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Abstract 
Stochasticity in gene expression arises from fluctuations in transcription and translation. This phenomenon has implications for 
cellular regulation. The novel techniques for single-cell analysis have provided new experimental and theoretical investigations. 
As a result, a coherent picture of stochasticity in prokaryotic and eukaryotic gene expression has been obtained. In this paper, we 
analyze the behavior of a stochastic process applied to Brusselator, investigating the noise affecting this system. Once the noise 
has been retrieved, the maximum likelihood estimation may be used to retrieve the parameters of the system itself. Although the-
se techniques have been applied to simple reaction processes as those hypothesized with Brusselator, the methodology is general 
and can be used to any reaction and related linear and nonlinear ODEs. 
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1. Introduction

Genetically identical cells can show phenotypic varia-
bility caused by stochastic events due to randomness 
process in gene expression. Then the control of bio-
logical random noise, that from now on we call only 
noise {see Bravi and Longo 2015 for a discussion on the 
term of noise in biology), is crucial to understand the 
behavior of the cell. Since precise internal regulation of 
biochemical reactions is essential for cell growth and 
survival, initiation of replication, gene expression, and 
metabolic activity must be controlled to coordinate the 
cell cycle, supervise cellular development, respond to 
changes in the environment, or correct random internal 
fluctuations. The precision of these controls is expect-
ed to be affected by the noise. Noise can have various 
effects on the dynamics of the system: it can induce 
fluctuations (i.e., imprecision) in its behavior and often 
can be destructive. Because cell viability depends on 
precise regulation of key events, signal noise has been 

thought to impose a threat that cells must eliminate, 
or, at least, minimize. This noise-induced variability 
in the cells is responsible for population heterogeneity 
(Belousov 1959,1985) phenotypic variations (Spudich 
et al. 1976) or imprecision in biological clocks (Barkai 
et al. 2000). On the other hand, cells can take advan-
tage of the constructive effect of noise itself. These ef-
fects encompass noise-induced behaviors, tuning of the 
response (sensitivity of the signal) and stochastic res-
onance (amplification of the response). Noise-induced 
behaviors include noise-induced oscillations (Samoilov 
et al. 2005) noise-induced synchronization (Steurer et 
al. 2004), noise-induced excitability (Ellner et al. 2003) 
or noise-induced bistability (Samoilov et al. 2005). All 
these properties are revealed by the noise and are in 
principle, not observed in a deterministic formulation. 
However, to display this noise-induced phenomenon, 
the system should present some characteristics. For 
example, noise-induced oscillations can easily be ob-
tained when the deterministic counterpart presents 
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excitability. Many of theoretical works aim at deter-
mining the conditions required for a system to exhibit 
noise-induced behaviors. 

Alan Turing, in 1952, was the first that hypothesized, 
under certain conditions, the influence of a perturbation 
on a system realizing spatially inhomogeneous struc-
ture may be formed in a self-organized way. His par-
adox was supported by showing the equilibrium solu-
tion of a stable reaction system could begin unstable 
when diffusion terms, which have a smoothing effect 
on spatial heterogeneity, are added. As a consequence, 
the system exhibited spatially inhomogeneous struc-
tures. His mathematical theory was published in his 
seminal paper the “The Chemical Basis of Morphogen-
esis”. He based his work on the morphogenesis, which 
means the formation of the body’s shape, seeking for an 
understanding of how cells in embryos, before divid-
ing, “feels” in which direction the differentiation will 
follow and what procedures determine the shaping of 
different organs in an organism. It was straightforward: 
when a cell undergoes a change in shape its symmetry 
is broken, and this process must be governed by some 
substances, creating a new branch. 

2. Turing morphogenesis and subsequent 
works

Turing proposed this substance be represented by 
a chemical, which he called a morphogen regulating 
cell differentiation. The source of the morphogens and 
the position of cells trigger genes in a slightly differ-
ent manner. Since every chemical reaction is a local 
process and cannot alone describe spatial patterning, 
Turing suggested chemical substances, traveling ran-
domly by impact of thermal effects (Brownian motion), 
influenced the non-local reaction process. Furthermore, 
to gain a complete understanding of the procedure, he 
also pointed out that morphogenesis consisted of both 
a chemical and a mechanical part. This last would de-
scribe the physical properties of the motions and forces 
acting in and between cells even though he noted that 
introducing the mechanical part produced complexities 
which were hard to treat and for that reason he omitted 
in his equations. Turing was revolutionary in putting 
morphogens as a central concept in developmental bi-
ology.

At the same time, Belousov 1985 and Zhabotinsky 
1985 (from now named as B-Z) discovered that a series 
of complicated reactions in systems driven by chemical 
substances, due to non-equilibrium thermodynamics, 

resulting in the establishment of a nonlinear chemical 
oscillator, gave rise patterns. The basic chemistry of 
the B-Z oscillations involves jumps between high and 
low states, which is in the relaxation oscillator nature 
of the Oregonator (Field et al. 1985) that is the simplest 
realistic model of the chemical dynamics of the oscil-
latory Belousov-Zhabotinsky reaction. Another model 
that exhibits patterns is the Brusselator model that was 
proposed by I. Prigogine and his collaborators at the 
Free University of Brussels as a theoretical model for 
a type of autocatalytic reaction. The system of the ordi-
nary differential equation is in (Hairer et al. 1987, p. 112; 
Zwillinger 1997, p. 136).

Other models, cell-based mechanisms, generate pe-
riodic patterns by cell-cell interactions, for example, 
in zebrafish pigment cell patterning (Nakamasu et al. 
2009). Mechanical behavior also produces regular pat-
terns due to mechanical instabilities depending on the 
material properties (Milinkovitch et al. 2013). The logic 
of those models is similar, but the biology is different. 
For example, a reaction-diffusion model uses a short-
ranged activator and a long-range inhibitor to generate 
a periodic pattern, while a mechanical model consists 
of short-ranged mechanical interactions, as resistance 
to bending, and a long-ranged mechanical interaction, 
as compression of the tissue. At the same time, it can 
be challenging to distinguish them experimentally. Fur-
thermore, to understand the general properties of peri-
odic patterns, it is necessary to consider the combina-
tions between a variety of mode as spanning molecular, 
cellular and or mechanical processes and the pattern 
orientation due to boundary conditions. However, the 
most straightforward logic is based on local activation 
and long-range inhibition (LALI) (Meinhardt 1972) 
that requires a simple assumption about the pattern-
ing mechanism and different coefficients between spot 
patterns or stripes. Hiscock and Megason 2015, propose 
that a deterministic mathematical approach can help to 
guide the design of experiments that can distinguish 
between different mechanisms, and illustrate the po-
tential value of this approach with specific biological 
examples.

Another important chapter of modelling cellular 
network is the occurrence of intrinsic and extrinsic sto-
chastic or random events and noise and their impact on 
biological system because gene transcription, gene reg-
ulation, and signal transduction often occur in low copy 
numbers. As examples of intrinsic stochastic events and 
noise example, among the others we may cite the work 
by Ozbudak et al. 2002, that observed gene expression 
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as transcription and translation in individual cells had a 
stochastic nature. Elowitz et al. (2000) constructed strains 
of Esterichia cole for detecting noise and discriminating 
between the intrinsic and extrinsic noise. Other studies 
showed that the messenger RNA production is an enti-
ty quantized (Hume, 2000) and is produced in random 
pulses (Ross et al., 1994). Protein production occurs in 
short “bursts” at random time intervals rather than in a 
continuous manner (Yarchuk et al., 1992). Same initial 
conditions, such as concentrations of chemical species, 
temperature, pressure, etc., may produce qualitatively 
different outcomes in the temporal evolution of a regu-
latory network. A classic example is the lysis/lysogenic 
switch of bacteriophage λ infecting Escherichia coli. Due 
to noise, the network may randomly evolve into one of 
the two bi-stable states (Hasty and Issacs 2001). The role 
of the noise has also been seen in bacterial chemotax-
is (Morton-Firth and Bray 1998), and cellular selection 
(Till et al., 1964). Besides the intrinsic noise, there also 
exists an extrinsic component of noise arising from ran-
dom fluctuations in other factors, e. g. for instance the 
number of ribosomes, the stage of the cell cycle, mRNA 
degradation, and the cellular environment. These are 
due to external environmental conditions. For example, 
a transcription factor for a particular gene is mostly the 
protein product of another gene, and thus its produc-
tion is also probabilistic. In these situations, a protein 
product arising out of a stochastic activation of a gene 
leads to a cascade of downstream stochastic events. The 
timings of such triggers can result in vastly different 
outcomes (McAdams and Arkin, 1997, 1998). Of course, 
the biological system may have both intrinsic stochas-
ticity and noise either extrinsic or both. Since, in gener-
al, cellular pathways exhibit nonlinear behaviour due 
to the complex underlying mechanisms of interactions, 
the networks often exhibit multiple stable states and bi-
furcations. As a result, the stochastic effects may drive 
the system randomly into distinct pathways. Noise may 
also be constructive in helping a cell to respond in total-
ly different ways depending upon external signals, for 
example, reproducing phenotypic diversity. Pathogenic 
organisms utilize random fluctuations on the surface to 
evade host responses (van de Putte and Goosen, 1992). 
The cell sensitivity to noise can be explored by the Sto-
chastic Resonance (SR) and Stochastic Focusing (SF). 
Both are due to the interaction of noise with a nonlin-
ear cell system. Stochastic resonance has been an area 
of intense research recently, particularly in the field of 
Climate physics (Benzi et al. 1981). SR is a cooperative 
effect in which a small periodic influence entrains extrin-

sic random noise. Using SR, a low amplitude periodic 
signal (difficult to measure) can be detected by utilizing 
the relatively high amplitude noise. In the case of bi-sta-
bility, only a stochastic system can explore the two sta-
ble states in a dynamic environment. In a deterministic 
setting, an initial condition would always guide a cell 
through a particular trajectory with no scope for flexi-
bility of response. There has been conclusive evidence 
of SR in biological systems, particularly in sensory sys-
tems at the tissue and sub-cellular levels (Douglass et 
al., 1993; Levin and Miller, 1996). Stochastic focusing 
refers to the phenomenon where cells utilize the noise 
to tune a gradual response, resembling somewhat to 
a threshold driven mechanism (Paulsson et al., 2000). 
In addition to the regulatory control through feedback 
loops, stochastic focusing plays an essential role in ef-
fecting precision control and imposing checkpointing 
in critical cellular processes. Stochastic resonance and 
focusing can together produce determinism through 
higher regulatory control, even though experimental 
evidence to validate these concepts is yet unavailable. 

However, despite the work done by the authors 
cited above, it is clear that the behavior of cellular net-
works, due its complexity of interactions and a large 
number of components involved, it is almost impossi-
ble to understand. However, we have gained an under-
standing of biology at a higher level, with the analysis 
of the complex collection of networks and pathways by 
the Systems Biology where the convergence of different 
omics fields integrate. Since the role of generating global 
data sets is essential, Systems Biology has been built on 
a three-pillars, consisting of experimentation, computa-
tion, and theory. These combinations give us a robust 
set of tools for better understanding of the complexity 
of the systems. Even though the mathematical models 
will get too complicated, they and computer simula-
tion techniques have proved useful for understanding 
the topology and dynamics of such networks. Silicon 
biology has the edge over conventional experimental 
biology in terms of cost, ease, and speed. Furthermore, 
experiments that are infeasible in vivo can be conduct-
ed in Silicon, exploring, for instance, how to knock 
out many essential genes from the cells and monitor 
their individual and collective impact on cellular me-
tabolism. Of course, such experiments cannot be done 
in vivo because the cell may not survive. Then Silicon 
models offer opportunities for unprecedented control 
over the system. In contrast to physicists, biologists still 
do not yet understand the fundamental laws of biolo-
gy. Modeling can provide valuable information into the 
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working and general principles of organization of bi-
ological systems, also suggesting new experiments for 
testing hypotheses, based on the modeling experiences. 

In this paper, we analyze the effects of a perturba-
tion on Turing morphogenesis using the Brusselator, an 
abstract model, which does not describe any particular 
chemical reaction, but that was used to show how the 
chemical reaction could oscillate. In the second part of 
this article, we introduce a stochastic process, for exam-
ple, by an intrinsic noise (fluctuation) again applied to 
the Brusselator. In the third part of the paper, we show 
how to retrieve the parameter information of the sys-
tem itself once obtained results of the mean, standard 
deviation, and noise of the reaction system.

2.1 The Turing’s morphogenesis by Brusselator
Before to introduce the stochasticity, we show how 

the Turing’s model implicitly assumes that some phys-
ical, chemical or biochemical or mechanical constraints 
are satisfied, because outside of their range of applica-
tion their accuracy is not guaranteed. Let’s see, in gen-
eral, how to proceed when we consider a chemical reac-
tion occurring in a small cube box with sides of length l. 
The state of the mixture at any point in time is fully de-
scribed by the total number of particles of each molec-
ular species inside the cube in which the concentration 
gradients are zero. That state defines the homogeneous 
assumption. If we define ni, be the total number of par-
ticles of species i in the box, then the concentration, de-
noted by [i], of the species is equal to ni/l

33. We have 
homogeneity if the effective diffusion coefficient D are 
sufficiently large. In the case of our box, Dτ»l2  where τ 
is the average lifetime of a reactant molecule, the mean 
free path lk=          defining the diffusion regime. 

If lk«l, the fluctuation remains localized in the region 
where it occurs, and the homogeneity assumption is no 
more valid. Vice versa if lk»l  the homogeneity is main-
tained all the time.  lk  sometimes, is also called Kuramo-
to length (1974) and defines cases characterized by the 
distance over which molecule diffuses before reaction. 
Once we have defined the level of homogeneity, inside 
the box where we have the reaction and diffusion, we 
need to analyze the average number of particle n. If the 
fluctuation about the average value is small, we can ap-
ply the deterministic model otherwise when it is of the 
order of  , then it is comparable to the average num-
ber of particles and a stochastic model is unavoidable. 

In case of heterogeneous conditions, the conceptual 
approach is the same, but the reaction volume is divid-

ed into m small volumes with side length δL such that 
the reaction is well mixed in each volume. Then the dif-
fusion is computed between the adjacent sizes. 

Nicolis and Prigogine, 1977, developed the Brusse-
lator that can be considered the simplest reaction-diffu-
sion models that exhibit the Turing instability and Hopf 
bifurcation. The Brusselator is probably the first math-
ematical model proposed to explain the mechanism of 
chemical oscillations as also observed in the famous B-Z 
reaction. Since then, this model serves as a prototype 
model to study many dynamical properties of oscillato-
ry systems, including the effect of noise. 

Let us define the following reactions 

In this model, A and B are assumed to be held con-
stant in some way (buffering, continuous supply, etc.). 
C and D are assumed not to participate in any further 
reactions so that their concentrations are irrelevant. Ac-
cordingly, X and Y are the only variables, now as x and 
y. 

We get the equations:
 

If we put k1 = k2 = k3 = k4  = 1    and if we add the dif-
fusion term we obtain: 

These Ordinary Differential Equations (ODEs) define 
the Reaction-Diffusion equations. Here D is the diffu-
sion parameter proportional to the diffusion ratio of the 
two species Dy/Dx  and z is the spatial variable.

The homogeneous steady state of this equation is 
simply (x, y) = (x*, y*) = (a, b/a). Considering a small 
perturbation in preceding equation, where there is the 
diffusion term we can linearize it. Let      
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      x=δx+x*=δx+a

y=δy+y*=δy+b/a
we obtain

where the linearization of the reaction terms is  
J*[δx    δy] T and J* is the Jacobian’s Brusselator 

and D is the matrix which has the diffusion coeffi-
cients on its diagonal, and zeros everywhere else 

In order to determine if the steady state is stable 
against small perturbations, we introduce a spatial as-
pect. Suppose therefore that our perturbations are inho-
mogeneous in space. One convenient form is 

 

where λ can be obtain from the eigenvalues of the 
characteristic equation for the equilibrium point and 
the term eikz=cos(kz)+isin(kz) is a convenient way to rep-
resent a spatial wave. There are conditions under which 
the steady state is unstable when a sine waves distur-
bance is induced? Substituting the perturbation into the 
linearized equation we get: 

 

where we have cancelled the common factors eλteikz. 
Rearranging the previous equation, we obtain: 

where I is the identity matrix. It has a homogeneous 
equation which has non-trivial solutions if the 
determinant is

The solution of this equation shows that depending 

from the values of parameters a, b and D the reaction-
diffusion system displays a Turing (stationary) patterns 
and a Hopf bifurcation.
Substituting the corresponding values into  the previous 
determinant we obtain
 

corresponding to

∴λ2+λ [ k2(1+D)+1−b+a2 ] +Dk4+k2 [ D(1−b)+a2 ] +a2=0
  
This is a quadratic equation of the form

whose solution is 

that gives us the stability conditions of the system. In 
fact, if q<0 we will have that 

b>1+a2+k2(1+D)>1+a2

where if b>1+a2 exist values of k such that the steady 
state is unstable and the system exhibits an Andropov-
Hopf instability not depending on diffusion and, in 
our case, not interesting. While if q>0 we obtain the 
following bifurcation condition (more information is 
due by deWit, 1999): 

that occurs only when the steady state would be 
stable in the absence of diffusion. In such a case we 
have a purely diffusive instability that occurs for a 
finite range of wave numbers k. Then this instability 
will form a spatial pattern of some sort since adding 
up a group of sine waves within a finite range of 
wavelengths should produce a nontrivial wave pattern. 
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Figure 1: Simulation of Andropov -Hopf bifurcation. The system pre-
sents the bifurcation point at a=1 and b=1.9. The behavior of the Brus-
selator trajectories shows the Andropov-Hopf is supercritical

This is a Turing bifurcation, whichh destabilizes stable 
steady state by diffusive terms, leading hence to pattern 
formations. In Figure 1 is drawn a phase portrait and 
the point of bifurcation for values of a=1 and b=1.9. 
Using proper parameter’s values far from {1; 1.9} we can 
obtain the classical figure of Turing’s morphogenesis 
(see figure 2).

Figure 2: 3D plot A, B, of Turing morphogenesis and related density 
plot showing the classical dots and rows, C, D respectively.

2.2 Modelling stochastic chemical kinetics 

Biological systems exhibit dynamics changes from 
one state to another whose exact nature is defined by 
the form of the perturbation in the network. As we have 
seen above a description of the stochastic system can 
be done in terms of well-mixed and dilute conditions. 
Stochasticity in the dynamics arises in one of the two 
ways: intrinsic stochasticity, inherent to the system, 
arising due to the relatively small number of reactant 
molecules or low copy number, extrinsic stochasticity 
originates from random variation of one or more envi-
ronmental factors, due to exogenous terms, e. g. tem-
perature and concentrations of the reactant species. 
The well-mixed conditions mean the expected distance 
travelled by each particle between successive reactive 
collisions is much larger than the length scale of the 
compartment. This implies that the spatial positions 
of molecules can be ignored and the dynamics of the 
system only depends on the total molecule numbers. In 
such a case the molecules can be defined as point par-
ticles and the state of the system at any time is fully 
determined by the state vector 

n = ( …, ), where  is the molecule number of 
species Xi  in the compartment. Since, in this case, the 
spatial locations of molecules do not have to be mod-
elled, the system corresponds to a time-continuous and 
differentiable Markov processes on a finite, discrete 
state space, called also continuous-time Markov jump 
process. Following the Anderson and Kurtz formula-
tion (2015) the corresponding Chemical Master Equa-
tion (CME) is:

In order to solve this equation, we define the vector  to 
be
  

and dpt/dt as the vector. 

Then the solution of the CME is got solving the following 
initial value problem, differential equation, 

Constructing this solution for the above parameters is 
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referred to as the CME problem. Efficient simulation of 
Reaction-Diffusion Master Equation (RDME) can be 
achieved by the Gillespie algorithms or Ito’s lemma. 
We have obtained the solution with tools properly 
developed in Mathematica http://www.wolfram.com/
mathematica/.
The introduction to CME can be found in Toth et al. 
2018 and in van Kampen, 2007.
Let’s now repeat the exercise with the stochastic 
Brusselator where we have to consider each reaction 
step and to associate to each of them a certain probability 
(reaction propensities). The probability table for this 
model is:

where Ω is the system size. Then the master equation 
corresponding to this system is:

The figure 3 shows the behavior of the deterministic 
Brusselator vs. stochastic

Figure 3: Deterministic Brusselator vs. Stochastic Brusselator (one 
realization)

3. Retrieving the noise and parameters of 
the system 

Now we apply to the Brusselator CME the proce-
dure to retrieve the level of noise. First of all, we know 
that one of the important parameters is Ω because of 
its size depends on its stochasticity fluctuations. One 
of the main techniques is to estimate the peak-to-peak 
intervals from stochastic time series. That is nontrivi-
al because they occur extremely often due to fluctua-
tions. Then let’s now compute the trajectories for 100 
realizations that will produce a cloud of realizations. 
Slice distributions of the state variables can be calcu-

lated at any time point. At the time, for instance, τ=12, 
we can calculate the mean and standard deviation for 
both state variables x(τ)and y(τ), as well as their histo-
grams. Then, we can select certain times, for instance, τ 
and compute the mean and standard deviation for both 
state variables a(τ) and b(τ), as well as their histograms 
as is shown in figure 4. 

Figure 4: The distribution of x(τ) ans y(τ) in the case of 100 realiza-
tions of the Ito’s process, at time τ=12.

An alternative method is the auto-correlation function 
that measures the correlation of a time series with 
itself shifted by a time lag as a function of itself. The 
autocorrelation of a signal x(t) is : 

 

and for a discrete signal generated by the stochastic 
simulation we have: 

While in the deterministic model the autocorrelation is 
periodic, in stochastic time series, however, it oscillates 
and C(̃τ) decreases exponentially with the time, 
reflecting the loss of phase memory (see figure 5). 

 

Figura 5: Autocorrelation for Ω=100. Cxx(t)= C(̃τ).



32 Organisms 3 (1): 25-34

This phenomenon is called phase diffusion. The 
damping rate of the auto-correlation function, meas-
ured by the half- lifetime (i.e., the time required to reach

that is a measure of the impact of noise. Bigger is the 
influence of the noise on the system, and shorter is the 
half-life time. Interestingly plotting the half-life time 
as a function of the system size, Ω or the standard 
deviation of the period distribution as a function of 1/Ω, 
for a large value of Ω a linear relationship is observed. 
This property is characteristic of nonlinear systems 
perturbed by a white noise (Gaspard 2002). We compute 
noise levels from the ratio between the variance   and 
the temporal average concentration  level of 
the species at the steady state

Once the 100 trajectories have been simulated between 
time 0≤t≤20, mean, standard deviation and noise can be 
shown as appears in figure 6 

  

Figura 6: Mean Red), Standard Deviation (blue) and Noise (black) ob-
tained after 100 realizations

Now we want to evaluate the parameter estimation 
from the measurements. That is critical since it deter-
mines how well the model compares to the measure-
ment data. The measurement process itself may also 
have serially uncorrelated errors due to the imperfect 
accuracy and precision of the measurement equipment.

Let’s write the measurement equation as yk=x(tk)+ek 

where . 
The inhibitor y(t) is assumed to be sampled between 

t=0 and t=20 at discrete time points tk , where k=0,1,2...., 
N; N=40, with an additive measurement noise σm. To get  
y(tk), we consider a single realization (as measurements 
should be) and sample it at time points tk. Then we 
add the noise, because as we have seen, the solutions 
to SDEs are stochastic processes that are described by 

probability distributions. This property allows for max-
imum likelihood estimation. Let the deviation of the 
measurements from the model be

where   and   is the mean of the 
random function. Assuming that the density function 
of  can be approximated reasonably well by Gaussian 
density, the likelihood function will  be:

For computation, we use its logarithm. Then we esti-
mate a and b from the SDE model, employing the max-
imum likelihood method. The optimization of the like-
lihood function is not an easy task, since the objective 
function is often flat, with nondifferentiable terms and 
many local extrema. Also, the model takes a long time 
to evaluate. Instead of using direct global optimization, 
first, we compute the values of an objective function on 
a 25*25 grid to use parallel computation to speed up 
the evaluation. Employing different global optimiza-
tion methods, we can compute the parameters that are: 
a=1.2; b=2.9 for -Log . The best results 
were obtained with the Nelder and Mead method (1965) 
that is used to find the minimum or maximum of an 
objective function in a multidimensional space. It uses 
the direct search method (based on function compar-
ison) and it is often applied to nonlinear optimization 
problems for which derivatives may not be known. The 
Nelder-Mead technique is a heuristic search method 
that can converge to non-stationary points on problems 
that can be solved by alternative methods. A similar ap-
proach can be used in case of forced Brusselator or case 
of Stochastic Resonance or Focussing Resonance.

4. Conclusions

Several papers introduce the idea that phenotypes 
are regulated by noise control. Noise control is a task al-
most mathematically intractable due to the propagation 
of noise through the reaction network. However, for the 
simplest reactions, it is possible to obtain the level of 
noise and eventually to retrieve parameters of the sys-
tem under examination from measurements. Although 
the approach we have shown has been applied to the 
most straightforward system as the Brusselator, it can 
be used for several SDE. Knowing the reactions and rate 
constants, it is possible to obtain the linear or nonline-
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ar stochastic differential equation by which we can ex-
plore the behaviour of the system. We are confident the 
approach we have used for Brusselator can be applied 
to other reactions because it is general and straightfor-
ward and starts from the CME of kinetics reaction. On 
a certain number of realizations, it is possible to obtain 
the probability distribution from which we can recover 
the mean values and standard deviations of the system. 
By the use of minimization techniques, the parameters 
of the system can be retrieved, and the reactions can be 
statistically controlled. Paszek (2014) suggests to make 
temporal measurements and to integrate the live-cell 
imaging with genomic and proteomic end-point assays, 
for example using microfluidic systems or micro dissec-
tion techniques. This requires a more precise measure-
ments of noise. However, he concludes, “[…] it is the in-
tegration of different temporal approaches that perhaps 
can provide a step-change in the field”.
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