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Abstract
While in mathematics (and in logic) the basic divide is between ‘true’ and ‘false’, in experimental science the frontier is between 
‘relevant’ and ‘irrelevant’ and this is a much more tricky border. The classical way to track this frontier builds upon inferential 
statistics (signal analysis is a synonymous more popular among engineers) and is based on the definition of what we intend for 
‘randomness’ in a given situation. Here we comment on the setting of the threshold between ‘informative’ and ‘random’ territori-
es in the case of gene expression data where the definition of randomness is not only a ‘statistical’ but a ‘biological’ affair.
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1. Matter of concern

Large-scale gene expression studies using microar-
ray or RNA-Seq techniques have gained tremendous 
momentum since the beginning of the millennium. 
Although fascinating to have such data handy, and to 
use numerous statistical tools to make sense of the data 
deluge, it is always a guess as to where to draw a line to 
say which is information and which is not. Biologists, 
as well as statisticians alike, have predominantly used a 
man-made arbitrary threshold cut-off way to draw the 
difference between what is useful and noisy data [e.g. 
FPKM > 5 (Koso et al., 2016) or > 1.5 fold (Cromie et al., 
2017)]. This is no doubt a good starting point not to in-
clude unwanted non-informative data, however, is this 
the best way forward? 

Recent works that investigated the distributions 
of gene expressions across diverse living cells have 
pointed to underlying statistical structures (Furusawa 
et al., 2003; Bengtsson et al., 2005; Beal, 2017). From these 
works, gene expressions are shown to follow power-

law or lognormal distribution. We have also previously 
studied gene expression distribution across cells from  
human, mouse and bacteria and achieved similar re-
sults (Piras & Selvarajoo, 2015; Simeoni et al., 2015). 
Here, we tested the statistical distribution of more re-
cent RNA-Seq data of two microorganisms (Saccharo-
myces cerevisiae, Escherichia coli) and two higher organ-
isms (mus musculus, Homo sapiens) (Figure 1, black). 
This time, we investigated lognormal, loglogistic, 
power law or Pareto, Burr, Weibull and Gamma dis-
tributions for the best high-throughput gene expres-
sions fitting (Figure 1, colors). Notably, we observed 
all distributions fitted very well above a certain thresh-
old level with the lognormal performing the best in all 
four cases (Figure 1, vertical lines). 

The distribution of gene expressions at the lower 
range is dominated by two important constraints, due 
to i) technical errors such as protocol or sample sensitiv-
ity variance, and ii) binary transcriptional toggle switch-
es that are commonly encountered (Xu et al., 2016).  
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The latter case is important, as it is points to biological 
relevance that cannot be simply discarded as unwanted 
or non-informative. The adherence to lognormal distri-
bution points to the fact that the gene expression vari-
ability, or noise, has a ‘multiplicative’ and not an addi-
tive nature as is usually assumed (Elowitz et al., 2002). 
That is, the noise is not (mainly) a result of external 
interference, but rather is an integral part of the gene 
regulatory network response, this comes from the sim-
ple fact multiplication (product) implies the correlative 
interaction among the different operators (gene expres-
sions in this case).

To summarize, we highlight that gene expressions 
are governed by clear statistical distribution, here we 
show it is closer to lognormal. The statistical structure 
is highly conserved among different organisms and cell 
types, and is most probably due to the scale-free or frac-
tal organization of gene regulatory networks (Albert, 
2005). Therefore, instead of using arbitrary threshold 
cut-off, statistical distribution fitting-based cut-off could 
increase the resolution of high dimensional analyses.
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