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Abstract

We give some numerical observations on the total number of infected by the SARS-CoV-2 in Italy. The analysis is based on a tanh 
formula involving two parameters. A polynomial correlation between the parameters gives an upper bound for the time of the peak 
of new infected. A numerical indicator of the temporal variability of the upper bound is introduced. The result and the possibility 
to extend the analysis to other countries are discussed in the conclusions. 
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Introduction

In most epidemics it is hard to determine the true 
number of new infected individuals per day. This is 
the case for the new coronavirus disease, since asym-
ptomatic people or with very mild symptoms may 
not seek medical assistance and cannot be identified 
(Baud et al. 2020). Realistic data are fundamental 
to understand the epidemic and to steer the e orts 
to inhibit the disease in the right direction. Also, 
the dynamical variables of epidemiological models 
usually are linked to, or describe directly, the evolu-
tion of the true number of infected: the comparison 
with the empirical data may be problematic if those 
numbers are not realistic. On this side, researches 
about the estimation of the real scale of the epidemic 

or of the proportion of the asymptomatic already ap-
peared in the literature—see e.g. (Li et al. 2020) or 
(Kenji et al. 2020).

On the other hand, under very reasonable hypo-
theses, it is possible to assume that suitable measu-
rable quantities are determined by the relative values 
of certain characteristics of the population only (in 
opposition to global absolute values): in this case the 
knowledge of only a fraction of new infected indivi-
duals per day may still be useful to estimate some of 
the measurable quantities. This property (we will refer 
to it as “scale invariance”) must be reflected in a scale-
independent property of the underlying epidemiologi-
cal model. In this paper we assume that the time of 
the peak of new infected by the SARS-CoV-2 in Italy 
has the scale-invariance property. We are aware of the 
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fact that this assumption can be considered at best 
a rather crude approximation to a very complex sy-
stem of interactions. In our opinion however, when 
taken as a working hypothesis, it can provide a well-
founded basis, or at least a starting point, to achieve 
reasonable estimates. This point of view will be ju-
stified further in section (1) on the basis of the SIR 
epidemiological model.

Since the start of the epidemic in China, a certain 
number of studies appeared in the mathematical com-
munity about this subject: the description of the spatial 
or temporal diffusion of the infected in given regions 
(Fanelli & Piazza 2020), (Gaeta 2020a; 2020b), (Giulia-
ni et al. 2020), the transmission dynamics of the infec-
tion (Kucharski et al. 2020), the economic and financial 
consequences of the epidemic (Albulescu 2020), the 
effect of atmospheric indicators on the spread of the vi-
rus (Wang et al. 2020), are only a fraction of the topics 
under investigation in these days. A certain number of 
epidemiological studies are connected to the SIR mo-
del. The SIR model is one of the simplest non-linear 
deterministic continuous (in time) model of epidemio-
logy: the overall population is divided in three disjoint 
classes: S, i.e. the number of susceptible individuals, I, 
the number of infectious individuals and R, the number 
of recovered individuals. Albeit its non-linearity, the 
dynamic of the model is fairly uncomplicated and ma-
nageable from an analytical point of view and displays 
very interesting and realistic properties such as the exi-
stence of an epidemic threshold—see e.g. (Braun 1993) 
and (Murray 2002).

We must underline that the assumption of the scale 
invariance is not specific of the SIR model: rather, the 
SIR model is seen here as an instance among the family 
of models possessing the scale invariance.

The paper is organized as follows: in section 1 the 
SIR model is introduced and briefly discussed. In sec-
tion (2) we analyze the data of the cumulative number 
of infected in Italy on the base of two simple hypothe-
ses. An upper bound for the time of the peak of new 
number of infected is obtained. This upper bound is 
dynamic: when more data are added to the model in 
the course of the epidemic it may changes in time. In 
section (3) we will discuss the predictive validity of the 
model on the basis of a numerical indicator measuring 
the temporal variability of the upper bound. In the con-
clusions, we will comment about the results and look 
for possible extensions.

1. The SIR Model and the Scale 
Invariance Property

The SIR model describes the evolution of the indivi-
duals in the susceptible (S), infectious (I) and recovered 
(R) classes with the following differential equations:

      (1)

The total population N = S + R + I is a conserved 
quantity from the dynamical point of view, meaning that 
there are only two independent variables in the set of 
equations (1). The characteristics of this model are well-
known and the interested readers can look for example 
at the discussions in the classical books of (Braun 1993) 
and (Murray 2002). Here we will make only few obser-
vations, relevant for the next sections.

Some authors do not include the denominator N 
on the right hand side of (1), since it is a constant and 
can be absorbed by a re-definition of the parameter 
r. However, we will keep it: in this way it is indeed 
evident the scale invariance property of the model: if 
the initial conditions (S0, I0, R0) are scaled by a com-
mon constant factor k, (and so the total population is 
scaled by a factor k), the solution is scaled by the same 
factor. Indeed it is enough to observe that, if (S(t), I(t), 
R(t)) are the solutions of equations (1) corresponding 
to the initial conditions (S0, I0, R0), then (kS(t), kI(t), 
kR(t)) are the solutions corresponding to the initial 
conditions (kS0, kI0, kR0).

Some temporal properties of this model, like the 
time corresponding to a maximum in I (the time of the 
peak of the infected), do not depend on the scaling fac-
tor k. This property is very useful, since the actual num-
ber of infected or susceptible (and then of recovered) is 
in general not known. The reasonable assumption that 
the same fraction (with respect to the total) of infected, 
susceptible and recovered individuals are known, gives 
the possibility, in this case, to compare the measured 
data with the properties that are scale-independent.

The solution of the system (1) cannot be given expli-
citly in terms of known functions. However, if the epide-
mic is not severe, i.e. the number R(t) can be considered 
small compared to the overall population, an explicit 
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formula for the number of recovered can be obtained in 
terms of the hyperbolic tangent function. Here, we will 
not give the details: the interested reader can look for 
example in (Kermack & McKendrick 1927) and (Murray 
2002). The function reads as

           R(t) = α tanh(βt − c) + α tanh(c), (2)

where we used the initial value R(0) = 0. The impor-
tant point for the rest of the paper is not the exact so-
lution of the system of equations (1), neither the beha-
vior of the solution. Rather, the possibility to represent 
an epidemiological curve with a simple and managea-
ble formula like (2) will be crucial in this study. The 
parameters (α, β, c) possess an explicit representation 
in terms of the parameters a and r of the SIR model (1) 
and of the initial conditions (S0, I0, R0). The formulas 
are quite cumbersome and the interested reader can 
look for example in (Murray 2002). Our aim here is not 
to analyze the data to fit the solutions of the system (1), 
but to make use of the explicit formula (2) in a way that 
will be clear in the next pages. In passing, we would 
like to underline that, if on the one hand the SIR model 
gives a mathematical basis to formula (2), on the other 
hand it would be possible to consider (2) as a postula-
te and to assess the soundness of this postulate from 
the truth value of the conclusions obtained. From this 
point of view, formula (2) can be considered as one of 
the examples of the so-called s-shaped epidemiologi-
cal curve (with a peaked derivative, the function sech2) 
that universally describes an infection disease (Braun 
1993). As can be seen from the second formula in the 
set of equations (1), once the value of R is given, the va-
lue of the number of infected can be obtained by deri-
vation, i.e. aI(t) = αβsech(βt - c)2. When considering the 

cumulative number of infected, R + I, the contribution 
of sech2 is negligible on the tails, whereas it is more pro-
nounced in correspondence of the maximum of sech2, 
but it is however small if the value of the parameter β 
is less than one. In this case, the value of R + I is well 
approximated by a tanh formula like (2), with a certain 
different value of c. For the sake of clearness, we report 
in Figure (1) a plot of the function (2) (left) and a plot of 
its derivative (right): as can be seen from the figures, an 
epidemiological interpretation of the parameters (α, β, 
c) can be the following: t* = c/β is the time of the peak of 
new number of infected, α(1 + tanh(c)) is the cumulati-
ve final number of people infected, whereas α tanh(c) is 
the maximum of the new number of infected.

As a final remark we want to make two observations 
about the scale invariance and the usefulness of formu-
la (2). The first observation is the following: the scale 
invariance property assumes that the same fraction of 
the true number of infected, susceptible and recovered 
is measured. However it is tacitly assumed that this 
fraction does not vary in time. If the epidemic persists 
in time, there is the possibility that the value of such 
fraction changes significantly. For this reason the num-
ber of data to be analyzed must span a limited interval 
of time. In the following section we will take the data of 
the outbreak in Italy from the 6th of March (15 days after 
the 21st of February, when the outbreak started, in order 
to have enough statistical data) to the 2nd of April, for 
a total of 28 days. The second observation is about the 
usefulness of formula (2). We are aware that this formu-
la is a very crude approximation of the real curve, but, 
for limited intervals of time (like the interval that we are 
going to consider), it is able to incorporate, in a simple 
way, the main characteristics of the epidemic. For large 
time, the epidemic curve may be asymmetric and surely 

Figure 1: The plot of the fun-
ction (2) (left) and of its deri-
vative (right) as functions of 
time for generic values of the 
parameters (α, β, c). The epi-
demiological interpretation of 
the parameters is shown.
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its differential will develop with different velocities. For 
the above reasons, in the next section we are going to 
use the above formula only for a limited amount of data. 
As we will see, this is enough to obtain some relevant 
information about the time of the peak of new infected.

2. Analysis of Data with a tanh Model

The discussion made at the end of the previous sec-
tion, despite to be very basic, has the advantage to be 
manageable and to incorporate the main properties of 
the SIR model. It is not by chance that the first appli-
cation of the SIR model (the Bombay plague of 1905) 
by Kermack and McKendrick (Kermack & McKendrick 
1927) used precisely the tanh formula above.

In the following we will base our analysis on 
two hypothesis:

1.  We assume that the cumulative number 
of infected is described by a tanh model, when 
the data analyzed span a limited interval of time 
(as explained in section (2)). Although this as-
sumption is coherent with the founding of the SIR 
model, it does not depend on the particular dyna-
mical model considered.

2.  We assume that, whatever it is the un-
derlying model describing the evolution of the 
number of infected, this model is scale invariant, 
in the sense specified in the previous section.
The second hypothesis is fundamental since we are 

going to look at scale-independent quantities: even in 
the case the measured number of infected and recove-
red individuals are different from the actual values, it is 
possible to estimate these quantities.

The cumulative total number of infected that will 
be considered in the next lines are those of the enti-
re Italian territory. There are at least two reasons that 
suggested to not taking regional or local data: the first 
one is that the epidemic started to spread across th-
ree different regions (Lombardy, Veneto and Emilia-
Romagna), and there could not be a correspondence 
between the locality where a certain fraction of inha-
bitants reside and the region where this fraction was 
infected. This is also true at a national level, but the 
fraction is assumed to be smaller. The second reason is 
that a non-negligible number of workers and students 
moved, just before the lockdown, from the northern 
regions to their regions of origin in the center and 
south of Italy.

The possibility that a non-negligible flow of infected 
people passed from the north to other regions should be 
taken into consideration. By taking the entire national 
set of data, we overpass the above issues.

The data can be taken for example from WHO 
(World Health Organization, 2020) or from Worldome-
ter (Worldometer, 2020). The cumulative total number 
of infected will be indicated by Fn, with F1 = 21 corre-
sponding to the number of infected on 21st of February 
2020. The subscript n stays for the number of days from 
the starting of epidemic. These data will be opposed to 
the continuous formula

       f (t, α, β, c) = α tanh(βt − c) + α tanh(c). (3)

The value of β will be taken to be constrained by the 
equation

                 α tanh(β − c) + α tanh(c) = F1. (4)

The function f (3) then depends on two parameters, 
α and c. When necessary, to stress the dependence on 
these parameters, we will denote the function with 
fα,c(t). The cumulative final number of infected expected 
from formula (3) is given by f∞ = α(1 + tanh(c)). It is pos-
sible to estimate the parameters α and c by minimizing 
the difference between the actual and predicted number 
of cases, i.e. minimizing

           n

  Sn = ∑ (Fn − f(n))2  (5)
                i=2

In order to have a reasonable minimum number of 
data, we start the analysis by taking n ≥15. The values of 
the parameters minimizing the sum Sn are reported in 
table (1). Please note that some values are slightly diffe-
rent from those of the preprint version of this paper sin-
ce some data on the cumulative number of infected Fn 
have been corrected according to (Worldometer, 2020). 
These values have been obtained by equating the deri-
vative of the expression (5) with respect to α and the 
derivative with respect to c both to zero. The solutions, 
for each given n, have been found numerically. Due to 
the strong non-linearity of equation (3) it is not easy to 
find estimates for the confidence intervals.

A plot of dfα42,c42 /dt and of Fn+1 − Fn is reported in Fi-
gure (2). A fundamental observation is that the function 
Sn actually has a basin of depressed values, showed in 
detail in Figure (3) for a given value of n. This basin of 
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minimum seems to indicate that there is a given fun-
ction α(c) giving a family of tanh curves with reduced 
values of Sn. The curve α(c) is quite stable by varying n 
(see section (4)) and suggests to look at the values of αn 
as functions of cn. In Figure (4) we report the plot of the 
values of αn and cn given in table (1) as a function of n, 
whereas in Figure (5) the plot of the values (cn, αn). The 
values of αn vs cn, as explained above, describe the basin 
of depressed values for Sn as a function of α(c). We make 
a cubic t, with linear coefficients, in order to get a rough 
description of the curve α(c):

                                   3

             α = ∑ akc
k  (6)

                                 k=0

Clearly, by considering a number N of values of αn 
and cn to fit ak, k=0,...,3, we will obtain a set of values 
{ak,N }. By fitting all the data available (i.e. by taking N 
= 28), we get the following values for the coefficients ak:

a0 = −999707, a1 = 1077192, a2 = −389358, a3 = 47555.
      (7)

It is possible to get more terms in the sum (6), but 
the cubic term is sufficient to get a formula accurate 
enough to what we are going to say.

The plot of the fit is given in Figure (6), together with 
the values of the residuals, 

                3          
k      αn −Σk=0 akcn , 

where the values ak are those given in equation (7).
A comparison between the curve α(c) and the basin 

of minima for Sn has been plotted in Figure (7): the red 
curve is the function (6) with the black dots giving the 
actual values of (cn, αn) in table (1).

The function α(c) denotes a trend in the data that 
may be useful. If in the next days the values of the infec-
tion continue to rise, it is reasonable to expect that the 
values of α and c will be constrained closely by the same 
curve. Clearly, the model used here is rough, but it can 
give at least an idea about the future trend of the data. 
We are tacitly assuming that there will be no other clu-
ster of infection around Italy in the next days: the point 
will be discussed later.

Now we consider the function f in (3) as a function 
of t and c alone, since the value of a is constrained by 
the curve (6). The plot of the derivative of this function 
(with respect to t) gives the time of the peak of infec-
tions. The plot is reported in Figure (8): we notice that 
the maximum of the derivative of the cumulative num-
ber of infected increases with n up to c ~ 4.3 and then 
decreases by increasing c. This gives an upper bound for 
the peak of new number of infected (the point where the 

Figure 2: The number of new infected and the continuous curve gi-
ven by dfα42,c42 /dt

Table 1: the estimated values of αn and cn
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Figure 4 (down): The values of αn and cn vs n as given in table (1)

Figure 5: The values of αn vs the values of cn as given in 
table (1)

Figure 3 (left): The basin of depressed values of S30: the values have 
been re-scaled to F2 for easy of plotting.
     

30
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second derivative of f (t) (3) is zero), given by 36 days 
after the data corresponding to F1 (21st of February).

3. Temporal variability of 
the upper bound

The basin of minimum of Sn, for each fixed n, is de-
scribed by a function gn = α(c): this function gives a fa-
mily of tanh curves with reduced values of Sn. The curve 
α(c) has been described in the previous section by fit-
ting the values of αn and cn in table (1) with a cubic for-
mula. We obtained just one curve by making use of all 
the data available, i.e. 28 couples (cn, αn). It is possible 
to ask how the curves gn(c) depend on the number of the 
data available: if the curves gn have a temporal stabili-
ty, then they can be used to make a reliable estimation 
of the time of the peak of new infected. To address this 
question we fit the data (ci, αi), with the index i from 
15 to N, by varying the number of data taken (i.e. by 
varying N). The fit is again cubic, like in (6). In this way 
we follow the temporal variation of the curve gN (c). In 
plot (9) we report the curves gN (c) for N in the inter-
val [30, 42]: they correspond to the last thirteen curves 
(in order of time). It is possible to see that indeed the 
convexity of the curves is slowly increasing, so that the 
differences are more pronounced for higher values of 

c. To have a measure of the variability of these curves 
we introduce a parameter giving the relative increase of 
gn(c) for c fixed and equal to the last available value (i.e. 
c = c42 in table (1))

 

      (8)
 

The values of PN , N = 30...42, are also reported in 
Figure (10): the maximum value is obtained for N = 42 
corresponding to P42 = 1.058. 

4. Discussion

Optimal responses to public health emergencies 
must be tailored to the regional context and must take 
into account different aspects of the epidemic, like its 
severity and the type of risks, and different aspects of 
the local capacity to manage and mitigate the sprea-
ding. From this side the quantity and quality of he-
althcare infrastructures and the coordination across 
public and private sectors appear to be crucial for a suc-
cessful implementation of the control strategy. On the 
other side, mathematical modeling tools can surely be 
decisive to properly assess the intensity, evolution and 

Figure 6: The plot of the fit (6) (left) and the values of the residuals 
3

                 
kαn − ∑k=0 akcn
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duration of the emergency. A reasonable estimate of 
the peak of new infected in epidemic outbreaks may be 
useful not only to rightly evaluate the dynamic of the 
infection, but also to give an (a posteriori) assessment 
of the effectiveness of the containment strategies: the 
perseverance of the infections may denote some dege-
neration of the control strategy or some change in the 
social situation. Clearly, the peak of new infected is just 
one of the multiple indicators that should be taken into 
account: deterministic or stochastic models, r0 and rt 
indexes, risk parameters and spatio-temporal simula-

tions are all fundamental to provide a quantification 
of the evolution of the infectious disease and develop a 
rapid decision making process.

Conclusions

The above analysis, despite using a rough function 
for the total number of infected, is able to give an upper 
bound for the time of the peak of new infected (27th of 
March) thanks to the observation that the values of αn 
are, in a certain sense, not independent on the values 

Figure 8 (top): The values of the derivative of the function f (t) vs n and c 
(left) and the corresponding values of maxima as a function of n and c (the 
points where the second derivative of f (t) vanishes) (right).

Figure 9: The functions gN (c), for N = 30...42: the curves 
overlap in a small region of the plane (α, c).

Figure 10: The values of the parameters PN , N = 30...42, measu-
ring the temporal variability of the curves gN (c).

Figure 7 (left): The basin of minima together with 
the curve (6) (in red) and the actual values (cn, αn) 
(black dots).
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of cn and are well described by a polynomial interpo-
lation with linear coefficient. The hypothesis about the 
scale invariance of the underlying model (that, we re-
peat, not necessarily is represented by the SIR model) 
and the low temporal variability of the upper bound are 
fundamental for the accuracy of the result. Another un-
derlying assumption is that the restrictive measures will 
be kept and observed in the next days and there will be 
no other clusters in the south of Italy (in the SIR mo-
del language, the values of S0 are below the epidemic 
threshold, see e.g. (Murray, 2002)). In the unfortunate 
case that there will be other clusters (the preprint ver-
sion of the paper appeared before March 27, 2020 on 
arXiv, see: https://arxiv.org/abs/2003.11363v1), it is 
possible to think of a substitution of the tanh curve by a 
combination of such functions: if there are two clusters 
of comparable magnitude, then we will have

f (t) = α1 tanh(β1t − c1) + α1 tanh(c1) + α2 tanh(β2t − c2) 
+ α2 tanh(c2)     (9)

A statistical analysis of the data given in table (1) will 
surely help to improve the results here given and will be 
provided in a next paper, where other sets of data, from 
different countries, will be analyzed.
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