 
because these symbols represent only values associated with 
concentrations or time. 
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Bistable systems are common in theoretical and sys-
tems biology, since organisms take advantage of bista-
bility because it increases their flexibility and thus their 
adaptability.

A few years ago van Hoek suggested a metabolic 
pathway model for the behavior of Escherichia coli. Fol-
lowing the same methodology as that of the authors 
introduced above, he employed ten coupled ordinary 
differential equations for the solution of which he used 
58 parameters (2008, 18-20, 45-47).

In the last decade several research groups performed 
computer simulations of whole cells. A model of the 
cell cycle of yeast operating with ordinary differential 
equations was published a few years ago by Panning et 
al. (2007). In this model the yeast cell is reduced to 36 
state variables. For their computation the model makers 
use 143 parameters. So, on average for the computation 
of one variable they use 4 parameters. In 2012 a group 
of bioengineers from Stanford University published a 
whole-cell computational model of the bacterium My-
coplasma genitalium that “includes all of its molecular 
components and their interactions” (Karr et al. 2012, 
389). The life cycle of the bacterium is represented by 
16 state variables such as copy numbers of metabolites, 
RNA, and proteins, metabolic reaction fluxes, mass, vol-
ume, and shape of the cell (Ibid. 390). For the compu-
tation of those variables the model makers use “more 
than 1,900 experimentally observed parameters” (Ibid. 
391). Most of them “were implemented as originally 
reported” in “over 900 publications” and “several oth-
er parameters were carefully reconciled” by the model 
makers themselves in order to make the results comput-
ed by the model agree with experimentally derived data 
(Ibid.). Next, the model was validated against a large 
number of independent data sets, i.e. those that had not 
been used in the construction of the model (Ibid.).

Biochemical systems theory (BST) is a mathematical 
and computational framework based on ordinary dif-
ferential equations. Initially introduced by Savageau in 
the 1960’s for the study of biochemical systems it has 
developed to a method for analyzing and simulating 
different kinds of biological processes, such as metabol-
ic control, gene expression and signaling (Voit 2013). 
The starting hypothesis of BST is that in a biochemical 
system consisting of n substances the rate of change of 
the concentration of a substance xi, a dependent vari-
able, can be represented by the following equation:

dxi/dt = Vi
+(x

1
, x

2
, ..., xn) – Vi

–(x
1
, x

2
, ..., x

n
)

(Formula 4)

where Vi
+ and Vi

– are the production and depletion 
functions of xi depending on the system’s state, i.e., to 
the concentrations x

1
, x

2
,..., x

n
 of the other substances 

(Voit 2000, 47). In realistic situations these functions are 
usually not known and can be not determined exper-
imentally. According Taylor’s theorem, however, at a 
specific point x = b any infinitely differentiable function 
f(x) can be reduced to a sum of terms that are calculated 
from the values of the function’s derivatives. This and 
basic features of the logarithmic function make possible 
equating both unknown and probably very complicat-
ed functions with products of rate constants and power 
functions “of exactly those variables on which the pro-
duction and degradation depend” (Ibid. 70):

(Formula 5)              Vi
+ = αiΠ(xj)gij,  Vi

– = βiΠ(xj)hij

                                    (with j = 1…n)

In this formula αi, βi, gij, and hij are independent vari-
ables and parameters (ibid 51f.). This formula, howev-
er, is valid only in the proximity of a so called ‘operat-
ing point’ which is typically the system’s steady state 
(Ibid. 83; Savageau 2009, 6436; Voit 2013, 4, 6, 23). In the 
proximity of steady states non-linearities of metabolic, 
genetic and signal processes are represented by linear 
equations which are much easier to handle (Savageau 
1988; Voit 2013, 23; Voit and Schubauer-Berigan 1998). 
This is the essential benefit of BST, although concentra-
tions of biomolecules are validly represented only in a 
limited area around the operating point (Ibid.). 

Besides systems of ordinary or partial differential 
equations theoretical and systems biologists also em-
ploy cellular automata and so called agent-based mod-
eling. The theory of cellular automata, as it has been 
introduced by John von Neumann in the early 1950’s, is 
the basis of “the simplest mathematical representation 
of a much broader class of complex systems” (Ilachinski 
2001, 1). A cellular automaton consists of a one-, two-, 
or multi-dimensional lattice of equivalent cells, each of 
which takes a finite number of discrete states at discrete 
time units. The state of a particular cell at time t + Δt 
is determined by a specific local transition rule which 
takes into account only the states of the cells located in 
its local neighborhood at time t (Ibid. 5). The state of a 
particular cell at position x at time t + Δt is given by the 
following formula:

s(x, t + Δt) = Φ
x
[c(x, t)]

(Formula 6)
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In this formula c(x, t) is the configuration of the 
neighborhood of cell x and Φ

x
 is the local rule that as-

signs states to cell x in dependence of the state of its 
neighborhood (Peak et al. 2004, 919). Δt represents the 
time step which, other than in continuous dynamic sys-
tems (see formula 1), cannot by infinitesimally small. 
The totality of the local rules Φ

x
 defines a global transi-

tion rule Φ that determines how the total state C of the 
entire automaton changes after a time step:

C(t + Δt) = Φ[C(t)]

(Formula 7)

A main reason for the popularity of cellular automa-
ta among complex systems researchers is their capacity 
to generate extremely complicated behaviors produc-
ing long-range order despite obeying only simple local 
rules. Cellular automata have been applied to simula-
tions of various biological phenomena such as the dy-
namics of stomatal apertures on plant leave (Peak 2004, 
920ff.), the complex patterns on the surfaces of seashells 
(Baker and Herman 1972; Coombes 2009; Waddington 
and Cowe 1969; Wolfram 1984), and the waves of color 
running through the skin of mollusks (Packard 2001). 

Agent-based modeling is a simulation method that 
has been developed on the basis of cellular automata 
(Emrich 2007, 18). It is often applied to studies of the be-
havior of complex systems consisting of a big number of 
organisms such as ecological systems and bacterial bio-
films (Grimm et al. 2006, 2010). In two papers published 
a few years ago agent-based modeling has been used to 
simulate the growth of populations of individual mi-
crobes in biofilms immersed in aquatic environments 
(Lardon et al. 2011) and to simulate the dynamics of 
horizontal gene transfer between bacteria living in bio-
films (Merkey et al. 2011). Grimm et al. have published 
a “proposed standard protocol” for describing agent-
based modeling that may be used as general guide for 
this kind of simulations (2006, 2010). As with modeling 
using differential equations this method is also based 
on the presetting of a number of independent variables 
and parameters, usually taken from the literature (Lar-
don et al. 2011, 2427ff, 2433; van der Wal et al. 2013, 3, 9.) 
or assumed or acquired by measurements (Merkey et 
al. 2011, 2436, 2440 ff.). The number of these is typically 
significantly larger than the number of state variables 
used to compute the dynamics.

All methods introduced above—solving of systems of non-lin-
ear equations, biochemical systems theory, cellular automa-
ta, and agent based modeling—share three essential features.  

First, they are methods for studying and manipulating 
the behavior of biological processes by treating them 
as self-organized dynamic systems. Thus they may be 
subsumed to the umbrella term ‘dynamic systems theo-
ries.’ Second, they do not explicitly address the distance 
between biological models and real biological process-
es and systems. Third, they operate based on the same 
implicit assumptions about the roles of different causal 
factors—dependent variables, independent variables, 
and parameters—in dynamics of biological systems. 
For the purpose of this essay, this is the most important 
feature of those methods. Therefore, it will be analyzed 
in the next section.

3.2. Strict separation of intrinsic from extrinsic 
causal factors in systems biology

The development of a dynamic system is displayed 
by trajectories in its state space. The essential feature 
of all kinds of self-organized systems, such as Bénard 
convection cells, chemical dissipative structures, and 
systems biological formal models, is that their trajecto-
ries converge to small areas of their state-space dependent 
on the initial conditions. 

Emergence of self-organized dynamics means that 
the total number of the possible states of a system’s be-
havior is less than the sum of the numbers of the possi-
ble states of the behavior of its elements: self-organiza-
tion is elimination of possibilities. This applies not only 
to systems studied by the theory of self-organization 
but also to all biological processes. Bio-molecular pro-
cesses, cells, organisms, ecosystems, and the whole bio-
sphere actualize only an extremely small number of the 
totality of possible states contained in their state-spaces. 
Thus the study of biological processes and their models re-
quires first an understanding of the causal factors that re-
strict their development to a small number of possible states. 

I use the term ‘causal factors’ to refer to all factors that 
contribute to the determination of a dynamic system’s 

Fig.1. Convergence of trajectories in a two-dimensional state-space.
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development which in state-spaces is represented by 
a trajectory, for example, energetic and material quan-
tities and relations between such quantities. In what 
follows I will use the generic term ‘factors’ to refer to 
causal factors. In formal models used in both physics 
and systems biology there are two clearly distinct kinds 
of factors at work: intrinsic and extrinsic ones. 

Intrinsic factors of formal models include those fac-
tors which are generated by the system’s dynamics it-
self. They are the time dependent values of dependent 
or state variables. In formula 1 x(t) and in formulas 2 
and 3 the changing values of U and V are the only in-
trinsic factors. Intrinsic factors are also represented by 
xi (formula 4), xj (formula 5), s and c (formula 6), as well 
as C(t) and C(t+Δt) (formula 7). The trajectory which 
displays a system’s dynamic behavior in the state space 
necessarily displays also the variation of its intrinsic 
factors, since each dimension of the state space rep-
resents a certain quantity being one of the system’s state 
variables, i.e., one of its intrinsic factors. 

Extrinsic factors of formal models include all the fac-
tors that contribute to the generation of intrinsic factors 
but are not influenced by any intrinsic dynamics, i.e., 
the respective state of the system. Independent vari-
ables and parameters are extrinsic factors. The quanti-
ties α1, α2, β, and γ (formulas 2 and 3) and αi, βi, gij, and 
hij (formula 5) are extrinsic factors. 

In this essay ‘intrinsic’ means ‘dependent upon dy-
namics’ and ‘extrinsic’ means ‘independent of dynam-
ics.’ 

In the formalisms of systems biology the most com-
plex factors are described by the differential equations or 
the systems of coupled differential equations which deter-
mine the variation of the state variables of continuous 
dynamic systems and the rules which determine the 
variation of the state of cellular automata. Those sys-
tems of equations and rules are relations between the 
less complex intrinsic and extrinsic factors. In contem-
porary formalisms the formal structures are not influ-
enced by the system’s change of states. They are static 
which clearly qualifies them as extrinsic factors. As rela-
tions between simpler factors they can be characterized 
as second-order extrinsic factors. Analogously, dependent 
variables, independent variables, and parameters can 
be understood as first-order factors, either intrinsic or ex-
trinsic ones. A system of coupled differential equations, 
such as the system consisting of formulas 2 and 3, is 
a single indivisible second-order extrinsic factor. Func-
tion F (formula 1), the system consisting of Vi

+ and Vi
– 

(formula 5), and Φ (formula 7) are other examples for 
second-order extrinsic factors. For principal reasons,  

to be discussed below, in contemporary systems biolo-
gy there are no second-order intrinsic factors.

There are two essential differences between first or-
der intrinsic factors on the one hand and first- and sec-
ond-order extrinsic factors on the other. 
1.	 Whereas new values of the state variables are con-

tinuously generated, all extrinsic factors are usually 
held constant during an experiment or a computer 
simulation of a process. In other words, extrinsic fac-
tors are usually static. 

2.	 All intrinsic factors are dynamically interconnected, 
i.e., they mutually determine each others’values. 
This explains why the behavior of a dynamic sys-
tem’s state variables is usually described by systems 
of coupled differential equations (see formulas 2 
and 3). To a certain degree intrinsic factors obey a 
form of self-referential or cyclical causation. There is 
nothing like this in the relation of extrinsic factors to 
each other, since they do not depend on the system’s 
dynamics and therefore can be externally regulated 
in total isolation from each other. 

Because of the one-sided causal dependence of in-
trinsic on extrinsic factors there is a sharp logical dis-
tinction between both kinds of factors. One may also 
talk of a logical dualism or dichotomy between intrinsic 
and extrinsic factors. This not only applies to systems 
biological modeling; it is rather a fundamental feature 
of the theory of self-organization. The role that both es-
sentially different kinds of factors play in the general 
logic of self-organization as well as in systems biology, 
which is a specific application of this logic, can be de-
picted as follows:

If the imposition of extrinsic factors radically re-
duces the possible ways that the system’s elements 
can interact with one another, the generated intrinsic  

Fig. 2. The logic of theory of self-organization and system byology  
in respect of casual factors
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factors or state variables will exhibit a final-state-di-
rected dynamic behavior. As they mutually force their 
values to converge towards an increasingly limited 
area of the state space an attractor emerges. First and 
second-order extrinsic factors play a crucial role in the 
end-directedness of a system’s development since they 
decisively influence the pattern of the emerging attrac-
tor. Both attractors of the bistable genetic network de-
scribed above emerge only for specific ratios between 
the first-order extrinsic factors (parameters) α1, α2, β, 
and γ, and the second-order extrinsic factors defined 
by both differential equations. It is noteworthy that 
the modeling of the self-organization of just two state 
or dependent variables, U and V, requires that four pa-
rameters be externally determined. This is not an ex-
ception but rather the normal case: In systems biology 
models self-organized behavior appears only if the number of 
first-order extrinsic factors exceeds several times the number 
of the intrinsic ones.

4. Logic of organisms vs. logic of machines

‘Mechanistic thought’ is very widespread in contem-
porary biosciences. Unfortunately, despite the attempts 
of philosophers of science to define the terms ‘mech-
anistic’ and ‘mechanism’ (Bechtel 2007; Buzzoni 2016; 
Craver 2007, 2013; Glennan 2002; Machamer, Darden, 
Craver 2000; Nicholson 2012), it is not always clear 
what bioscientists mean by using those terms. In the 
following section these concepts are given an explicit 
interpretation and used to show in what sense systems 
biology is mechanistic.

4.1. Logic of organisms
The distinction between intrinsic and extrinsic fac-

tors plays a critical role in systems biological formal-
isms, though it need not be restricted to formal mod-
els. It can be applied to organisms as well if the terms 
‘intrinsic’ and ‘extrinsic’ are not interpreted as ‘internal’ 
and ‘external’ respectively but as ‘dependent upon dy-
namics’ and ‘independent from dynamics’ respectively, 
as introduced above. First-order intrinsic organismic 
factors are all material-energetic quantities generated by 
an organism that have an effect on its dynamics, such as 
the concentration of regulatory proteins, scleroproteins, 
hormones, ATP molecules etc. This category includes 
also environmental factors that the organism influenc-
es in order to improve the conditions of its life. In this 
sense regulated atmospheric humidity and room tem-
perature are first-order intrinsic organismic factors as well.  

First-order extrinsic organismic factors are all factors 
that influence but are not affected by an organism’s dy-
namics. Those factors include initial conditions, such as 
the parental genetic constitution and the environment 
of a zygote at the time of its fertilization, fundamen-
tal laws of nature that constrain physicochemical pro-
cesses, and environmental conditions that cannot be 
changed by organismic activity, such as gravitation, 
radioactivity, geological processes, solar activity, and 
the forms and quantities of available energy and matter. 
However, one of the most essential characteristics of life 
is that the borderline between first-order intrinsic and 
extrinsic factors is fluent. Especially during evolution 
of intelligence some of the extrinsic environmental fac-
tors just mentioned have been transformed to intrinsic 
ones. The idea of second-order factors applies also to 
organisms, as we will see shortly. However, real organ-
isms do not obey the logic of self-organized dynamic 
systems for four reasons.

First, in sharp contrast to those formalisms, organ-
isms are able to change the value of most quantities that 
in systems biology models are represented by parame-
ters and independent variables, i.e. fixed quantities or 
constants that serve as rate coefficients or boundary con-
ditions (Longo and Montévil 2012, 3). In contrast to these 
contemporary biological formalisms, in real organisms 
the number of extrinsic factors is only a tiny fraction of 
the number of all dynamic quantities which mutually 
determine their development. In other words, in real or-
ganisms the number of first-order intrinsic factors exceeds by 
many times the number of first-order extrinsic ones. 

Second, during growth, regeneration, and readapta-
tion of unicellular and multi-cellular organisms and in 
embryogenesis of the latter a vast array of new sorts of 
proteins is synthesized. This requires that the material 
constitution of each real organism is permanently sub-
ject to change. As a result, the structure of an organism 
is a sequence of permanently generated new relations 
between its own first-order intrinsic and first-order ex-
trinsic factors. In current formalisms those relations are 
inappropriately represented by systems of fixed differen-
tial equations (e.g. formulas 2 and 3). As noted above, in 
current biological formalisms those systems of equations 
are second-order extrinsic factors. In contrast, even in 
primitive unicellular or mature multi-cellular organisms 
that do not undergo a process of radical regeneration or 
readaptation, relations between both kinds of first-or-
der factors are themselves intrinsic factors. This is the 
case, since, on the one side, they are permanently varied 
by the organism’s dynamics, even though only slight-
ly, and, on the other side, they canalize this dynamics.  
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Embryonic processes display an even more radical dy-
namics. A system of differential equations representing 
the development of an embryo would have to undergo 
a transformation that is so radical that not only most of 
its parameters would have to be replaced by variables 
but also that formal system’s structure––i.e., form and 
number of the equations themselves––would have to 
be subject to permanent radical variation until maturity 
is reached. To put it in a nutshell: in real organisms sec-
ond-order factors are necessarily intrinsic factors or, in oth-
er words, there are no second-order extrinsic factors in real 
organisms. Even if a large part of an organism’s dynam-
ics is determined by an artificial cybernetic structure—
think for example of humans with artificial hearts, brain 
pacemakers or even of a ‘cyborg’—the organism is only 
alive so long as it is ruled by a second-order factor that 
permanently redefines the organism’s relation to that 
non-organismic structure, i.e. to the second-order ex-
trinsic factor that regulates the latter.

Third, to the extent to which organisms generate the 
relation between first-order intrinsic and first-order ex-
trinsic factors they become able to autonomously inter-
act with their environment. This is in a sharp contrast 
to systems studied by physics, including self-organized 
systems, the borders of which are determined either by 
a human experimenter or by an external physical fac-
tor, including chance. Organisms demonstrate a sig-
nificant degree of organizational autonomy. The term 
‘self-organization’ applies to them in a literal and not 
just metaphoric sense of ‘self.’ A self is “a dynamical 
process organized in such a way that it minimizes the 
probability that its organization will be lost” (Deacon 
and Koutroufinis 2014, 417). Selves autonomously cre-
ate their relations to their environment. In 1909 Jakob 
von Uexküll introduced the term ‘Umwelt’ referring to 
those features of a living being’s environment to which 
they are sensitive. Umwelt and self are two sides of 
the same coin. This is characterized by biosemiotician 
Kalevi Kull’s translation of ‘Umwelt’ as “self-centered 
world” (2010).10 The relations of selves to their Umwelts 
thereby correspond exactly to what in metaphysics is 
called ‘internal relations’ (see below).

Fourth, during growth and regeneration of unicellu-
lar and multi-cellular organisms and in embryogenesis 
of the latter a vast array of new sorts of molecules are 
synthesized. New sorts of molecules provide new types 
of intrinsic factors. As such, they need to be represented 
by new dimensions of the state space. In other words, only 

10	 The German word ‘Umwelt’ contains the terms ‘um’ meaning 
‘around’ and ‘Welt’ meaning ‘world.’ 

continually growing state spaces would be able to rep-
resent embryogenesis, regeneration or growth of single 
cells and multi-cellular organisms.

4.2. The logic of machines and its validity  
for contemporary biological formalisms

Contemporary biological formalisms follow the log-
ic of regulation or control that characterizes man-made 
machines as well. The logic of both formal models and 
machines is based on a sharp logical distinction and 
strict operational segregation between intrinsic and 
extrinsic factors. In mechanical devices such as clock-
works and combustion engines, this segregation is 
readily apparent. The intrinsic factors of first-order are 
the mutually constraining (and periodically recurrent) 
positions and movements of the moving parts, i.e. the 
state of the dynamical part of the machine at a certain 
point in time, for example the positions and movements 
of a piston. The first-order extrinsic factors include the 
material properties of the moving and non-moving 
machine parts and their fixed shapes, for example, the 
diameter and length of the cylinder of a combustion 
engine. The relation between all intrinsic und extrin-
sic factors of first-order constitutes the structure of the 
combustion engine, that is its second-order factor. A 
good example for visualizing a second-order factor is 
the relation between piston and cylinder. Is this rela-
tion an intrinsic or extrinsic one? Whereas the cylinder 
constrains movements and positions of the piston, i.e. 
the first-order intrinsic factors, the piston does not exert 
any kind of constraining influence on the cylinder. Thus 
the second-order factor is an extrinsic one. Cylinder 
wear caused by the piston’s movements is, of course, 
the opposite of a constraining influence since it increas-
es the range of the machine’s (unintended) degrees of 
freedom. As a result, a worn-out machine can be found 
in more possible states than a sound one, which is what 
makes it unpredictable and unreliable. The logical du-
alism between (dynamic) intrinsic and (static) extrin-
sic factors of machines is paralleled by the descriptive 
dualism between function and structure. Whereas the 
structure determines the function, the latter is not al-
lowed to influence the former because any such influ-
ences are unintended and thus degrade the machine’s 
operation, i.e. increase its undesired degrees of freedom 
through wear. 

Against the background of organismic logic, the logic 
of machines can be summarized as follows: First, in ma-
chines there is a given number of intrinsic and extrinsic 
factors, the latter exceeding by many times the former. 
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The exact opposite is the case for organisms. Second, 
the structure of a machine is a second-order extrinsic 
factor, since during the whole ‘lifetime’ of a machine, 
ideally, its structure is not influenced by its functioning 
at all, and therefore not subject to any variation. Third, 
since the number of intrinsic factors is fixed there is no 
generation of new types of intrinsic factors in machines. 
This allows the dynamics of all known real and abstract 
machines to be depicted in a state-space with a constant 
number of dimensions, i.e., in non-growing state-spaces.11 

These three characteristic restrictions of machine-log-
ic as well as the duality between function and structure 
apply equally to all kinds of machines: e.g. mechanical 
clockworks, steam engines, nuclear reactors, rocket and 
jet engines, cybernetic automata, quartz clocks, linear 
and cyclical particle accelerators, ancient Greek calcula-
tors, vacuum tube computers, quantum-computers, etc.

The conclusion drawn from these reflections is that 
the logic of contemporary biological formalisms and self-or-
ganized dynamic systems theory is identical to the operation-
al logic of machines. This is not to claim that organisms 
are organized according machine-logic. It only means 
that the models in question obey this same mechanistic 
logic. Indeed, many of those models are regarded as 
paradigm examples of mechanistic thought. 

4.3. Mechanistic systems ontology and the general 
logic of machines as expressed by non-trivial  
or Turing machine

The logic of machines, as it has been introduced in 
the last section, is not restricted to machines and spe-
cific formalisms. It applies also to most, if not all, the-
oretical models developed by physicists since the time 
of Galileo. In other words, it applies equally to models 
of dynamic and thermodynamic systems in or close to 
the state of thermodynamic equilibrium (e.g. harmon-
ic oscillator, pendulum, solar system, gas in a closed 
container, solid bodies), models developed in electro-
dynamics and theories of special and general relativity, 
and to formal descriptions of self-organized open sys-
tems or dissipative structures, such as whirlpools, twist-
ers, the red spot of Jupiter, snow-crystals, flames, Bénard 

11	 So called self-replicating machines do not constitute an exception 
to this claim. Formalisms of those abstract machines are grounded 
on von Neumann’s theory of cellular automata. Von Neumann 
could show that if certain externally set conditions (first-order 
extrinsic factors) are given, patterns of cellular activation emerge 
that copy themselves. Each self-replicating pattern is generated by 
a certain dynamic activity. Since cellular automata have a lattice 
with a fixed number of cells and each cell has a fixed number 
of possible states, all possible dynamics of such an automaton 
unfold in a state-space with a constant number of dimensions.

convection cells, granules on the sun’s surface, earth 
mantle convection, laser light, reaction-diffusion systems 
(e.g. Belousov-Zhabotinsky and similar reactions), soli-
ton waves, and chaotic atmospheric phenomena. 

The terms ‘mechanism’ and ‘mechanistic’ may be 
interpreted with a high theoretical precision if their et-
ymological root—the Greek word ‘mechané’ (μηχανή) 
i.e. ‘machine’ is understood as referring to the most ab-
stract description of all possible natural and artificial 
systems, including mathematical and other formalisms, 
obeying machine-logic: Heinz von Foerster’s non-trivi-
al machine (2003, 139f.). The essential commonality be-
tween mathematical models in contemporary physics 
and biology and real (material) machines can be best 
demonstrated through the idea of non-trivial machine. 

Von Foerster considers non-trivial machine to be 
identical with Turing machine (Ibid. 196). The term 
‘Turing machine’ refers to a class of abstract devices 
or mathematical objects suggested by Alan Turing in 
1937 in order to define a formal notion of computabil-
ity, so called ‘Turing computability.’12 Under the term 
‘machine’ von Foerster understands “well-defined 
functional properties of an abstract entity rather than 
an assembly of cogwheels, buttons, and levers” (Ibid. 
207f.). At any time the machine is in any one of a finite 
number of possible states. The transition from one state 
to another is controlled by conditions or rules specified 
for each specific machine. The term ‘machine’ there-
by means a set of invariable transition rules.13 Activity 
and change of state of a particular Turing machine are 
entirely determined by its transition rules, its current 
state, and its current input (Barber-Plummer 2013). 

Von Foerster introduced the concept of the ‘non-triv-
ial machine’ as opposed to that of ‘trivial machine.’ A 
particular trivial machine is essentially a particular in-
variable function or operator f, the current calculations 
of which do not depend on any past calculations at all. In 
contrast, a non-trivial machine is a system of mathemat-
ical functions the computations of which always depend 
on all computations it has ever carried out. The machine 
carries out two operations contemporaneously: First, at a 
time t depending on input x(t), its corresponding inter-
nal state z(t), and a number of constants c

1
,14 it computes 

a particular output y(t) according an operator F:

12	 A task is Turing computable if some Turing machine can carry it 
out. 

13	 The rules of a particular Turing or non-trivial machine may be 
changed. Because of total lack of material reality, such an entirely 
abstract device is nothing but a specific set of abstract rules. 
Therefore, changing those rules would mean creating a new 
machine. 

14	 In his writings, von Foerster does not mention any constants 
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y(t) = F[x(t), z(t), c
1
]

(Formula 8)

Second, at the same time t also depending on input 
x(t), its current internal state z(t), and a number of ad-
ditional constants c2,15 it computes the internal state of 
the immediate future t+1 according a transition rule or 
operator Z:

z(t+1) = Z[x(t), z(t), c
2
]

(Formula 9)

So, at the next moment in time, t+1, both operations 
will be carried out under the influence of the varied in-
ternal state z(t+1). The computation of the new output 
y(t+1) becomes dependent on the machines past com-
putation and through it on all computations the ma-
chine has ever carried out. Thus a non-trivial machine is 
essentially different than a trivial one, since the modus 
operandi changes with every operation according an 
internal logic, the transition rule Z. It should be taken 
into account, however, that the abstract functions F and 
Z cannot be varied by the machine’s operations.

In a non-trivial machine there are no higher-lev-
el transition rules computing the first-level transition 
rules. It can therefore be seen as a non-trivial machine 
of first-order. Conversely, a trivial machine may be seen 
as a zero-order non-trivial machine. Of course, one may 
think of non-trivial machines with one or more me-
ta-levels of transition rules computing the lower level 
transition rules (Ibid. 152f.). All transition rules above 
the first level do not compute numeric results but other 

ci. If, however, the mathematical functions of the non-trivial 
machine are systems biological equations (see formulas 2, 3, and 
5) they must entail independent variables and/or parameters, i.e., 
constants. 

15	 See footnote 14. 

transition rules. Although the number of levels may be 
arbitrarily high there is always a finite number of levels. 
This means, however, that in its highest level of opera-
tion any non-trivial machine is a trivial machine. 

All Turing machines incorporate the same opera-
tional logic with three essential features: 
1.	 As in the case for real machines, in any non-trivial or 

Turing machine there is a sharp logical distinction and 
strict operational segregation between intrinsic and ex-
trinsic causal factors. The dependent or state variable 
z(t) is a first-order intrinsic factor. The input x(t) and 
the sets of constants c

1
 and c

2
 are first-order extrinsic 

factors. The constants c
1
 and c

2
 are parameters and 

x(t) is an independent variable. 
2.	 The operators or abstract entities F and Z define the 

non-trivial machine’s structure. They are second-or-
der extrinsic factors, since they cannot be varied by 
the machine’s operations, i.e., the computations of 
y(t) and z(t). 

3.	 Turing or non-trivial machines may be arbitrarily 
complex so that they have many different types of 
state variables z(t).16 In this case the machine’s dy-
namics could be depicted only in a state space with a 
number of dimensions equal to the number of types 
of state variables. Non-trivial machines do not gener-
ate new types of first-order intrinsic factors, i.e. new 
types of state variables because this would require 
the variation of operators F and Z. For that reason 
the dynamics of Turing machines can only be described 
in state-spaces with a fixed number of dimensions repre-
senting the general types of their state variables z(t).
 
Turing or non-trivial machines are abstract devices 

from which all current computers derive their archi-
tecture. All computations of real processes that can be 
simulated by our computers are based on Turing com-
putable models of those processes. The computer-simu-
lated pattern formation of embryogenetic development 
is determined by the machine’s structure, i.e. the oper-
ators F and Z, but it is not contained or preformed in 
these entities. So, although a Turing machine’s opera-
tors are abstract timeless entities, and thus universals or 
general types, they are essentially different from Aristo-
tle’s formal cause or form (eidos) or ‘second substance.’

All organisms, including embryos, are not passive 
recipients of externally determined inputs but select 
through their purposeful agency, at least to a high 

16	 For example, the computation of the system consisting of formulas 
2 and 3 requires a non-trivial machine that has two types of state 
variables z(t): U(t) and V(t). 

Fig. 3. Von Foerster’s non-trivial machine.
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degree, how their environments may influence them. 
Since inputs to organisms are to a significant degree de-
termined by their interactions with their environment 
and a non-trivial machine can be recursively coupled 
with its environment as well (in this case x(t) would be-
come to a certain degree a first-order intrinsic factor), it 
is worth raising the following question: Could a system 
of mathematical general types F and Z, consisting the struc-
ture of a non-trivial machine, be sufficient to model the 
final-state-directed dynamics that generates the general 
form of an organism at the end of its embryogenesis? 
Famously, Turing himself developed a formal model 
that attempted to explain how morphological pattern-
ing emerges in embryonic development (Turing 1952).

By design, a non-trivial machine does not transcend 
the primary differences distinguishing machine-logic 
from organismic logic for the following reasons. First, 
the machine’s structure, represented by the operators F 
and Z, are second-order extrinsic factors, whereas sec-
ond-order factors of organisms are intrinsic (see 4.1). 
Second, other than organisms, Turing machines do not 
generate new types of first-order intrinsic factors. This 
would require the variation of operators F and Z. But in 
non-trivial machines those essential changes can only 
be introduced by an external agent, since all operators 
of those machines are extrinsic factors and thus entities 
which do not succumb the machine’s own dynamics. 
Third, since non-trivial machines do not generate new 
types of first-order intrinsic factors, their dynamics can 
only be described in state spaces with a fixed number 
of dimensions representing the general types of their 
dependent or state variables z(t) that represent the ma-
chine’s internal state. In contrast, as noted above, the 
dynamics of all organisms, especially embryos and 
growing organisms, can only unfold in state spaces that 
progressively add dimensions. As a result, the dynam-
ics of a real organism is for principal reasons non-Tur-
ing computable. 

From the biophilosophical perspective of this essay 
there are two essential elements of Turing machine-log-
ic. First, sharp distinction between state variables (what is 
calculated) on the one hand and parameters, independent 
variables and operators (what is given from outside) on the 
other. Second, no generation of new general types of intrin-
sic causal factors, and thus restriction to a fixed state space. 
This logic is entirely independent of the kind of forces 
and events that occur in a particular artificial, natural 
or entirely abstract system. In other words: Turing ma-
chine-logic is multiply realizable. 

The logic of Turing or non-trivial machine is not re-
stricted to theory of computation and abstract automata. 
From the time of Galileo to the present all formalisms 
of engineering sciences and most, if not all, formalisms 
of theoretical physics rely on this logic. They consider, 
at least implicitly, their systems as entities that can be 
described by models that abide by the abstract idea of 
machine, which is given its most general formulation as 
a non-trivial machine. 

From this perspective, an ontology can be described as 
a ‘mechanistic systems ontology’or simply a ‘mechanistic 
ontology’ if it implicitly or explicitly assumes that the term 
‘system’ refers to real entities the inner causality of which 
can, in principle, be explained by models obeying the logic of 
the Turing or non-trivial machine. In this context ‘in prin-
ciple’ means “if we had a perfect science (physics, bio-
chemistry, biophysics etc.), knew all the details about 
the physical constitution of the organism and had un-
limited computer power.” 

4.4. Beyond neo-mechanistic thought  
in philosophy of biology

In the last two decades a new ‘mechanical philos-
ophy’ (Craver 2013) has emerged in philosophy of 
science (Bechtel 2006, 2007; Glennan 2002; Machamer, 
Darden, Craver 2000). Due to the role that the concept 
of mechanism has played in the emergence of biologi-
cal thought, the mechanistic program was mainly de-
veloped in philosophy of biology (Nicholson 2012, 153). 

In his article, “The concept of mechanism in bi-
ology” Nicholson has provided a helpful distinction 
between three different meanings of the term ‘mecha-
nism’ in biology: 
1.	 ‘Mechanicism’ or ‘mechanistic philosophy’ is the 

philosophical position by which organisms may be 
conceived as “machines that can be completely ex-
plained in terms of the structure and interactions of 
their component parts” (Ibid. 153). Mechanicism is 
rooted in the philosophy of nature that emerged in 
the 17th century together with classical mechanics of 
Galilei, Descartes, Newton and others (Ibid.). 

2.	 The ‘machine mechanism’ sense of ‘mechanism’—
that is the closest to the Greek term ‘mechané’—“has 
traditionally been employed by biologists to de-
scribe machine-like systems, or rather, systems con-
ceived in mechanical terms; that is, as stable assem-
blies of interacting parts arranged in such a way that 
their combined operation results in predetermined 
outcomes” (Ibid.). 
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3.	 The ‘causal mechanism’ sense of ‘mechanism’ refers to 
“[a] step-by-step explanation of the mode of operation 
of a causal process that gives rise to a phenomenon 
of interest” (Ibid.). In contrast to the first two mean-
ings of ‘mechanism’ it “only acquired widespread 
currency in biology in the twentieth century” (Ibid. 
154). According to Nicholson, “it is the usage of the 
term that has become predominant today” (Ibid., italics 
added). In other words: in contemporary philosophy of 
biology the concept of ‘mechanism’ has become a synonym 
for ‘causal mechanism’ in the sense of ‘causal mechanical 
explanation’ (Glennan 2002, S343f.) and is neither re-
lated to the idea of machine-mechanism of older bi-
ology that reduces organisms to complex machines 
nor to mechanistic philosophy of nature. Therefore, 
I refer to the third and most current interpretation of 
the term ‘mechanism’ as ‘neo-mechanistic thought.’ 
From the neo-mechanistic perspective, an explana-
tion lies in the causal relationships between the parts 
of a mechanism. Central to this approach is the idea 
that a mechanism is a stable complex system that con-
sists of a number of parts and activities the interac-
tion of which gives rise to a behavior or function, i.e., 
to a process that is directed to a specific final state 
(Bechtel 2006, 2007; Craver 2013; Glennan 2002). 

This functionalistic-teleological re-conception of the 
term ‘mechanism’ as mechanism for some behavior/func-
tion has given rise to two different perspectivistic inter-
pretations of ‘mechanism’ or ‘mechanical explanation’ 
(Buzzoni 2016): Subjectivistic perspectivism, on the one 
hand, has been best expressed by Craver (2007, 2013). 
Because of the indissoluble connection of functional and 
mechanistic descriptions Craver considers the identi-
fication of functions as a crucial step in the discovery 
of mechanisms. The identification of functions within 
an organism or a cell depends, however, on one’s per-
spective, i.e. scientific interests and goals. Thus, Craver 
claims, a researcher’s subjective perspective determines 
what parts and activities of a living entity (cell, organ-
ism) will be seen as constitutive parts of a mechanism 
that explains a function of interest and which parts will 
be ignored (2013, 141-143, 155). Close to this position is 
Nicholson’s appeal that we consider mechanisms not as 
real things but rather as conceptions that have merely 
heuristic value for scientific investigations (2012, 154, 
158f., 162). Objectivistic perspectivism, on the other 
hand, assumes that there is an objective truth, or at least 
that different perspectives complement one the other in 
the sense that they contribute to a better knowledge of 

the world. Buzzoni anchors this view in scientific ex-
periments through operational-experimental devices 
in which we “compel nature to answer our questions”  
by starting a technical-mechanical process that takes 
place independently of our interests (2016, 419). Start-
ing from this Buzzoni defines a mechanism as “the re-
alization of potentialities that are already given in na-
ture” (Ibid.423). 

Both subjectivistic and objectivistic perspectivists 
anchor their theories in the conception of causal mech-
anism and not in the idea of machine-mechanism. It 
is however striking that neither the exponents of both 
neo-mechanistic approaches nor other supporters of 
neo-mechanistic thought in philosophy of biology deal 
with the highly developed mathematical models of 
causal mechanisms that have been introduced in sys-
tems biology. The principal limits of contemporary bi-
ological causal mechanisms do not become apparent 
so long as causal mechanisms are described in natu-
ral languages. Ordinary languages do not constrain 
our natural ability to create highly and even endlessly 
complex ‘stories’ about the entanglement of causally 
interdependent events. Nevertheless, problems become 
immediately obvious and even overwhelming as soon 
as we try to express the autonomy of even the simplest 
organism with a formal language that describes in a 
strict way quantitative relations, as it is the case with 
systems of differential equations and other formalisms 
of systems biology. In previous books, articles, and 
book chapters I have argued that while systems biolog-
ical causal mechanisms are supportive of biotechnolog-
ical manipulation of organisms they do not capture the 
autonomous agency of organisms (Deacon & Koutrou-
finis 2014; Koutroufinis 1996, 2009, 2014b; Koutroufinis 
& Wessel 2011). As I have shown in sections 4.2 and 4.3 
of this paper, both causal mechanical explanations and 
machine-mechanisms abide by the same logic of causal-
ity that I describe as ‘logic of machines.’ Thus, although 
Nicholson’s distinction between the two meanings 
of ‘mechanism’ as ‘machine mechanism’ and ‘causal 
mechanism’ (or causal mechanical explanation) is cor-
rect, at an abstract level of analysis, it can be shown that 
both machines and formal biological causal mechanism 
are special cases of the same abstract principle. All or-
ganisms, however, from the simplest bacterium to the 
most complex mammal, manifest an essentially differ-
ent principle of causal organization if their autonomy is 
taken seriously (see section 4.1). Thus, the at the present 
highly renowned ‘mechanical philosophy’ cannot pro-
vide the basis for understanding the logic of causality 
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that exhibits the most essential feature of all organisms. 
In the 21st century the philosophy of organism must 
be established on the basis of an ontology that goes 
beyond the system-theoretical logic of contemporary 
mathematical biology that primarily serves the interests 
of biomedical and biotechnological industry. Only on 
the basis of a new ontology we will be able to conceive 
of organisms as autonomous agents, selves, and sub-
jects that cannot be reduced to mere objects of scientific 
research. 

5. Process logic—towards a process ontology 
for organismic causality

A common feature of all organisms is that whereas 
they permanently change their matter and energy they 
preserve their form or, if they grow or regenerate them-
selves, change it in a very specific way not reducible 
to the nature of their material and energetic elements. 
Organisms succeed in doing so because they generate 
second-order intrinsic factors. Bapteste’s and Dupré’s 
understanding of bacterial communities as self-sta-
bilized systems in which entities of different levels of 
organization are involved (2013, 399) applies equally 
to organisms in general. They are stabilized processes 
which are not determined by one particular entity or by 
a particular type of entities, such as genes. “Questions 
of stabilization concern fine-tuning of the interactions 
between (different) entities through which their stabil-
ity is optimized” (Ibid., italics added). Providing real-
istic formal models of organismic dynamics requires 
showing how such a fine-tuning of quantities and rates—
which in current biological formalisms are represented 
by parameters and independent variables—can be gen-
erated by the dynamics itself. My main criticism of cur-
rent systems biology is that it does not allow thinking 
of a system’s dynamics as being able to autonomously 
produce variation of quantities and rates without de-
stroying that system. This criticism pertains also to the-
oretical biology from the time of von Bertalanffy and 
Turing to the present. Those approaches operate with 
mathematical formalisms that parallel mechanistic on-
tology, as it is defined in section 4.3, thereby confining 
argumentation to the powerful but limited theoretical 
concept of a non-trivial machine.

There are two main reasons for developing a pro-
cess ontology for biology. First, mechanistic ontology, 
as it is exemplified by the logic of non-trivial machine, 
cannot explain organismic causality due to the princi-
pal limitations of that logic. Second, substance ontolo-

gy, in its Aristotelian as well as in its Cartesian version, 
is even less able to do so. As noted in the introduction 
of this essay, Aristotelian ontology is rooted in a static 
conception of form (in the sense of ‘eidos’ that means 
species) or ‘second substance’ which does not harmo-
nize with evolution of biological species. Cartesian on-
tology is rooted in the assumption that real beings can 
exist without any relations to each other—an equally 
unacceptable abstraction today. 

Process ontologies are grounded on a philosophical-
ly elaborated definition of the term ‘process’ that con-
siderably differs from the meaning, which is ascribed 
to this word in both its current scientific and everyday 
usage. I use the term ‘organismic process’ as meaning 
both embryogenesis and growth. The following defini-
tion of ‘organismic process,’ is general enough to cap-
ture the logic of organisms while remaining compatible 
with a wide range of process ontologies: Organismic pro-
cesses encompass a particular sort of coherent or self-orga-
nized events, distinguishable by two essential features: First, 
most factors that influence the development of an organismic 
process are generated by that process itself. Second, the struc-
ture of the relations between those factors is determined by 
the process itself. Stated more technically, an organismic 
process is a coherent event of which the second-order factor as 
well as most first-order factors are intrinsic. 

As a result organismic processes achieve autonomy 
by regulating their structure—i.e. the overall relation 
between its first order intrinsic and extrinsic factors—
in such a way that this relation tends to stabilize itself. 
Due to their second order intrinsic factors, organismic 
processes realize a form of organization that can be la-
beled ‘organizational closure.’ This term is also used 
in a similar way by Maël Montévil and Matteo Mossio, 
who identify organizational closure as closure of con-
straints (2015). Finally I would like to put emphasis 
on the essential similarity between my approach and 
that of Giuseppe Longo and Maël Montévil in their ar-
ticle “The inert vs. the living state of matter” (2012). An 
organism’s structure—its second-order intrinsic fac-
tor—is maintained at an “extended critical transition” 
through “global causal relations between levels of orga-
nization” (Ibid. 4). 

The technical definition of ‘organismic process’pro-
vided here does not contain any restrictions concerning 
the metaphysical status of the elementary causal factors 
evolved in the emergence of the process. Thus, it can 
serve as a fundamental assumption for comparing dif-
ferent process ontologies. In the following we will deal 
with Whitehead’s process ontology, which I consider to 
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be sufficient for biology despite being rooted in meta-
physical presuppositions strongly differing from the 
metaphysics of contemporary life sciences. 

5.1. Process logic in Whitehead’s metaphysics
Alfred North Whitehead (1861-1947) is often re-

garded as the most original innovator of the 20th cen-
tury philosophy of nature and metaphysics. He is the 
best known representative of process philosophy. The 
basic premise of Whitehead’s metaphysics is that all 
actual beings17 in the universe are individual processes 
or groups of processes. They are not substances, either 
in Aristotle’s sense of ‘first substance’ or in Descartes’ 
sense of ‘res extensa’ or ‘res cogitans.’ Although his 
concept of ‘process’ was not explicitly developed for 
biology it has essential similarities to the definition of 
organismic process suggested above, probably because 
it was introduced against the background of all ver-
sions of mechanistic thought that were influential in the 
first half of the 20th century. Whitehead reformulated 
Aristotle’s category of ‘first substance’ by introducing 
two different kinds of process: ‘actual entities’ or ‘ac-
tual occasions’ and ‘societies.’ The former are the most 
elementary actual beings of the universe—short-lived 
indivisible processes the spatiotemporal extension of 
which exhibit a large spectrum from quantum events 
to conscious brain processes. Societies are long-lived 
groups of interrelated actual occasions. According to 
Whitehead, everything which persists in space-time for 
a certain amount of time is the result of sequential man-
ifestations of interconnected and interrelated actual oc-
casions. Molecules, stones, planets, and physical events, 
such as chemical reactions and planetary motions, are 
described by Whitehead as societies. The most com-
plex groups of actual occasions are living beings, which 
Whitehead describes as ‘living societies.’ 

From this essay’s perspective the central ideas of 
Whitehead’s process philosophy are the following: 

1.	 Causa sui: Actual occasions require an adequate envi-
ronment to emerge. However, they are not just reac-
tions to external conditions. In other words, they are 
not determined by facts which, according the above 
introduced terminology, could be described as ‘ex-
trinsic factors,’ although they depend also on those 
facts. Whitehead emphasizes that an actual occasion 
is to a certain degree a creative being, since it “func-
tions in respect to its own determination” (1978, 25). 

17	 I use the term ‘actual being’ as opposed to ‘abstract being,’ the 
later referring to general types or ideas.

His description of the emergence of an actual occa-
sion is comparable to the progressive emergence of 
intrinsic causal factors in embryogenesis (Ibid. 240-
261). By describing actual occasions with Spinoza’s 
term ‘causa sui’ Whitehead refers to their essential 
ability to promote their own emergence (Ibid. 221; 
2007, 101). 

2.	 Processual teleology: Because of their increasing abili-
ty to determine their own formation actual occasions 
exhibit final-state-directedness. Thus, they may be 
seen as teleological entities if, as in Aristotle’s writ-
ings, ‘telos’ is taken to mean not only ‘aim’ but also 
‘final state.’ However, in contrast to Aristotelian bi-
ology and substance ontologies, according which 
the final state of events is preformed in their for-
mal cause (eidos), the final state of actual occasions 
emerges gradually as an actualization of intrinsic 
tendencies. Therefore, one may talk of a ‘processual 
teleology’ (Koutroufinis 2014a, 18; 2014b, 126-128). 

3.	 Internal relations with the environment: Actual occa-
sions are also intimately tied to their environment 
which consists of other already emerged processes. 
During their emergence certain features of their en-
vironment acquire a specific relevance while others 
become irrelevant. In this respect actual occasions 
are indissolubly related to a specific environment 
(1978, 73, 77, 80). The relations of Whiteheadian 
processes to their environments correspond exact-
ly to what in metaphysics is called ‘internal rela-
tions’—meaning relations without which neither of 
the related beings could physically exist (nor could 
their essential features be understood). Whitehead 
describes the internal relations between actual occa-
sions as ‘prehensions’ (Ibid. 41; 1967, 234). 

4.	 Platonism: Emerging actual occasions do not sim-
ply generate their own (intrinsic) causal factors but, 
moreover, factors which are embodiments of general 
types which Whitehead calls ‘eternal objects’ (1978, 
22, 44). They are non-temporal abstract entities. The 
emergence of more complex actual occasions, all of 
which occur in living beings, consists in a sequence 
of consecutively actualized eternal objects (Ibid. 
240-261). Because of their non-temporality, eternal 
objects necessarily pre-exist actual occasions which 
are spatiotemporally extended actual beings. Ac-
cording to Whitehead, eternal objects exist in or-
der to provide actual occasions with their ‘forms of 
definiteness’ (Ibid. 22). He regarded his ontology 
as a renewal of Plato’s metaphysics under the con-
ditions of 20th century science (Ibid. 39). In order to 
characterize the relation between actual occasions  
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and eternal objects he explicitly employed Plato’s 
central concept of ‘participation’ (methexis, μέθεξις):  
“The things which are temporal arise by their par-
ticipation in the things which are eternal” (Ibid. 40). 

5.	 Mental-physical bipolarity: Although eternal objects 
exist in order to provide actual entities with forms of 
definiteness, Whitehead considers them as entirely 
non physical beings existing in total separation and 
independence from the spatiotemporal or physical 
world (Ibid. 44; 1953, 197). Thus, spatiotemporally 
extended actual beings can participate in them only 
through a purely mental act. By ‘purely mental act’ 
I understand an act the description of which may 
lack any reference to facts of physical reality. I do 
not claim that those acts exist. All I am saying here is 
that Whitehead’s Platonism requires the admission 
of those entities in his ontology. Thus, besides their 
internal relations to physically actualized beings 
(i.e. already emerged actual occasions and societ-
ies), actual occasions are internally related also to an 
entirely ideal reality. They are conceived of as bipo-
lar entities: Actual occasions are indissolubly men-
tal-physical beings: “Each actuality is essentially 
bipolar, physical and mental, and the physical inher-
itance is essentially accompanied by a conceptual re-
action [...] always introducing emphasis, valuation, 
and purpose” (1978, 108). In Adventures of Ideas he 
expresses a similar view (177, 190, 245). Whitehead 
emphasizes that the ‘mental pole’ of processes has 
in addition to the conceptual also an experiential, 
qualitative, and thus subjective component (1978, 
18). The relevance of eternal objects for an actual oc-
casion’s emergence is determined by that occasion’s 
positive or negative subjective experiences of those 
objects (Ibid. 24, 212, 240, 254, 261). 

6.	 Mental pole and second-order intrinsic causal factors: 
With the introduction of eternal objects Whitehead 
brought back into modern philosophy of nature a 
concept similar to Aristotelian form (eidos) or ‘sec-
ond substance.’ Still more, in opposition to 20th 
century mainstream philosophy of science, by con-
sidering abstract entities as non-temporal beings, 
Whitehead ascribed to general types ontological 
and not just conceptual being, thus following Aristo-
tle’s and Plato’s universals realism. In Whitehead’s 
thought, however, there is a crucial difference with 
respect to both ancient thinkers: Eternal objects are 
not able to determine the formation of an actual oc-
casion. They can neither determine its final state nor 
decide the sequence in which they will be embodied 
in its emergence as its ‘forms of definiteness.’ Eter-

nal objects do not actively direct processes towards 
terminal states, as Aristotelian forms or formal caus-
es do. It is the actual occasion itself—to be exact: 
its mental pole—which actively selects eternal ob-
jects as its ‘forms of definiteness’ and consecutively 
actualizes them until the process achieves its final 
definiteness, embodied by its finally selected eternal 
object (Ibid. 240-261). Thus, in contrast to both the 
ancient and medieval philosophy of nature, White-
head did not consider ideal or abstract entities as 
active causes. In his ontology, general types are not 
considered to be formal causes, as they are in Aristotle’s 
understanding of this term. That Whitehead did not 
identify ‘forms of definiteness’ (eternal object) with 
formal causes has severe ontological consequenc-
es. In sharp contrast to Aristotelian and Platonic 
metaphysics, in Whitehead’s process ontology an 
actual occasion’s essence cannot be identified with 
a non-spatiotemporal entity or universal, such as a 
particular species. An actual occasion’s essence is its 
mental pole, which consists in a sequence of acts of 
selection among eternal objects, not determinable 
by those objects. In Whitehead’s writings the mental 
pole can be understood as defining over and over 
again the causal relations between the emerging 
actual occasion, its physical environment, and the 
non-temporal reality of eternal objects (Ibid. 240-
261). Thus, its role is similar to the role of second-or-
der intrinsic factors in biological processes. 

For two reasons Whitehead’s understanding of pro-
cess transcends both the logic of events the develop-
ment of which is representable by trajectories in state 
spaces as well as the logic of Turing or non-trivial ma-
chine: First, in both these abstract constructions, sub-
jective experience, which plays an important role in 
Whitehead’s system, cannot be considered to have any 
causal relevance. Second, the logic of Turing machine 
and formalisms compatible with state spaces are based 
on the assumption that processes unfold within a fixed 
system of general types: the dimensions of the state 
space representing the fixed number of the non-trivi-
al machine’s various dependent or state variables z(t). 
Since, during their formation, actual occasions generate 
their own type of organization by selecting new eternal 
objects and combining them to their forms of definite-
ness, they create new sorts of variables. Thus, they are 
not Turing computable events. They can be displayed 
only in state spaces the dimensions of which are trans-
formed by the dynamics of the events that they (the 
state spaces) display. As a result, any understanding  
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of organism derivable from Whitehead’s process ontol-
ogy must deviate essentially from any consideration of 
organism based on mechanistic systems ontology. Of 
course, a Whiteheadian theory of organism must also 
essentially deviate from any understanding of organ-
ism rooted in substance ontologies, such as medieval or 
vitalistic biology. 

There is however a conspicuous remnant of sub-
stance ontology in Whitehead’s thought: Because they 
are non-temporal entities eternal objects are substantial 
beings that can neither be generated nor annihilated. 
Although they do not exist as their own ends but as 
potential forms of definiteness for processes, they are 
not in any way modified by those processes. In other 
words: The processuality of the spatiotemporal actual-
ity depends considerably on beings that are not at all 
processual. This is an essential characteristic of sub-
stance ontologies. 

Besides this ‘incompleteness’ of the metaphysical 
system there is a major problem that impedes the in-
tegration of Whitehead’s process ontology to contem-
porary scientific reasoning: Whitehead’s pan-experien-
tialism. Although the hypothesis that each elementary 
actual being has a mental and a physical pole does not 
necessarily violate naturalism (Griffin 2014), with the 
exemption of a few quantum physicists, today’s scien-
tists are clearly unwilling to entertain this idea.

Nonetheless, I think that Whitehead has identified 
crucial dimensions that several process ontologies 
should share: internal relationality between process 
and environment, processual teleology, and separation 
of formal causes from non-temporal beings or general 
types. Since he thinks of actual occasions as acts that 
generate their own ‘form of definiteness’ or essence, an 
important achievement of his ontology is the processual-
ization of eidos or essence. 

6. Conclusion: towards an ontology  
for a new theoretical biology

Systems biology has been developed in the context 
of a close relationship with medical- pharmaceutical 
research and biotechnology. Its criterion of success is 
based on the extent to which it allows predictions of 
cellular behavior emerging under controlled laborato-
ry conditions and not whether it explains how organ-
ismic behavior is generated. Systems biology is there-
fore based on assumptions that are consistent with a 
mechanistic systems ontology. Contemporary systems 
biological formalisms can be characterized as mecha-
nistic in a specific sense: they obey a logic of causality  

(causal factors) that is typical of man-made machines. 
The most abstract description of that logic is provided 
by Turing machine or von Foerster’s non-trivial ma-
chine. From a process-centered perspective the essen-
tial features of the logic of non-trivial machine are the 
lack of second-order intrinsic factors, the strict distinc-
tion between first-order intrinsic and extrinsic factors, 
and the machine’s inability to generate new general 
types of first-order intrinsic factors that is responsible 
for its inability to change the dimensionality of its state 
space. Real organisms are not limited by these restric-
tions and, on the contrary, exhibit the exact opposite 
property: they tend to change the dimensionality of the 
state space in which they function. 

Dynamic entities escape Turing computability to the 
extent to which they generate new first-order intrinsic 
factors and transform the relations between first-order 
intrinsic and extrinsic factors, i.e., transform their sec-
ond order intrinsic factor. The causality of organismic 
processes, such as growth and division of cells and 
morphogenesis, could be computed only by a non-triv-
ial machines, the structure (the operators F and Z) and 
the first-order extrinsic factors (the constants c

1
 and c

2
) 

of which could be modified by the operations that these 
very conditions (F, Z, c

1
, and c

2
) make possible. This 

would require a Turing machine, the highest-order fac-
tors of which were intrinsic. This, however, violates the 
fundamental logic of Turing computability.

As a result, in contrast to linear and non-linear 
(self-organized) events studied by contemporary phys-
ics, the causality of organismic processes cannot be ex-
plained by analytical or numerical calculations because 
those processes are not Turing computable. The repre-
sentability of Turing-computable events by formalisms, 
such as systems of differential equations and cellular 
automata, may be called ‘compressibility’ (Deacon and 
Koutroufinis 2014, 406). Since organisms cannot be ade-
quately represented by Turing computable formalisms, 
their emergence and self-preservation are non com-
pressible events. This suggests that organisms exhibit 
a form of complexity that cannot be captured by the 
concept of complexity used in physics and mathematics 
(Ibid. 415-418) which has been developed as a measure 
of incompressibility (Ibid. 407). 

For these reasons, the logic of non-trivial machine, 
which is the logic of real and abstract machines and of 
current mathematical formalisms, is not an appropri-
ate basis for explaining organismic causality. The tran-
scendence of this logic can be achieved on the basis of  
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an ontology suitable for organismic dynamics. This on-
tology can be developed on the fundament of genuine 
understanding of process designed for capturing the 
logic of organismic causality.

Whitehead’s process metaphysics transcends Tur-
ing machine-logic. The creation of a process ontology 
for biology on the basis of his metaphysics belongs to 
the field of what used to be termed ‘theoretical biolo-
gy.’ Unfortunately, in the last decades, in biosciences 
the term ‘theory’ became a synonym for ‘non experi-
mental,’ ‘formal,’ ‘mathematical,’ ‘computational,’ ‘in 
silico,’ ‘atificial life’ or ‘dry lab.’ This development has 
been counterproductive because it undermines the abil-
ity of biologists to examine the metaphysical assump-
tions, which bear their work and to identify the restric-
tions caused by them. 

Nevertheless, the relation between today’s systems 
biology and a prospective theoretical biology based on 
process ontology need not be antagonistic. Stuart Kauff-
man, one of the pioneers of systems biology, has con-
tributed essential insights to a non mechanistic theory 
of organisms in recent years. His description of organ-
isms as ‘autonomous agents’ (2000) and of the biosphere 
as a non Turing-computable system, the evolution of 
which can be depicted only in a growing state space 
(2000, 2013), represents a thoroughly process-centered 
biology. Provided that we are aware of the principal 
limitations of current systems biology, we can still use 
its highly developed formalisms as a way to approach 
organismic complexity. Those formalisms could be used 
to detect new patterns of non-linear dynamics, alien to 
contemporary dynamic systems theory: if we change 
the systems of coupled differential equations in order to 
convert even a few of the independent variables and pa-
rameters into variables we might discover new patterns 
of self-organized behavior in a system’s state spaces, i.e., 
new kinds of attractors. Of course, in order to appropri-
ately represent organismic causality we need to develop 
a theory of state spaces that can have a growing number 
of dimensions. This is not possible within the mathe-
matical framework of contemporary dynamic systems 
theory. And yet, if we manage to develop those formal-
isms we will have taken an important step forward on 
the way to understanding organismic dynamics. 

Another important task for a process ontologically 
oriented theoretical biology would be the development 
of a qualitative mathematics for representing organismic 
dynamics. Other than in systems biological formalisms 
the focus would be not on the computation of quanti-
tative relations but on topological relations describing 

the interconnectedness of causal factors belonging to 
different levels of organization. Interestingly enough 
this would be a revival of a philosophical intuition that 
originated with one of the pioneers of both mathemat-
ical theoretical biology and systems biology: Ludwig 
von Bertalanffy. In his book Problems of Life (first pub-
lished in German 1949), Bertalanffy speaks of a new 
‘non-quantitative’ or ‘Gestalt mathematics’ for biology 
(1952, 159), in which not quantity but rather the idea of 
form would come to occupy the central role. 
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