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Abstract
Looking at the outbreak of SARS-CoV-2 and the global state of emergency imposed due to its pandemic spread, the necessity for 
antiviral drugs to be immediately available is a priority for the scientific community. Considering that research and implementa-
tion of new antiviral therapies or vaccines usually take a long time, the World Health Organization (WHO) has proposed to use in 
commerce drugs: in fact, repurposing drugs which are already accessible in large quantities is easier to fight against the virus, at 
least during the first emergency phase. In this article, we discuss various mathematical models which simulate the action of anti-
viral drug therapies, such as neuraminidase inhibitors (NIs), for the treatment of H1N1 Influenza A virus, by using data collected 
through in vitro and in vivo experiments. This constitutes a paradigmatic case of study for paving the way to a systematic investi-
gation of the effects of chloroquine and hydroxychloroquine as therapeutics in the treatment of SARS-CoV-2.
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1. Mathematical modeling of influenza:
a virus dynamics

Given the current lack of a vaccine for Severe Acute 
Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), 
the virus causing COVID-19, it is worthwhile evaluating 
potential prophylactic or therapeutic effects of drugs 
which are clinically approved for other indications. 
Chloroquine, and its derivative hydroxychloroquine 

(HCQ), have been already used with good results for 
the treatment of malaria and also in some autoimmune 
diseases, with the most common side effect being eye 
damage after heavy dosage and long-term administra-
tion [5]. The precise mechanisms through which chlo-
roquine may act to attenuate SARS-CoV-2 infection are 
of considerable interest, as this information could be 
valuable for identifying new treatments, while waiting 
for a vaccine.
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Chloroquine is a weak base which becomes entrap-
ped in membrane-enclosed low pH organelles, inter-
fering with their acidification [17]. Chloroquine ac-
cumulates in the digestive vacuole of infected cells, in 
which the treatment leads to an increase of lysosomal 
pH. Speculation on chloroquine-induced antiviral ef-
fects hence include inhibition of pH-dependent viral 
fusion/replication and prevention of receptor binding 
by viral envelope glycoproteins; chloroquine may also 
inhibit virions assembly in endoplasmic reticulum Gol-
gi intermediate compartment (ERGIC). Moreover, due 
to its potentiality in diminishing the expression of pro-
inflammatory factors and receptors, such as cytokines, 
chloroquine has already been proposed in 2003 as tre-
atment for SARS [17], which is primarily responsible for 
coronavirus-associated mortality.

It has been demonstrated that chloroquine is a 
broad-spectrum inhibitor of nanoparticle endocytosis 
by resident macrophages, since chloroquine decrea-
ses the accumulation of some synthetic nanoparticles 
in cell lines [23, 16]. Indeed, mechanistic studies have 
revealed that chloroquine reduces the expression of 
phosphatidylinositol binding clathrin assembly protein 

(PICALM), which is a cargo-selecting clathrin adaptor 
sensing and driving membrane curvature, thereby regu-
lating the rate of endocytosis [14]. If PICALM runs out, 
then the clathrin-mediated endocytosis, which is a pre-
dominant pathway for synthetic nanoparticle internali-
zation, is inhibited. Furthermore, chloroquine is known 
to prevent lysosome acidification, which is likely to in-
terfere with upstream endocytic trafficking, causing a 
‘traffic jam’ scenario that blocks effective transport of 
cargo to and from the cell membrane [23, 16].

It has been shown that SARS-CoV-2 falls within the 
same size range (60-140 nm) and shape (spherical) as 
commonly studied synthetic nanoparticles [24], which 
are typically sensible to chloroquine action [16, 9]. The-
refore, one of the mechanisms responsible for chloro-
quine-mediated effects against SARS-CoV-2 could be a 
general decrease in the ability of cells to perform en-
docytosis. Moreover, previous studies for SARS-CoV-1 
infection [10, 22] are possibly useful also for SARS-
CoV-2, since these two viruses might employ similar 
angiotensin-converting enzyme 2 (ACE2) mediated 
mechanisms of cell entry. Even if chloroquine mecha-
nism of lysosome acidification is likely to interfere with 

Figure 1: SARS-CoV-2 enters human cells using spike proteins as a bridge between viral envelope and cell membrane − www.perioimplan-
tadvisory.com/periodontics/oral-medicine-anesthetics-and-oral-systemic-connection/article/14173521/covid19-and-the-problem-with-dental-
aerosols.
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the action of membrane receptors, previous studies 
have revealed that chloroquine has therapeutic activi-
ty against SARS-CoV in cell culture but does not alter 
cell-surface levels of ACE2 [20]. Additionally, it has 
been proven that therapeutic doses of chloroquine do 
not substantially change the biosynthesis or glycosyla-
tion of the SARS-CoV spike glycoprotein [20], which is 
fundamental for virus entry into cells. On the contrary, 
this antiviral might have an important role in preven-
ting the entry of virions in cells. Indeed, lysosomal aci-
dification is responsible of a conformational change in 
the spike protein, bridging the viral envelope and the 
endosomal membrane together to enable fusion; thus, 
chloroquine-induced inhibition of endosomal acidifica-
tion is likely to alter this fusion event, stalling the virus 
in endosomes (see Figure 1).

However, the use of chloroquine has some serious 
limitations, because part of its pharmacokinetics re-
mains unknown, and its real efficacy is still not well de-
fined [9, 19, 4].

As paradigmatic case of study, we discuss a ma-
thematical model which illustrates the action of neu-
raminidase inhibitors (NIs), such as Zanamivir, for 

the treatment of H1N1 Influenza A virus, according to 
the results by Baccam et al. [1]. This model has been 
introduced to analyze the virus kinetics in the upper 
respiratory tracts of infected adults, by focusing on the 
importance of immune response to better fit with avai-
lable experimental data. When we do not consider the 
application of antiviral treatments, the so-called tar-
get cell-limited model with eclipse phase is given by 
the following ordinary differential equations: 

						    
						      (1)

where T is the number of uninfected target cells, I1 is 
the number of infected cells not yet producing virus 
(i.e. in the eclipse phase), I2 is the number of infected 
cells actively producing virus, and V denotes the in-
fectious-viral titer expressed in TCID50/ml of nasal 

Table 1: Patient-specific best-fit parameter values for the target cell-limited model (1) as found in [1].
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Figure 2: Viral titer in TCID50/ml of nasal wash and fraction of target cells remaining over the course of infection (8 days) in six different pa-
tients, corresponding to the experimental data in Table 1.
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wash. The parameter β represents the constant rate 
characterizing the infection of target cells, which beco-
me infected cells in the eclipse phase (I1), successively 
transforming into cells which actively produce virus 
(I2) with an average transition time 1/k. In turn, these 
cells increase the viral titer (V) by releasing virions at 
an average rate p (per cell), and die at a rate δ (per 
cell), thus 1/δ is the average life span of a productively 
infected cell. Instead, free virus is cleared at a rate of 
c per day.

We point out that separation of the infected cells 
into two populations increases the realism of the mo-
del, because delays in the production of virus after the 
time of initial infection are part of the viral life cycle. 
Furthermore, to be more focused on the process of 
cells decrease by the virus infection, the model (1) ne-
glects target cells proliferation and natural death, sin-
ce the infection typically exhibits a shorter timescale.

For the model (1), it is possible to compute the ba-
sic reproduction number R0 as the average number of 
second-generation infections produced by a single in-
fected cell initially placed in a population of entirely 
susceptible cells [1, 2, 4], namely

						    
						      (2)

where T0 is the number of target cells available at the 
starting time of the infection. If R0 > 1, then an infec-
tion can actually be established and it expands expo-
nentially according to this value, whereas it rapidly 
disappears if R0 < 1.

We propose different simulations performed by ex-
ploiting the parameters in [1] (see Table 1). The initial 
number of target cells is assumed to be T0 = 4 x 108, 
which is an estimate of the number of units in the upper 
respiratory tract, while the experimental data for I1 and 
I2 are initially fixed to zero. The geometric average of R0 
values for the six patients in Table 1 is 21.8, suggesting 
that an initial infection spreads rapidly and would be 
difficult to extinguish.

Figure 2 shows that, near the viral titer peak, a ma-
jority of target cells has been eliminated in most of the 
cases. While this would seem to exclude the possibility 
of the infection lasting as late as 6/8 days, these simula-
tions also suggest that, despite the few remaining target 
cells past the viral peak, the model can indeed sustain 

Figure 3: Course of Influenza A virus infection with and without the neuraminidase inhibitor Zanamivir administrated intranasally. The pre-
dicted virus titer dynamics from model (1) is shown for the placebo group (blue), the delayed-treatment group (light blue), the early-treatment 
group (green) and the preventive-treatment group (red). The horizontal magenta line marks the experimental limit of detection for the viral titer. 
We take the initial data for the green curve at time 1:2 of the placebo group and for the light blue curve at time 2.08 of the placebo group, together 
with 0.03 x p as virus production rate (that is because we suppose an instantaneous change of p value due to the antiviral administration with 
respect to previous placebo patients, and the system (1) is actually time-autonomous).
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infection during the predicted days (refer to the graph 
related to the fifth patient, for example).

Now, we briefly consider the model (1) with the usa-
ge of an antiviral drug therapy (more details are provi-
ded in Section 2). The rather large values of R0 in Table 
1 indicate that antiviral treatments need to be supplied 
before or very early after the infection outbreak. Thus, 
we focus on the clinical application with neuraminidase 
inhibitors (NIs) such as Zanamivir as done in [1], which 
are administrated at three different viral stages, in or-
der to report the effects of both prophylactic and antivi-
ral treatment. Since NIs prevent new virions from bud-
ding off an infected cell, their use is incorporated into 
the model (1) by reducing the viral production rate (p), 
and thus the corresponding basic reproduction number 
(2). Comparing the results of these new simulations 
with experimental data in [8], reasonable agreement is 
obtained when a reduction of viral production p of 97% 
is set [1].

Figure 3 shows the simulation outcomes according 
to this change in the values of p. The other parameters 
describing the infection without therapy are V0 = 0.25 
TCID50/ml, β = 1.4×10−2d−1(TCID50/ml)-1, k = 3.2d−1, 
δ = 3.2d-1, p = 2.7x10-5 d-1TCId50/ml, c =3.2 d-1, and 
these values are hold constant except for p, which is 
then set to 0.03 × p from the time of drug administra-
tion onwards. We compare four different trends in or-
der to express changes in the viral titer: one describes 
the course of infection in the absence of NIs therapy, 
whilst the others include the usage of NIs at different 
stages, more precisely 0, 1.2 and 2.08 (days) after the 
beginning of infection (referring to the preventive-tre-
atment group, the early-treatment group and the de-
layed-treatment group, respectively). In all cases, the 
virus is predicted to be cleared before an infection can 
become established, consistently with clinical results 
in [8]. Thus, treatment of Influenza A virus infection 
with NIs should reduce the period of symptomatic di-
sease and, furthermore, prophylactic usage with a hi-
ghly effective NI is predicted to prevent infection.

Another model considered in [1] takes account of 
the infected cells as a unique population, instead of di-
viding them into two different subpopulations I1 and 
I2, thus also reducing the number of experimental pa-
rameters. This representation does not contemplate 
the delay in viral production (eclipse phase), which 

actually makes the model (1) more realistic. We point 
out that the effects of immune response are not expli-
citly described in the simple model (1), but they are 
implicitly included through the death rate of infected 
cells (δ) and the clearance rate of virus (c). Thus, the 
infection resolution is a direct consequence of the tar-
get cells limitation. However, clinical reports from 
immunocompromised humans who shed Influenza A 
virus for prolonged periods suggest that the immune 
response plays a crucial role in clearing the infection, 
or at least in preventing it from becoming chronic and 
potentially lethal. Hence, we also make reference to re-
levant modifications of the model (1) which include the 
innate immune response component [1], or both the 
innate and adaptive ones [6, 7, 15].

Another variation of the model (1) is proposed in 
[1] by implementing the following delay differential 
equation:

						      (3)

in order to incorporate the important role played for the 
Influenza A virus infection by the interferons (IFN), a 
group of signaling proteins released by the host cells in 
response to the presence of various viruses. Therefore, 
it is assumed that IFNs are secreted from virus-produ-
cing cells (I2) at a rate s (per cell), but starting τ time 
units after cells begin producing virus; moreover, this 
amount is proportional to that made collectively by in-
fected cells, monocytes, macrophages and plasmacytoid 
dendritic cells. The constant parameter α represents the 
loss rate of IFNs, either by binding to cellular IFN re-
ceptors or through degradation.

This modification allows to explain the emergence 
in some patients of two virus titer peaks, which were 
absent in the simulations of the original model (see 
Figure 2). The bimodal virus titer curves are a pheno-
menon already observed in several studies [11, 12, 13], 
either using the average virus titer of patients involved 
or taking the individual value for each patient (in this 
last case, the bimodal virus titer was present in about 
half of the patients). In fact, the bimodal virus titer cur-
ves in Figure 4 have been obtained by numerically si-
mulating the model in [15], which includes the innate 
response as the interaction between IFNs and the target 
cells, and the immune response through the action of 
Natural Killer cells, always activated by the IFNs. In-
deed, because of the presence of IFNs, the uninfected 
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target cell count decreases, since the cells become re-
fractory to infection, whereas the Natural Killer cells 
induce cytolysis of infected epithelial cells. In this case, 
the bimodal characteristic of the virus titer curves could 
be due to the IFNs dynamics, which peaks shortly after 
the first viral peak, and then decreases rapidly, so that 
the second viral titer peak can be explained by the loss 
of the IFN-induced antiviral effect.

Nevertheless, the model (1) together with equation (3) 
is affected by some limitations, especially for the larger 
number of parameters compared to the lower amount of 
experimental data available for human influenza infec-
tions. On the contrary, studies on animals usually pro-
vide more data. The availability of additional data for 
immunocompromised animals, as well as data for dead 
cells and immune response components, has allowed to 
make further progress in discriminating between diffe-
rent possible models for the infection dynamics [7, 15]. 
These studies conclude that both an innate and an adap-
tive immune response component is required to properly 
describe the infection dynamics and, therefore, to provi-
de an adequate explanation of the observed data.

2. Numerical simulation of the effects 
of antiviral treatments

In that context, we consider the presence of antivi-
rals, such as chloroquine or hydroxychloroquine.

Let ε be the effectiveness of administrated drug 
and, according to [4] (see also the supplementary in-
formation), assume that antivirals with an effectiveness 
ε work in reducing the basic reproduction number R0 
computed in (2) by a factor (1 - ε). This hypothesis can 
be included into the model (1) by modifying either β or p 
to obtain the following ordinary differential equations:

						      (4)

and

						    
						    

(5)

In order to promote an effective choice between 
the models (4) and (5), we have numerically simula-
ted both systems to compare their solutions to that 
of the original model (1). As a matter of fact, the pre-
sence of the reducing factor (1 - ε) has a more signifi-
cant impact on the dynamics of system (5), as shown 
in Figure 7, since a decrease of the viral load peak can 
be clearly observed with respect to Figure 5 and Figu-
re 6. On the contrary, reducing the infection rate β by 
the factor (1 - ε) does not produce any relevant effect 
on the overall dynamics, and there is a complete coin-
cidence of the numerical simulations of the models (1) 
and (4), as shown in Figure 5 and Figure 6, respecti-
vely. This particular behavior might be explained by 
the fact that the parameter β appears inside the equa-
tions always multiplied by the variable T, which from 
an initial value T0 of the order of 108 (refer to Section 2) 
drops rapidly toward zero (in an extremely short time), 
thus making the effect of the infection rate β negligible 
as soon as T vanishes From a mathematical point of 
view, the initial datum T0 plays the role of a stiffness 
parameter for the model (1) and its variants (4) and (5), 
leading to the appearance of fast-slow dynamics usual
ly reported for multiscale nonlinear processes [18].

Then, we focus our attention on the effectiveness 
ε of antivirals, by studying how this factor eventually 
changes with time. Following the hypothesis made by 
Gonçalves et al. [4], we assume that the effectiveness of 
a treatment, at some time t after its administration has 
begun, is related to the plasma total drug concentration 
C through the empirical law given by

						      (6)

where EC50 is the drug concentration typically requi-
red to produce 50% of its maximal effect during a gi-
ven time interval. This is an intrinsic PharmacoKinetics 
(PK) drug property, representing the drug’s generic po
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Figure 5: Target cell-limited model (1) without antiviral effects.

Figure 6: Target cell-limited model (4) with the reducing factor (1-ε) to simulate antiviral effects on the infection 
rate β.

Figure 7: Target cell-limited model (5) with the reducing factor(1-ε) to simulate antiviral effects on the viral 
production p.
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Figure 8: Simulation with hydroxychloroquine administrated 2 days after the infection outbreak.

Figure 9: Simulation with hydroxychloroquine administrated 1 day after the infection outbreak.

Figure 10: Simulation with hydroxychloroquine administrated at the infection outbreak.



124

COVID-19 Calls for Mathematics, Part 1:
Neuraminidase Inhibitors, Chloroquine and Hydroxychloroquine

Figure 4: Simulation of viral titer double peaks obtained by using the 
target cell-limited model with IFNs action proposed in [15] (this model 
with differential delay does not consider the eclipse phase of infected 
cells). The graphs illustrate the viral titer curve (red) with two peaks 

and the INF dynamics (blue) during the course of the infection.

tency: among drugs which have effect on the same re-
ceptor system, the ones with lower values of EC50 are 
more powerful.

More specifically for chloroquine and hydroxych-
loroquine, experimental results from in vitro studies 
have proven that both have good antiviral activity [17, 
20, 5]. In particular, it has been found in [21] that they 
are able to decrease the viral replication depending on 
their concentration, and therefore we can assert that the 
expression in (6) correctly describes this phenomenon, 
because the decrease of viral replication is ε-dependent 
and ε is itself concentration-dependent. Once a ma-
thematical model of viral dynamics has been fitted to 

experimental data, we can combine the estimates of vi-
ral replication parameters with the specific properties 
of the drug candidates, in order to formulate possible 
conclusions regarding the effects of the treatments for 
various dosing regimens [4]. For that issue, we consider 
the EC50 value of the drugs under investigations during 
various time intervals. According to [21], the EC50 va-
lues for chloroquine are 23.90 μM and 5:47 μM at 24 
hours and 48 hours after the administration, respecti-
vely; on the other hand, the EC50 values for hydroxych-
loroquine are 6.14 μM and 0.72 μM at 24 hours and 48 
hours after the administration, respectively. Hence, we 
conclude that hydroxychloroquine exhibits a superior 
in vitro antiviral effect in comparison to chloroquine 
and, from now on, we consider only results concerning 
the treatment based on hydroxychloroquine. For the ex-
perimental setting, following the approach by Gonçal-
ves et al. [4], we take into account published data from 
four different Singapore hospitals, to run and examine 
several simulations concerning hydroxychloroquine ef-
ficiency. The patients from the trial group (13 patients) 
were hospitalized, on average, 3 days after the onset of 
symptoms (range of the real data: 1-10 days) and had 
not yet started any treatment. Adopting the real time 
Reverse Transcription Polymerase Chain Reaction (RT 
PCR) technique, viral loads in nasopharyngeal swabs, 
to which patients have been tested, were measured 
at multiple time points. The observed data showed 
a peak of viral load at 5 days after the onset of sym-
ptoms, on average (range of the real data: 2-27 days). 

As the parameter values of our simulations, we assu-
me the initial target cell concentration to be 1.33 x 107 

cells/ml distributed over 30 ml of nasopharyngeal volu-
me, which gives a total number T0 = 4 x 108 of nasopha-
ryngeal target cells. Following previous  models of viral 
infection [2], we consider the clearance rate of virus as 
c = 5 d-1 and virions are supposed to be released from 
infected cells (I2) at rate p = 10 d-1. When data availabi-
lity is limited to the viral loads, not all parameters can 
be estimated. For this reason, several values of k were 
tested in [4], recalling that all the data from Computed 
Tomography (CT) were reported into a log10 scale, since 
this transformation does not change the quality of the 
parameters to be identied. The values {k1, k2, k3} = {1, 
3, 5} d-1 provide good fitting of the model, therefore we 
use the estimates deduced from them for the remaining 
parameters (refer to [4] for supplemental information). 
In particular, we choose the death rate of productively 
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infected cells as {δ1, δ2, δ3} = {0.55, 0.51, 0.52} d-1 (con-
sequently, the average life span is about 1.88, 1.96 and 
1.92 days, respectively) and the (normalized) infection 
rate as {β1, β2, β3} = {0.867, 0.379, 0.302}. For each 
set of different parameters, we calculate the basic re-
production number R0 which is found to take the values 
27.1, 12.8 and 10.0, respectively. The mean antiviral ef-
fectiveness of a drug in seven days of treatment is given 
by the integral formula, namely

						      (7)

Concerning the COVID-19, the characteristic va-
lue of ͞ε is about 33% for the hydroxychloroquine [4], 
and we used this value as parameter ε in our nume-
rical simulations. We analyze how the hydroxychlo-
roquine treatment affects the viral load peak when 
the drug is administrated at different times after the 
infection outbreak, with the set of parameters rela-
ted to k = 1.

All the figures show an early viral load peak fol-
lowed by a progressive decrease of the virions. Ac-
cording to the experimental data, the value of this 
peak without any treatment is about 3.8 x 108 and it 
occurs about 36 hours after the infection outbreak 
(dashed line).

The action of hydroxychloroquine reduces the vi-
ral load in different ways, depending on when the tre-
atment is administrated: for instance, providing the 
hydroxychloroquine 2 days after the infection outbre-
ak helps the abatement of the viral load, but it does 
not have any effect on the peak intensity (see Figure 
8). Instead, initializing the treatment 1 day after the 
infection outbreak reduces the viral load peak to about 
3.4 x 108 (see Figure 9). Finally, we observe the most 
signicant effect when the hydroxychloroquine is admi-
nistrated immediately at the infection outbreak, and 
in this case the peak value decreases to about 2.5 x 108 
(see Figure 10).

We deduce from these results that hydroxychloro-
quine does not have relevant antiviral effects if admi-
nistrated more than 2 days after the infection outbreak. 
Indeed, it is advisable to initialize the treatment earlier, 
sometimes as a prophylactic agent to decrease the viral 
load peak, thus attenuating the viral replication and mi-
tigating the disease progression, even if it could be not a 
complete protection.

However, it is worthwhile noticing that the correc-
tion by the factor (1-ε) of parameter p modifies only 
the behavior of the variable V, while leaving comple-
tely unchanged the others. This is justied by observing 
that parameter p is present only in the last equation 
of the model (1) and its variants, and then V appears 
in the first two equations, but always multiplied by the 
variable T which, as already explained, rapidly goes to 
zero (in almost an infinitesimal time). Following a pu-
rely qualitative approach, we simplify the model (5) by 
considering T(0) = 0 (hence T(t) = 0 is a stable solu-
tion to the first equation), and we solve the remaining 
(triangular) system, for I1(0) ≠ 0 in order to initialize 
the dynamics, together with I2(0) = 0 and V(0) ≠ 0, so 
that we obtain the following explicit solution:

						          
(8)

Therefore, the parameter p and its reducing factor 
(1 - ε) determine only the dynamics of the variable V 
from (8), and the difference between the numerical si-
mulations with or without the hydroxychloroquine ef-
fects is observable only in the behavior of V. 

In conclusion, we have to point out that our model 
is not really predictive: indeed, the simulations above 
show the viral peak already after 1 - 2 days, differen-
tly from the average period of 5 days actually observed 
for the 13 patients analyzed in [4]. In order to become 
more realistic, an agreement is necessary on both the 
parameters to be used and their appropriate estimate 
to be inserted into the numerical algorithm, because the 
models presented in this article are highly unstable with 
respect to the initial data. Rigorous studies on these 
aspects are still under development, as well as those re-
lated to hydroxychloroquine and its experimentation as 
a medicinal product for the SARS-CoV-2 virus. In fact, 
all these qualitative results are valid under the hypothe-
sis that the treatments act according to the modeling 
assumptions, we seems not to unanimously confirmed 
by recent studies [3, 21].
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