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Abstract 
The standard, generally accepted, theory of tumorigenesis, says that tumors arise from a succession of driver mutations and clon-
al expansions. However, this standard theory has difficulty explaining many puzzling phenomena in tumorigenesis including 
(i) foreign-body tumorigenesis, (ii) transgenic mouse tumors that lack the inducing mutation, the synergistic effects of various 
carcinogens, (iii) cancer resistance in naked mole rats, (iv) different cancer rates for hereditary conditions with similar DNA 
repair defects, (v) carcinogenic exposure of stromal cells leading to tumors in epithelial cells, and (vi) the roles of BRCA1 mu-
tations, obesity, asbestos, schistosomiasis, viruses, and smoking in carcinogenesis. The proposed detached pericyte hypothesis 
provides novel explanations for these phenomena.  The detached pericyte hypothesis postulates the following events. A carcino-
gen or chronic inflammation causes pericytes to detach from blood cell walls, either directly through vascular injury or indirectly 
through fibrosis followed by collagen contraction and obliteration of capillaries. Some detached pericytes form myofibroblasts 
which increase fibrosis and alter the extracellular matrix. Other detached pericytes develop into mesenchymal stem cells that 
adhere to the altered extracellular matrix of the the fibrosis.  The altered extracellular matrix disrupts regulatory controls, causing 
the adjacent mesenchymal stem cell to develop into tumors. Various lines of evidence support the detached pericyte hypothesis. 
Further investigations into the detached pericyte hypothesis, ideally in the framework of multiple working hypotheses, would 
likely accelerate progress in cancer research and prevention.  
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1. Introduction

The physicist Lisa Randall wrote, “we often fail to no-
tice things that we are not expecting” (Randall 2015). 
Randall’s sentence could readily apply to cancer re-
search. The standard, generally accepted, theory of car-
cinogenesis says that cancer arises from a succession of 
driver mutations and clonal expansions (Vogelstein et 
al 2013). When researchers focus on the standard theory 
of carcinogenesis they often overlook unexpected and 
puzzling experimental and observational phenomena 
(Baker 2015). The proposed detached pericyte hypothe-
sis provides a novel explanation for many of these puz-
zling phenomena. 

The detached pericyte hypothesis is closely related 
to the tissue organization field theory of cancer (Sonn-
enschein and Soto, 1999, Soto and Sonnenschein 2011, 
Sonnenschein and Soto 2016) with respect to the impor-
tant role of disrupted tissue regulatory control. It also 
overlaps hypotheses of tumorigenesis involving the 
role of fibrosis (Brücher and Jamall 2014) and tissue me-
chanics (Ingber 2008, Bizzarri and Cucina, 2014). 

Pericytes, which are elongated cells attached to 
blood vessel walls, regulate blood flow and support 
vessel remodeling. Recently pericytes have generat-
ed considerable interest because of their multipotent 
differentiation capacity (Ribeiro and Okamoto 2015).  
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Until now, there has been very little discussion con-
cerning the role of pericytes in the initiation of tumors.

2. Hypothesis

The detached pericyte hypothesis of tumorigenesis 
consists of five interrelated parts: 

1.	 A carcinogen or chronic inflammation (which may 
be caused by the carcinogen) causes pericytes to de-
tach from blood vessel walls either directly through 
vascular damage or indirectly through fibrosis fol-
lowed by collagen contraction and obliteration of 
capillaries.

2.	 Some detached pericytes form myofibroblasts, 
which lead to fibrosis and stiffening of the extracel-
lular matrix.

3.	 Some detached pericytes develop into mesenchymal 
stem cells.

4.	 Some of these mesenchymal stem cells adhere to the 
fibrotic tissue.

5.	 The abnormal stiffness of the extracellular matrix 
disrupts regulatory controls causing the adhered 
mesenchymal stem cells to develop into tumors (sar-
comas or carcinomas). 

As noted by Prehn (1994), “no cancer exhibits any 
trait which cannot be found in some normal tissue as the 
expression of normal genomic activity.” The disruption 
of regulatory controls in the detached pericyte hypoth-
esis could explain all the traits associated with cancer. 

3. Motivation

Motivation for the detached pericyte hypothesis 
comes from foreign-body tumorigenesis, which was a 
major topic of cancer research in the 1960s and 1970s 
(Brand, Johnson, and Buoen 1976). Some cancer re-
searchers may view foreign body tumorigenesis as an 
anomaly unrelated to the development of most tumors. 
The alternative view here is that foreign-body tumor-
igenesis is a window into tumor development. Two 
noteworthy results are as follows. First, subcutaneous 
nonporous implants in mice yielded sarcomas, while 
implants in powdered form yielded no sarcomas, a re-
sult that did not depend on the composition of the im-
plant (Brand, Johnson, and Buoen 1976). Second, filter 
implants with small pore sizes induced fibroid capsules 
and sarcomas, while filter implants with large pore  

sizes induced no fibroid capsules and no sarcomas 
(Karp et al 1973). 

There was a large effort to identify the progenitor 
cell in foreign body tumorigenesis. Based on results 
from transplantation experiments, investigators ruled 
out the bone marrow as a source for the progenitor cell 
(Barnes, Evans, and Loutit 1971). Next, investigators 
considered the most conspicuous cells involved in the 
local reaction to the foreign-body, namely monocytes, 
macrophages, and fibroblasts (Brand et al 1975). Be-
cause the implants induced a variety of sarcoma types, 
as would be consistent with a pluripotential progeni-
tor cell, and because of a resemblance between some 
subcellular features and pericyte, Johnson et al (1973) 
hypothesized that the cancer progenitor cell in these ex-
periments was, in fact, a pericyte. 

To investigate the development of the progenitor 
cells, Moizhes and Prigoshina (1973) and Brand, Buoen, 
and Brand (1971) subcutaneously inserted a nonporous 
disk into mice, removed the resulting fibroid capsule, 
inserted a new non-porous disk, and transplanted the 
combined donor capsule and new disk to a recipient 
mouse that had a different karyotype from that of the 
donor mouse. Because the sarcomas in the recipient 
mice had the same karyotype as the donor mouse, they 
concluded that the progenitor cell arose in or near the 
fibroid capsule of the donor mouse. When they trans-
planted the fibroid capsule without the disk to recipi-
ent mouse, they rarely found sarcomas in the recipient 
mouse. Thus, the adherence of the progenitor cells to the 
implant occurs after the formation of the fibroid capsule. 

Based on the results of the implant transplantation 
experiments and the association of fibroid capsules 
with tumorigenesis in the Millipore filter experiments, 
Brand, Buoen, and Brand (1971) hypothesized the fol-
lowing two-stage process for foreign-body tumorigen-
esis. First, the implant creates a fibroid capsule. As the 
collagen in the fibroid capsule contracts, it compresses 
and obliterates capillaries, causing pericytes to discon-
nect from the blood vessel wall. Second, some discon-
nected pericytes adhere to the implant. The implant 
disrupts tissue specific controls, causing the adhered 
pericytes to develop into sarcomas. 

In a few cases, removal of the implant led to both 
a scar and a sarcoma in the fibroid capsule. Brand et 
al (1975) hypothesized that the scar functioned like a 
foreign-body implant, with the detached pericyte ad-
hering to the scar and developing into a sarcoma – a key 
motivation for detached pericyte hypothesis. 
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4. Support for the hypothesis

The detached perictye hypothesis says that a carcin-
ogen or chronic inflammation detaches pericytes that 
(1) induce fibrosis and alter the extracellular matrix and 
(2) develop into mesenchymal stem cells that adhere to 
the altered extracellular matrix and develop into tum-
ors (carcinomas or sarcomas). Various lines of evidence 
support detached pericyte hypothesis.

4.1. Evidence that a carcinogen or chronic 
inflammation detaches pericytes

Various studies show that vascular injury, which 
could arise from the carcinogen or chronic inflamma-
tion, detaches pericyte in the kidneys, lung, and spinal 
cord (Marrache et al 2008, Göritz et al 2011, Birbrair et al 
2014, Schrimpf et al 2014).

4.2 Evidence that some detached pericytes develop 
into myofibroblasts, which lead to fibrosis

Fate tracing experiments involving the kidney and liv-
er show that detached pericytes can form myofibroblasts 
(Humphreys et al 2010, Mederacke et al 2013). Also, liver 
injury transforms pericytes into myofibroblasts (Rockey, 
Weymouth, and Shi, 2013). Myofibroblasts play an im-
portant role in fibrosis and the remodelling of the extra-
cellular matrix (Tomasek et al 2002, Wyn 2008). Many 
studies indicate a link between inflammation and fibro-
sis (Lee and Kalluri 2010) and between injury and fibro-
sis (Hutchinson, Fligny, and Duffield 2013).

4.3. Evidence that some detached pericytes 
develop into mesenchymal stem cells

Many studies have demonstrated a perivascular ori-
gin of mesenchymal stem cells in various human organs 
(Crisan et al 2008). Examples include differentiation of 
pericytes into chondrocytes and adipocytes (Farrington 
et al 2004), skeletal muscle (Cappellari and Cossu 2013), 
and odontoblasts (Feng et al 2011). 

4.4. Evidence linking mesenchymal stem cells to 
the development and repair of epithelial cells

Various studies show that mesenchymal stem cells 
play a role in the development or repair of epithelial 
cells, suggesting the potential for mesenchymal stem 
cells to develop into carcinomas. Mesenchymal stem 
cells can differentiate into epithelial cells (Phinney 
and Prockop 2007), including alveolar type I epithelial 

cells (Kotten et al 2001), retinal pigment epithelial cells  
(Arnhold et al 2007), skin epithelial cells (Nakagawa et 
al 2005), sebaceous duct cells (Fu et al 2006), and tubu-
lar epithelial cells in kidney (Morigi et al 2004, Herrera 
et al 2004). Also, mesenchymal stem cells can promote 
the renewal of epidermal tissue from non-stem cells 
(Pageuet-Fifield et al 2009), induce epithelial prolif-
eration in the inflamed stomach (Donelly et al 2014), 
and generate neuroendocrine Leydig cells (Davidoff 
et al 2009). Pericyte accumulation in the airway wall 
may contribute to airway remodeling in chronic asth-
ma (Johnson et al 2015). Bone marrow derived mesen-
chymal stem cells are associated with repair of lung, 
pancreas, liver, and intestine (Kotton et al 2001, Li and 
Ikehara 2013). 

4.5. Evidence linking mesenchymal stem cells  
to sarcomas

Various studies show that mesenchymal stem cells 
are likely progenitors of sarcomas (Matushansky et al 
2007, Xiao et al 2013, Sato, Tang, Wei et al 2016). Mice 
with subcutaneously implanted microbeads with at-
tached mesenchymal stem cells developed sarcomas 
while controls with implanted microbeads and no at-
tached mesenchymal stem cells did not develop sarco-
mas (Boone and Jacobs,1976).

4.6. Evidence linking mesenchymal stem cells  
to carcinomas

Mesenchymal stem cells have been linked to epi-
thelial cancer. Adipose mesenchymal stem cells, which 
originate from perivascular cells (Cai et al 2011), have 
been linked to tumor initiation in breast and colon cells 
(Wei et al 2015). Bone marrow derived mesenchymal 
stem cells, which are thought to be pericytes (Cai et al 
2009), have been implicated in mouse gastric cancer 
(Houghton et al 2004). A recipient of a bone marrow 
transplant developed adenocarcinoma of the esopha-
gus from bone-marrow derived donor cells (Hutchin-
son et al 2011). A recipient of a hematopoietic stem cell 
transplant developed gastric adenocarcinoma from the 
donor cells (Arai et al 2006). Lastly, a kidney transplant 
recipient developed skin carcinoma linked to donor 
cells, that were likely mesenchymal stem cells (Aractin-
gi et al 2005). Although almost all foreign-body induced 
neoplasms are sarcomas, some implants in the lumen 
of epithelial-lined organs have induced carcinomas 
(Brand, Johnson, and Buoen 1976).  
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4.7. Evidence supporting the role of the 
extracellular matrix in tissue development 

The extracellular matrix affects the development of 
normal tissue, a likely prerequisite to the role of altered 
extracellular matrix in tumorigenesis. Mesenchymal 
stems cells grown on polymer gels express neuronal, 
muscle, and bone proteins when the stiffness of the 
gels resembled that of the brain, muscle, and bone, 
respectively (Lu, Weaver, and Werb, 2012). In vivo ex-
periments showed that mammary extracellular matrix 
directs the differentiation of testicular and embryonic 
stems cells to form mammary glands (Bruno et al 2017). 
Human mesenchymal stem cells cultured on a collagen 
gel differentiated into epithelial-like cells (Takebayashi 
et al 2013). The transplantation of fetal salivary mesen-
chymal cells into adult mammary glands yielded out-
growths resembling salivary glands (Sakakura, Sakag-
ami, and Nishisuka 1981). 

4.8. Evidence supporting the role of the 
extracellular matrix in tumorigenesis 

Various studies show that the stiffness of the ex-
tracellular matrix affects the development of cancer 
cells. The optimal stiffness of a matrix for growing 
cancer cells depends on the type of cancer (Jabbari et 
al 2015). Increased collagen density promotes mouse 
mammary tumors (Provenzano et al 2008). The degree 
to which a chemical carcinogen changes collagen and 
elastic fibers is associated with the potency of the car-
cinogen (Orr 1958). A highly rigid stromal phenotype 
is linked to pancreatic ductal adenocarcinoma (Laklai 
et al 2016). A stiff extracellular matrix induces a malig-
nant phenotype in normal mammary cells (Chaudhuri 
et al 2014). 

4.9 Evidence linking fibrosis and tumors
Many observational studies found an association be-

tween fibrosis and precancerous lesions or cancer. Ex-
amples include radiation-induced cancer (Martin, Le-
faix, and Delanian 2000), Barret’s esophagus (Abraham 
et al 2007), oral pre-cancer (Bag et al 2013), hyperplasia 
in the pancreas (Detlefsen 2005), asbestos-related can-
cer (Davis and Cowie 1990), and liver cancer (Yin et al 
2013). A risk factor for basal cell carcinoma is the pres-
ence of scar tissue (Ozyazgan and Kontaçs 2004). Pul-
monary scarring increases lung cancer risk in the same 
lung as where the scarring occurred, but not in the con-
tralateral lung (Yu et al 2008). Zinc deficiency increases 

both fibrosis (Navarro et al 1994) and cancer incidence 
(Abnet et al 2005). Molecular iodine inhibits fibrosis in 
mammary glands (Eskin et al 1995) and prevents cancer 
promotion (Garcia-Solis et al 2005). 

4.10. Evidence linking pericytes and tumors
Evidence supporting the detached pericyte hypoth-

esis also comes from a recent study to characterize the 
molecular events during melanoma initiation (Kau-
fman et al 2016). Visualization through live imaging 
showed that activated neural crest cells are a key event 
in melanoma initiation from a field of cancer-prone 
melanocytes. Because pericytes can arise from neural 
crest cells (Armulik, Genové, and Betsholtz 2011), these 
results are consistent with pericytes playing a key role 
in tumor initiation. 

5. Puzzling experimental results

The detached pericyte hypothesis suggests novel 
explanation for various experimental results that are 
puzzling under the standard theory of carcinogenesis.

5.1. Myc inactivation and tumor regression
In what has been called a landmark paper, Shachaf 

et al (2004) discovered that after turning on the Myc 
gene to induce liver cancer, turning off the Myc gene 
caused tumor cells to differentiate into normal cells. 
Overexpression of c-myc in mouse hepatocytes increas-
es proliferation of pericytes and collagen deposition 
(Nevzorova et al, 2013). The detached pericyte hypoth-
esis suggests that (i) the activated Myc gene detaches 
pericytes and alters the extracellular matrix to which 
the detached pericytes adhere and (ii) the inactivated 
Myc gene allows the extracellular matrix to return to 
normal, which reinstates the normal regulatory signals 
and leads to tumor regression. 

5.2. RBP-JK deleted transgenic mice 
Transgenic mice with deletion of the CSL/RBP-

JK gene developed multifocal keratinocyte tumors in 
which tumor cells showed no deletion of the RBP-JK 
gene (nor mutations in p53 or Ha-, Ki-, or N- ras genes) 
(Hu et al 2012), a puzzling result if deletion of the RBP-
JK gene is a driver mutation. The transgenic mice had 
reduced elastic fibers and expressed Tenascin-C in the 
dermis (Hu et al 2012). Tenascin-C promotes the mi-
gration of pericytes in the liver (Ma et al 2016). The de-
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tached pericyte hypothesis suggests that the deletion of 
the RBP-JK gene increases pericyte detachment and mi-
gration (by increasing Tenascin C) and these detached 
pericytes adhere to the altered extracellular matrix (in-
dicated by the change in elastic fibers) leading to tum-
ors without the deletion of the RBP-JK gene. 

5.3. Dicer 1 deleted transgenic mice 
Transgenic mice with deletion of the Dicer1 gene in 

stromal bone progenitor cells developed acute myelog-
enous leukemia without Dicer1 deletions (Raaijmakers 
et al 2010), a puzzling result if deletion of the Dicer1 
gene is a driver mutation. Mutations in Dicer1 are as-
sociated with increases in collagen (Yu et al 2014). The 
detached pericyte hypothesis suggests that the Dicer1 
deletion increases collagen that subsequently contracts, 
obliterates capillaries, and detaches pericytes, which 
then adhere to collagen, leading to tumors without the 
Dicer1 deletion.

5.4. Radiation and implants
Experiments in mice involving radiation and perfo-

rated polymer film implants yielded the following tu-
mor incidence rates: 24% for the film implant alone, 4% 
for gamma radiation alone, and 52% for the synergistic 
effect of gamma radiation followed by the film implant 
(Moizhess and Vasiliev 1989). Radiation leads to the 
formation of fibrous tissue (Rodemann and Bamberg 
1995). The detached pericyte hypothesis suggests that 
radiation-induced fibrosis leads to detached pericytes 
which adhere to the fibrosis and the implant, yielding a 
synergistic effect on tumorigenesis.

5.5. Ethylnitrosurea and implants
Experiments in mice involving the chemical car-

cinogen ethylnitrosurea and perforated film implants 
yielded the following tumor incidence rates: 16% for 
the film implant alone, 0% with ethylnitrosurea expo-
sure alone, and 50% for the synergistic combination of 
ethylnitrosurea exposure followed by the film implant 
(Moizhess and Vasiliev 1989). Precursors of ethylnitro-
surea lead to unusually thin capillaries that sometimes 
disintegrate (Rustia 1974), suggesting the possibility 
that ethylnitrosurea causes pericytes to detach from 
the blood cell wall. The detached pericyte hypothesis 
suggests that ethylnitrosurea detaches pericytes which 
adhere to the film implant, yielding a synergistic effect 
on tumorigenesis.

5.6. DMBA and radiation
Experiments in hamster cheek pouch epithelium in-

volving Dimethylbenz(a)anthracene (DMBA) and radi-
ation yielded the following tumor incidence rates: 0% 
for radiation alone, 53% DBMA alone, and 75% for the 
synergistic effect of DBMA and radiation (Lurie et al 
1983). DMBA increases vascular permeability (Lurie et 
al 1985) and vascular permeability detaches pericytes 
(Armulik, Genové, and Betsholtz 2011). The detached 
pericyte hypothesis suggests that DMBA detaches per-
icytes which adhere to the radiation-induced fibrosis, 
yielding a synergistic effect on tumorigenesis.

5.7. DMBA and croton oil
In a classic tumor initiation and promotion experi-

ment, exposure of mice to DMBA followed by the appli-
cation of croton oil yielded an incidence of skin tumors 
that was much higher than with either DBMA or croton 
oil alone (Appleton et al 1992). Croton oil is associated 
with the granulation of tissue, which can lead to scar 
tissue, and increased production of myofibroblasts 
(Appleton et al 1992). Reducing the number of fibro-
blasts after the administration of the active ingredient 
in croton oil substantially reduces the number of tum-
ors (Zhang et al 2011). The detached pericyte hypothe-
sis suggests that DMBA detaches pericytes (by increas-
ing vascular permeability) and the detached pericytes 
adhere to scar tissue induced by croton oil, yielding a 
synergistic effect on tumorigenesis.

5.8. Stromal target of carcinogen
Maffini et al (2004) removed mouse mammary epi-

thelial tissue adjacent to stromal fat pad tissue, exposed 
the stromal pad tissue to a carcinogen, inserted the un-
exposed mammary epithelial tissue next to the exposed 
stromal tissue, and observed a high incidence of epithe-
lial cancers (that was not observed with the same proto-
col but with a non-carcinogen). The detached pericyte 
hypothesis suggests that the carcinogen induced fibro-
sis in the stroma, causing collagen contraction and the 
detachment of pericytes which adhered to the altered 
stromal extracellular matrix bordering the epithelial tis-
sue. Supporting evidence comes from the link between 
changes in stromal fibroblasts and the growth of tum-
ors in adjacent epithelial tissue (Bhowmick et al 2004).

5.9. Spontaneous regression 
Administration of a carcinogens to mice for 3 exactly 

months yielded hepatic nodules which regressed, while 
administration for exactly 4 months led to persistence 
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of nodules and high cancer risk (Teebor and Becker 
1971). The detached pericyte hypothesis suggests that 
the 4-month dose induced a permeant alteration of the 
extracellular matrix while a 3- month dose induced 
only a temporary alteration of the extracellular matrix.

5.10. Denervation experiments
The neurobiology of cancer is an emerging discipline 

(Boilly et al 2017). Denervation in the mouse stomach 
is associated with inhibition of Wnt signaling and re-
duced tumor incidence (Zhao et al 2004). Aberrant Wnt 
signaling is a driver of fibrogenesis (Enzo et al 2015). 
The detached pericyte hypothesis suggests that dener-
vation reduces tumor incidence by reducing fibrosis via 
Wnt inhibition.

5.11. Non-genotoxic carcinogens
Non-genotoxic carcinogens induce cancer with-

out altering DNA, chromosome number or structure 
(Hernández et al 2009). Many non-genotoxic carcino-
gens cause inflammation or fibrosis (Hernández et al 
2009). The detached pericyte hypothesis suggests that 
many non-genotoxic carcinogens induce cancer by in-
creasing fibrosis. 

6. Puzzling observational results

The detached pericyte hypothesis suggests novel 
explanation for various observational results that are 
puzzling under the standard theory of carcinogenesis.

6.1. Age and latency effects
At a minimum, any hypothesis about tumorigene-

sis should explain the following two phenomena: in-
creased cancer incidence with age (Elkahattouti, Has-
san, and Gomez 2015) and a long latency between the 
time of carcinogenic exposure and the development 
of cancer (Armenian, 1987). The detached pericyte hy-
pothesis suggests that increased cancer incidence with 
age is a consequence of increased fibrosis with age 
(Elkahattouti, Hassan, and Gomez 2015), and the long 
latency period in many cancers reflects the time needed 
for fibrosis to develop. 

6.2. Cancer resistance in naked mole rat
A fascinating question in cancer biology is why the 

naked mole rat rarely develops cancer (Edrey et al 2011). 
Fibroblasts in the naked mole rate secrete a special form 

of the sugar molecule hyaluronan that has a molecular 
mass five times larger than hyaluronan in humans or 
mice (Tian et al 2013). Removing high-molecular mass 
hyaluronan via a genetic knockdown led to tumors, 
implying that high-molecular mass hyaluronan plays 
an important role in cancer resistance (Tian et al 2013). 
High-molecular mass hyaluronan dampens fibrosis 
(Toole 2004, Tolg, Telmer, and Turley 2014, Albeiroti S, 
Soroosh A, and de la Motte 2015). The detached peri-
cyte hypothesis suggests that high molecular mass hy-
aluronan inhibits carcinogenesis by inhibiting fibrosis.

6.3. BRCA1 mutations and breast cancer
The major high-penetrance genetic susceptibil-

ity pathway to breast cancer involves mutations in 
BRCA1 and BRCA2 (Easton, Ford, and Bishop 1995, 
Baker 2016). BRCA1 and BRCA2 mutations are associ-
ated with dense breast tissue (Huo et al 2002). Dense 
breast tissue is associated with stromal fibrosis (Boyd 
et al 1998) and breast cancer (Vachon et al 2007). The 
detached pericyte hypothesis suggests that mutations 
in BRCA1 and BRCA2 increase the risk of developing 
breast cancer by increasing the density of breast tissue 
and hence increasing fibrosis. 

6.4. Hereditary skin cancer
The hereditary conditions of Xeroderma pigmento-

sum (XP) and Cockayne Syndrome (CS) both involve 
defects in the DNA nucleotide excision repair that pro-
tects against sunlight DNA damage. Therefore, it is par-
adoxical that XP patients have a thousand-fold increase 
in susceptibility to skin cancer while CS patients have 
a normal skin cancer risk (Kraemer et al 2007). Actin-
ic keratosis is a scaly patch on the skin that develops 
after years of exposure to the sun. It is associated with 
changes in the surrounding tissue (Pearse and Markes 
1977) and strongly associated with the development of 
skin cancer (Fuchs and Marmur 2007). Although actinic 
keratosis has been observed in XP patients (Yarosh et 
al 2001), no cases of actinic keratosis were observed in 
a series of 140 CS patients (Nance and Berry 1992). The 
detached pericyte hypothesis suggests that the differ-
ence in cancer rates between XP and CS patients arises 
from different rates of actinic keratosis between XP and 
CS patients, where either the mechanical properties of 
actinic keratosis directly modify attached mesenchymal 
stem cells or the actinic keratosis is a marker for chang-
es in stiffness of the extracellular matrix. 
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6.4. Obesity and cancer
There is growing evidence of a link between obe-

sity and cancer (Lauby-Secretan et al 2016) but with 
considerable debate over the mechanism (de Pergola 
and Silvestris 2013). Obesity is associated with fibrosis 
(Marchesini et al 2008). The detached pericyte hypothe-
sis suggests that obesity increases the rate of cancer by 
increasing the rate of fibrosis. Butyrate, an important 
metabolite in the colonic lumen that can be produced 
from dietary fiber (McIntyre, Gibson, and Young 1993), 
reduces the incidence of colon cancer (Sengupta, Muir, 
and Gibson 2006) and protects against diet-induced 
obesity (Chakraborti 2015). The detached pericyte hy-
pothesis suggests that butyrate reduces colon cancer 
risk by reducing obesity. 

6.5. Schistosomiasis and bladder cancer
Schistosomiasis is an infection caused by parasitic 

flatworms in fresh water in tropical regions. The flat-
worms penetrate the skin and migrate through the 
bloodstream to the bladder where they lay eggs which 
cause fibrosis (Fried, Reddy, Mayer 2011). Epidemio-
logical evidence links schistosomiasis to bladder cancer 
(Palumbo 2007). The detached pericyte hypothesis sug-
gests that schistosomiasis leads to bladder cancer via 
fibrosis of the bladder.

6.6. Asbestos and lung cancer
Epidemiological studies have linked asbestos ex-

posure and cancer (Liddell and Hanley 1985), but the 
mechanism is not known (Barrett 1994). Asbestosis is a 
type of fibrosis occurring in the lungs exposed to asbes-
tos. A prospective study of men employed in the man-
ufacture of asbestos cement products found that the 
excess risk of lung cancer was restricted to men with 
evidence of asbestosis (Hughes and Weill 1991). The de-
tached pericyte hypothesis suggests that asbestos leads 
to lung cancer via asbestosis. 

6.7. Smoking and lung cancer
Although the link between smoking and lung can-

cer is well established, there is continued debate over 
the mechanism (Xue, Yang, and Seng 2014). Chronic 
obstructive pulmonary disease in smokers is associated 
with lung cancer (Papi et al 2004) and increased colla-
gen forming scar tissue in the airways (Jeffrey 2004). 
Chemicals in cigarette smoke can diffuse through the 
lung epithelium to modify stromal fibroblasts (Salem, 

et al 2013). The detached pericyte hypothesis suggests 
that smoking increases the risk of lung cancer by modi-
fying the stromal tissue to increase fibrosis.

6.8. Viruses and cancer
The link between viruses and human cancer is puz-

zling because there is no obvious molecular rule to 
determine if a virus is carcinogen, and there is no ob-
vious explanation for the long latency period between 
exposure to the virus and incidence of cancer (Moore 
and Chang 2010). Viruses are associated with apoptosis 
(Roulston, Marcellus, and Branton 1999) and the dys-
regulation of apoptosis can lead to scarring and fibrosis 
(Grenhalgh 1998). Hepatitis B virus is associated with 
both liver fibrosis and liver cancer (Tsai and Chung 
2010). The detached pericyte hypothesis suggests that 
viruses lead to cancer via apoptosis, which leads to 
scarring and fibrosis. 

Another puzzling result is that chickens injected 
with Rous sarcoma virus develop tumors at the site 
of experimental wounds with over a 95% frequency 
(Dolberg et al 1985). In humans, basal cell carcinomas 
sometimes arise at the site of smallpox vaccinations 
(Rich, Shesol, and Horne 1980). The detached pericyte 
hypothesis suggests that wounding detaches pericytes 
and virus infections increase fibrosis, leading to a syn-
ergistic effect of wounding and virus infections on tu-
morigenesis.

7. Mutations

The detached pericyte hypothesis does not require 
mutations for tumorigenesis. However, under the de-
tached pericyte hypothesis, mutations can arise as 
by-products of tumorigenesis (Prehn 1994) and can in-
fluence tumorigenesis via pathways to fibrosis.

7.1 Passenger mutations
There is extensive evidence that many mutations are 

“passengers” that do not contribute to tumorigenesis 
(Vogelstein et al 2013). For example, morphologically 
identical tumors in older patients have more mutations 
that in younger patients (Vogelstein et al 2013). Also, 
some benign conditions have higher levels of mutations 
than their malignant counterparts (Kato et al 2016). 

The detached-pericyte hypothesis suggests that pas-
senger mutations arise from a loss of regulatory con-
trols to the mesenchymal stem cells that adhere to the 
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altered extracellular matrix. Supporting this view is the 
observation that as mesenchymal stem cells age, they 
induce p53 mutations (Li et al 2007). 

7.2. Mutations in pathways to fibrosis
The detached pericyte hypothesis suggests that 

mutational pathways may influence carcinogenesis by 
their effect on fibrosis. At least four pathways regulate 
the transition from pericytes to myofibroblasts: Hedge-
hog, transforming growth factor- beta 1 (TGF-β1), 
platelet derived growth factor (PDGF), and connective 
tissue growth factor (CTGF) (Humphreys 2012). These 
pathways are associated with both cancer and fibrosis 

The Hedgehog pathway has been implicated in tu-
mor initiation (Hanna and Shevde 2016). It is also as-
sociated with lung fibrosis (Stewart et al 2003) and the 
transition of pericytes to fibroblasts in the liver (Choi 
et al 2009). Hedgehog signaling during pancreatic car-
cinogenesis is restricted to the stromal compartment 
(Tian et al 2009), suggesting its indirect role in carcino-
genesis.

The misregulation of TGF-β pathway is linked to 
tumor development (Massagué 2008).  TGF-β1 plays a 
critical role in fibrosis (Pohlers et al 2009) and tissue-lev-
el mechanics (O’Connor and Gomez 2014). 

 Increasing evidence indicates that dysregulation 
of PDGF signaling can influence cancer development 
(Farooqi and Siddik 2015). PDGF is implicated in renal 
fibrosis (Floege, Eitner, and Alpers 2008). The overacti-
vation of TGF-β1 and PDGF pathways initiate the tran-
sition from pericytes to myofibroblasts in kidney fibro-
sis (Chen et al 2011, Wu et al 2013). 

CTGF expression has been linked to tumor devel-
opment and progression (Chu et al 2008). It is also as-
sociated with renal fibrosis (Van Nieuwenhoven et al 
2005) and pericyte migration and adhesion (Abraham 
et al 2008). 

Additional pathways may also be implicated in 
cancer via their role in fibrosis. The PI3K pathway is 
associated with early lung cancer development (Gus-
tafson et al 2010) and plays a role in activation of per-
icytes in liver fibrosis (Son et al 2013). The p53, KRAS, 
and microRNA pathways, which are often associated 
with cancer (Li and Kowdely 2012), also play a role in 
fibrosis (Kodama et al 2011, Wang et al 2012, Jiang et 
al 2010).  In mice with a KRAS mutation, pancreatic in-
traepithelial neoplasia is associated with pericyte acti-
vation (Lin et al 2016).

8. Implications

The detached pericyte hypothesis suggests new di-
rections for research into better methods for primary 
cancer prevention and for the early detection of cancer 
that would hopefully trigger effective early intervention.

8.1. Cancer prevention
The detached pericyte hypothesis has important im-

plications for cancer prevention. Because the detached 
pericyte hypothesis centers on fibrosis, searching for 
new anti-fibrotic agents may be a promising strategy 
for cancer prevention research. Two anti-fibrotic agents 
that have been investigated for the chemoprevention 
of cancer are aloe vera (Saini, Goyal, and Chaudhary 
2010) and curcumin (Park et al 2013). In animal exper-
iments, an extract from the aloe vera plant substantial-
ly reduced fibrosis (Salem, El-Azab and Faruk, 2014) 
and curcumin inhibited the development of fibrosis 
(Lee et al 2010). Another anti-fibrotic agent under con-
sideration for cancer prevention is metformin (Quinn 
et al 2013). Metformin attenuates lung fibrosis (Sato,-
Takaska,Yoshida et al 2016) and reduced the number of 
new adenomas or polyps in a randomized trial of pa-
tients with previous adenomas (Higurashi et al 2016). 
Anti-fibrotic agents that may be worth investigating 
for the chemoprevention of cancer are Mitomycin C, an 
anti-fibrotic used in ophthalmology without major side 
effects (Veen and Dikkers 2010), peptide 15-1, a small 
protein that promotes scar-less healing (Tolg et al 2012), 
and diabetes treatments (sitagliptin and vildaglip-
tin) that inhibit enzymes linked to cutaneous scarring 
(Rinkevich et al 2015). A recent proposal to use hyaluro-
nan signaling as a novel target for anti-fibrotic therapy 
(Klingberg, Hinz, and White 2013) is supported by the 
previous discussion concerning the role of hyaluronan 
in cancer resistance in the naked mole rat. Natural kill-
er cells, which limit fibrosis by killing myofibroblasts 
(Fasbender et al 2016), could also play a role in chemo-
prevention. Another strategy is inhibition of core fuco-
sylation to reduce fibrosis by modifying pathways from 
pericytes to myofibroblasts (Wang et al 2017).

8.2 Cancer early detection
The detached pericyte hypothesis has important im-

plications for the early detection of cancer. Elastogra-
phy, which measures the degree of fibrosis (Carstensen, 
Parker, and Lerner 2008) could potentially provide an 
early indication of cancer risk. Exosomes are vesicles 



The detached pericyte hypothesis 33

involved in intercellular communication that have 
been linked to fibrosis and pericytes (Yamamoto, Nii-
da, and Azuma 2015). In mice with pancreatic cancer, 
the uptake of exosomes by the liver was associated with 
increased fibrosis and increased expression of mac-
rophage migration inhibitory factor, a protein which 
showed promise in predicting cancer progression (Cos-
ta-Silva et al 2015). Thus, markers related to exosomes 
may have potential for the early detection of cancer.

9. Multiple working hypotheses

It is important to put the detached pericyte hypoth-
esis into perspective as one of many hypotheses for tu-
morigenesis that should considered.

9.1. Theory of working hypotheses
Chamberlin (1890) discussed three methods to guide 

scientific inquiry: the ruling theory, the single working 
hypothesis, and multiple working hypotheses. A ruling 
theory is detrimental (unless it happens to be true) be-
cause it discourages investigations outside of its scope. 
Along these lines Chamberlin (1890) noted:

there is an unconscious selection and magnifying of 
the phenomena that fall into harmony with the theo-
ry and support it, and an unconscious neglect of those 
that fail of coincidence. 

James (1890) made a similar point,

Round about the accredited and orderly facts of every 
science there ever floats a sort of dust-cloud of excep-
tional observations, of occurrences minute and irregu-
lar, and seldom met with, which it always proves less 
easy to attend to than to ignore…. When, moreover, as 
so often happens, the reports of them are vague and in-
direct, when they come as mere marvels and oddities 
rather than as things of serious moment, one neglects 
or denies them with the best of scientific consciences. 

To avoid the problems with a ruling theory and 
the single working hypothesis (which can degenerate 
into a ruling theory), Chamberlin (1890) proposed the 
method of multiple working hypotheses, namely the 
development of various hypothesis that might explain 
the phenomenon under consideration. In support of the 
method of multiple working hypotheses, Chamberlin 
(1890) noted that:

the re-action of one hypothesis upon another tends to 
amplify the recognized scope of each, and their mutu-
al conflicts whet the discriminative edge of each.

9.2. Application to tumorigenesis
In the study of carcinogenesis, the ruling theory for 

at least sixty years has been the somatic mutation theo-
ry, consisting of successive driver mutations leading to 
clonal expansions (Baker 2012). Echoing the writings of 
Chamberlin and James on the problems with a ruling 
theory, Rous (1959) expressed concern about the ruling 
somatic mutation theory:

numerous workers on cancer are now content to think 
it [cancer] results from somatic mutations. Hence they 
see no other reason to seek in other directions to learn 
its nature.

The somatic mutation theory is not as firmly estab-
lished as might appear. There are many paradoxical re-
sults under the somatic mutation theory discussed here 
and elsewhere (Baker 2015). Bioinformatics methods 
can only prioritize driver mutations in humans (Cheng, 
Zhao, Zhao 2016), so cannot unambiguously prove 
their existence. 

It is helpful to classify working hypotheses for tum-
origenesis in terms of the role of cell-level change (such 
as genetic mutations, alterations of genetic pathways, 
epigenetic changes, or damage to mitochondria) and 
the role of tissue-level change (primarily disruption of 
tissue regulatory controls). Table 1 lists some working 
hypotheses for which a cell-level change is the primary 
driver of tumorigenesis. Table 1 includes the Somatic 
Mutation Theory (although that name is not used by its 
proponents) as well as variations of the Somatic Muta-
tion Theory in which the microenvironment or cell-ex-
trinsic factors play an important secondary role. 

Somatic Mutation Theory: 
Cancer arises from a succession 
of driver mutations and clonal 
expansions.

Vogelstein et al 2013

Cancer arises from genetic and 
epigenetic changes channeled 
through the epigenome.

Feinberg 2018

Cancer immunoediting: 
Cancer arises from 
immunosurveillance selecting 
genetic variants.

Mittal et al 2014

Cancer is an atavistic condition 
involving genetic and epigenetic 
malfunctions.

Davies and 
Lineweaver, 2011
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Cancer arises from cancer stem cells 
which arise from genetic mutations 
or cell transformation.

Yu et al 2012

Cancer arises from damage to the 
mitochondria. Seyfried 2015

Cancer arises from oncogenic 
signaling pathways in which 
intrinsically disordered proteins 
exert a primary role.

Russo et al, 2016

Cancer arises from the selection 
of genetic and epigenetic 
variants in the context of the 
microenvironment.

Pepper et al 2014

Cancer arises from genome-
mediated cellular evolution 
involving system stress and 
population diversity.

Horne, Pollick, and 
Heng, 2015

Cancer arises from genetic changes 
modified by the extracellular matrix.

Pickup, Mouw, and 
Weaver 2014

Cancer arises from genetic and 
epigenetic modifications facilitated 
by chronic fibrosis.

Rybinski, Franco-
Barraza, and 
Cukierman 2014

Cancers are attractor states in 
gene networks modulated by cell-
extrinsic factors.

Huang 2011

Table 2 lists some working hypotheses for which tis-
sue-level change is the primary driver of tumorigene-
sis. Table 2 includes the landmark Tissue Organization 
Field Theory (Sonnenschein and Soto 2016). Table 2 also 
includes working hypotheses (including the detached 
perictye hypothesis) in which mutations, under some 
circumstances, can play a secondary role in leading to 
the disruption of tissue regulatory controls. 

Tissue organization field theory: 
Cancer arises from a breakdown 
of tissue organization involving 
many cells from different 
embryological layers, where 
proliferation is the default state of 
all cells.

Sonnenschein et al 
2014;
Sonnenschein and 
Soto 2016

Cancer arises from morphogenetic 
factors and thermodynamic 
constraints.

Bizzari et al 2011

Cancer arises from 
miscommunication in the region of 
developing disease. 

Tarin 2011

Cancer is a disorder of patterning 
information in which cells 
stop maintaining higher order 
structure. 

Moore, Walker, and 
Levin, 2017

Cancer arises from a sequence of 
pathological stimulus, chronic 
inflammation, fibrosis, a pre-
cancerous niche, chronic stress 
escape, and transition of normal 
cell to a cancer cell.

Brücher and Jamall 
2014

Cancer arise from progressive 
deregulation of tissue architecture, 
which leads to physical changes 
in cells and altered mechanical 
signaling.

Ingber 2008

Cancer arises from a disruption of 
morphostats which can sometimes 
arise from genetic changes.

Baker 2015

Detached pericyte hypothesis: 
Cancer arises from detached 
pericytes that induce fibrosis and 
form mesenchymal stem cells that 
adhere to fibrotic tissue. 

This article

Table 3 lists working hypothesis in which both 
cell-level and tissue-level changes play major roles in 
tumorigenesis. 

Cancer arises from altered tissue 
pattern formation, which, in turn, 
arises from altered molecular 
pathways.

Marongiu et al 2012

Cancer arises from a disruption 
of the tissue equilibrium as 
the initiator event and genetic 
alterations as tumor “promoters.”

Capp 2017

Cancer arises from genetic changes 
that lead to a disruption of the 
morphostatic fields that maintain 
normal tissue microarchitecture. 

Potter 2007

Cancer is a robust state in a 
network involving cell and tissue 
modules. 

Yuan et al 2017

Creating a new hypothesis by combining multiple 
hypothesis, each explaining a subset of phenomena, 
is not recommended because it would have limited  
predictive value for new phenomena -- analogous 
to overfitting in machine learning, where a complex 

Table 1. Some working hypotheses for which a cell-level change is the 
primary driver of tumorigenesis.

Table 2. Some working hypotheses for which a tissue-level change is 
the primary driver of tumorigenesis.

Table 3. Some working hypotheses for which a combination of cell-
level changes and tissue-level changes drive tumorigenesis..
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model fits idiosyncrasies in one data set to such a de-
gree that it poorly predicts outcomes in a new data set 
(Hand, 2006).

Ideally, one would try to see how well different work-
ing hypothesis explain each puzzling phenomenon in  
tumorigenesis. For example, consider the experimental 
result from foreign-body tumorigenesis that filter im-
plants with small, but not large, pore sizes induce fibroid 
capsules and tumors (Karp et al 1973). The somatic mu-
tation theory might suggest that small pore sizes block 
agents responsible for mutations. The immunosurveil-
lance hypothesis might suggest that small pore sizes 
block infiltration into the fibroid capsules of cells that 
inhibit tumorigenesis. The hypothesis of disruption of 
morphostats suggests that only small pore sizes block the 
morphostats (Baker et al 2009). The detached pericyte hy-
pothesis suggests that only small pores induce fibrosis, 
which is a prerequisite for tumorigenesis. Other hypothe-
ses might involve other cells in the foreign-body reaction 
including monocytes, macrophages, and fibroblasts.

10. Conclusion

The detached pericyte hypothesis offers novel ex-
planations for many puzzling phenomena in tumor-
igenesis. To avoid “cherry-picking”, an attempt was 
made to include important puzzling phenomena even 
if the explanation under the detached pericyte hypothe-
sis was speculative. It is important to try to explain puz-
zling phenomena rather than ignore them. As James 
(1890) wrote. “Anyone  will renovate his science who 
will steadily look after the irregular phenomena.”  Sim-
ilarly, the physicist Niels Bohr said “How wonderful 
that we have met with a paradox. Now we have some 
hope of making progress” (Moore 1966). The investiga-
tion of puzzling phenomena in tumorigenesis guided 
by the detached pericyte hypothesis and other work-
ing hypotheses should improve the understanding of 
tumorigenesis and provide new directions for cancer 
prevention research. 
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