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Abstract

This commentary, inspired by a recent opinion piece of noted biologist Paul Nurse, overviews the interplay between 
data and various types of scientific knowledge within the realms of prediction, data patterns, causal inference, and 
scientific theory.
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Introduction

In a recently published opinion piece, the noted 
biologist Paul Nurse (2021) laments that the biological 
sciences are awash in data but sorely lacking in 
knowledge and theory. Less one think this is a new 
concern arising from our age of ubiquitous data, fifty 
years earlier, another British scientist, Leslie Foulds 
(1969), wrote 

“…Some investigators are fond of saying ‘What we need 
is more facts’. The truth is that we have more “facts” 
than we know what to do with. Experimental analysis 
produced an alarming mass of empirical facts without 
providing an adequate language for their communication 
or effective concepts for their synthesis.” 

In fact, over one hundred years ago, the 
mathematician and physicists Henri Poincare (1902) 
made a more fundamental point that “Science is 
built of facts the way a house is built of bricks; but an 
accumulation of facts is no more science than a pile 
of bricks is a house.” In more contemporary terms, 

scientific knowledge is not just data, but how data 
are used to improve understanding or prediction. 
This commentary expands on the viewpoint in Nurse 
(2021), discussing the interplay between data and 
scientific knowledge in prediction, data patterns, 
causal inference, and theory.

1. Prediction

In clinical science, an important type of scientific 
knowledge is the prediction of a binary outcome, such 
as disease onset, based on non-modifiable predictors. 
Prediction models can involve traditional statistical 
models, such as logistic regression, or algorithms in 
machine learning. The predictors, called features in the 
machine learning literature, can include risk factors, 
such as age or smoking status, baseline biomarker 
values, and images.

Investigators fit prediction models in a training 
sample, measure reproducibility in an internal 
validation sample (a random sample from same 
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population used to obtain training sample) and 
gauge generalizability in an external validation 
sample (a sample from a population different from 
the population from which the training sample was 
drawn) (Steyerberg & Harrell 2016). A prediction 
model that performs well in an internal validation 
sample can perform poorly in an external validation 
sample (Bleeker et al. 2003). Types of generalizability 
for external validation include different time periods, 
geographic regions, data collection methods, and 
clinical settings (Justice et al. 1999). Classification 
performance varying by clinical setting, which 
is known as spectrum bias, is an important 
consideration that is often underappreciated 
(Ransohoff & Feinstein 1978). A good example 
involves prediction based on carcinoembryonic 
antigen (CEA). Although CEA in the blood almost 
perfectly classifies specimens as diagnosed colorectal 
cancer or no cancer (Thomson et al. 1969), it poorly 
predicts the development of colorectal cancer in 
asymptomatic persons (Thomas et al. 2015). External 
validation is a prerequisite for recommending a 
prediction model for clinical use (Ramspek et al. 
2020). On a fundamental level, external validation 
is analogous to testing a scientific theory to see how 
well it makes a prediction.

An underappreciated aspect of many clinical 
prediction models is the importance of feature 
selection. In this regard, computer scientist Pedro 
Domingos (2012) remarked “At the end of the day, 
some machine learning projects succeed and some 
fail. What makes the difference? Easily the most 
important factor is the features used.” In terms of 
prediction, investigators should not be concerned if 
different sets of features predict outcomes equally 
well in the validation sample. The occurrence of 
many models with good prediction or classification 
performance is called the Rashomon effect, after 
the Japanese movie Rashomon, which depicted an 
event from multiple viewpoints (Breiman 2001). A 
possible explanation for the Rashomon effect is that 
the observed features are likely imperfect proxies for 
unobserved true predictors.

In clinical prediction with well-defined features 
(such as biomarker level, age, and family history), 
investigators may favor the standard statistical 
approach of logistic regression over complex machine 
learning algorithms because both approaches often 

perform equally well (Christodoulou et al. 2019) 
while logistic regression is easier to interpret. When 
the predictor is an image, feature selection by humans 
can perform poorly (Le Cun 1998). Fortunately, the 
development of optimization methods that took 
advantage of more powerful computing led to deep 
learning methods with automatic feature selection, 
yielding substantially improved performance with 
imaging data (Le Cun 1998; Krizhevsky, Sutskever 
& Hinton 2012; Cao et al. 2018). These algorithms 
typically make predictions in bizarre ways, using 
features not visible to humans or secondary to 
human recognition (D’Amour 2021). The result is 
an unusual but useful form of scientific knowledge 
involving good prediction (Cao et al. 2018) but 
lacking scientific interpretation. Conclusions about 
the performance of a clinical prediction model depend 
on the metric used to summarize performance. In 
recent years, there has been a growing appreciation 
of the value of decision analytic metrics (Baker 2018; 
Vickers et al. 2019).

2. Data Patterns

Another type of scientific information is what I 
call data patterns. The goal is to identify relevant 
patterns in high-dimensional data that can suggest 
new theories. One example is correlation networks to 
understand responses or biological adaptations to stress 
(Gorban et al. 2021). Another example is principal 
components analysis, which uses linear models to 
reduce dimensionality and has numerous applications 
in biology (Giuliani 2017). A third example involves 
biologically relevant longitudinal response in high 
dimensional data. For example, Baker (2014) compared 
biologically relevant changes (linear, sigmoid, and 
impulse) among thousands of genes at 14 times in the 
embryonic development of two species of frogs. Sigmoid 
curves suggest saturation effects while impulse curves 
suggest a transient response leading to a new steady 
state. Types of comparative results were heteromorphy 
(curves with different shapes), heterochrony (curves 
with the same shape but different transition times), and 
heterometry (curves with the same shape but different 
magnitudes). The training data were odd numbered 
time points, and the validation data were the even 
numbered time points (Baker 2014).
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3. Causal Inference

Another major type of scientific knowledge is causal 
inference, which involves drawing conclusions about 
outcome after changing a modifiable variable, such 
as treatment. Conceptually, causal inference tries to 
determine the outcome if one went back in time and 
gave subjects a different intervention (Rubin, 2005). 
Causal inference is usually divided into methods for 
analyzing observational data and methods for analyzing 
data from randomized trials.

Most causal inference methods applied to 
observational studies involve a multivariate adjustment 
using data from concurrent controls (participants 
enrolled simultaneously with the treatment group and 
followed over the same time period). The multivariate 
adjustment is needed to control for confounders, which 
are variables that affect both intervention and outcome. 
For example, in estimating the causal effect of increased 
exercise on cancer incidence, it is important to control 
for obesity, which is a confounder because it affects both 
exercise and the cancer outcome. One useful technique 
for improving causal inference in these studies is 
the method of propensity scores, which matches 
on estimated probabilities of receiving treatment 
(Rosenbaum & Rubin 1983; Austin 2011). Causal graphs 
can be useful for identifying observed confounders 
in complex scenarios (Pearl 2010). However, there 
is always a nagging concern that no matter how many 
observed confounders are included in the analysis, there 
may be an important confounder that was not observed, 
and that lack of adjustment for this unobserved confounder 
could lead to incorrect conclusions.

An example of another type of causal inference 
from observational studies are results from the paired 
availability design for historical controls (Baker & 
Lindeman 1994, Baker, Kramer & Lindeman 2019). 
Standard historical controls are subject to selection 
bias, as persons who receive treatment later often 
differ from those who receive treatment earlier. The 
paired availability design avoids selection bias by 
comparing outcomes, in each medical center, before 
and after treatment becomes more available, with a 
causal adjustment (Baker & Lindeman 1994; Imbens 
& Angrist 1994) for changes in the availability of 
treatment. However, as with all observational studies, 
there is no free lunch. The paired availability assumes 
no systematic temporal changes unrelated to treatment. 

If data are available, bias from such temporal changes 
can be mitigated using outcomes from medical centers 
with no change in treatment over time.

During the recent pandemic, there was frequent 
debate as to the quality of evidence from observational 
studies versus randomized trials. The most convincing 
form of scientific knowledge in causal inference 
studies is the randomized trial, which avoids some 
critical assumptions needed for causal inference with 
an observational study. However, as with many types 
of observational studies, assumptions are required 
to accommodate missing-data, noncompliance, and 
extrapolation to a target population. A good illustration 
of the value of a randomized trial over an observational 
study involves the Alpha-Tocopherol, Beta Carotene trial 
that randomized male smokers to either control alpha-
tocopherol, beta carotene, or both supplements with an 
outcome of lung cancer incidence (Alpha-Tocopherol, 
Beta Carotene Cancer Prevention Study Group 1994). 
Prior to the trial, there was considerable evidence from 
observational studies that these supplements could 
prevent cancer (The ATBC Cancer Prevention Study 
Group 1994; Peto et al. 1981). However, the results 
of the trial contradicted the observational evidence—
alpha-tocopherol had no effect on lung cancer incidence 
and beta-carotene increased lung cancer incidence. 
Because the randomized trial is the gold standard of 
causal inference, the results of the ATBC trial trumped 
the previous observational results.

4. Scientific Theories

Scientific theories provide explanations. For 
examples, inflammation, radiation, and viruses can 
cause cancer but a theory is needed to explain how 
they cause cancer. Debates about theories are crucial 
to scientific progress and applications. The dominant 
theory of carcinogenesis is the somatic mutation 
theory. However, the somatic mutation theory has 
not been “scientifically tested” (Loomans-Kropp 
& Umar 2019) and does not explain many puzzling 
experimental results (Baker 2021). Alternative 
theories of carcinogenesis (Sonnenschein & Soto 
1999; Soto & Sonnenschein 2011; Brücher & Jamall 
2014; Baker 2020; Carvalho 2020) are worth 
considering not only for scientific value but because 
an understanding of tumorigenesis is a foundation 
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for cancer prevention (Golemis et al. 2018; Loomans-
Kropp & Umar, 2019). 

Competition in theories, like competition in the 
marketplace, often leads to improvement. The 19th 
century geologist Thomas Chamberlin (1890) proposed 
the method of multiple working hypotheses, which 
involves evaluating several hypotheses and rejecting 
those that conflict with available data. One advantage of 
the method of working hypotheses is that 

“the reaction of one hypothesis upon another tends 
to amplify the recognized scope of each, and their 
mutual conflicts whet the discriminative edge of each” 
(Chamberlin, 1890).

A theory needs to be stated precisely to be useful. 
With a vague theory in which any outcome can be 
explained, there is no scientific knowledge (Feynman 
1964). Band-aid approaches to modify a theory to 
explain puzzling phenomena are not convincing and will 
no longer hold as new challenges arise. For example, to 
try to explain puzzling aspects of the geocentric theory 
of planetary orbits, astronomers kept inventing new 
epicycles, small circles whose centers move around 
the circumference of larger circles, until the whole 
edifice became unwieldy (Maor 1998). The heliocentric 
theory of Copernicus (with later refinement by Kepler) 
obviated these ad hoc attempts to make theory fit 
the data. The somatic mutation theory of cancer, the 
prevailing paradigm of carcinogenesis, has become 
a patchwork of modifications to fit new observations 
(Soto & Sonnenschein 2007), which the mainstream 
cancer biology community has been slow to appreciate. 
For example, recent work on mutation fingerprints of 
cellular histories has shown that cells with three driver 
mutations are also readily found in normal tissue 
(Li et al. 2021; Moore et al. 2021; Naxerova 2021), a 
result that challenges the genetic definition of cancer. 
However, the mainstream response is not to consider 
non-genetic drivers of cancer but instead to speculate 
on new band-aids to the somatic mutation theory, 
namely, tissue-specific combinations of mutations in a 
more permissive microenvironment (Naxerova 2021).

Theories are useful in guiding experimentation and 
determining what quantities to observe. The noted 
economist Thomas Sowell (2012) said,

“if there are two different theories, there should 
be some empirical evidence in principle that could 

distinguish what would happen under one theory from 
what would happen under the other.” 

For example, in cancer biology research, to 
“distinguish” the somatic mutation theory from 
the tissue organization field theory, Maffini et al. 
(2004) devised an elegant experiment involving rat 
mammary tissue recombination model. Their results 
showed that carcinogens target the stroma and not 
the epithelial tissue, which contradicts the somatic 
mutation theory of cancer and supports the tissue 
organization field theory.

Nurse (2021) advocates that scientists propose 
reasonable theories even if they later turn out to 
be incorrect. In a wonderful book on scientific 
investigation, Beverdige (1952) provides many 
examples of incorrect biological hypotheses that led to 
scientific progress. For example, the noted physiologist 
Claude Bernard hypothesized that nerve impulses 
induced chemical changes that heat the skin. To test 
this hypothesis, he experimented on rabbits, severing a 
cervical nerve to see if rabbit ear would become cooler. 
To his surprise, he found that ear became warmer, 
leading him to realize that nerves control the flow of 
blood through the arteries.

A challenge with proposing new theories is 
pushback related to the sunk cost fallacy. Individuals 
or institutions commit the sunk cost fallacy when they 
continue an endeavor solely as a result of previously 
invested resources including time, money, and effort 
(Arkes & Blumer 1985). Any unrecoverable sunk cost is 
irrelevant when deciding on future actions and ignoring 
the sunk cost fallacy can have dire consequences 
(Ronayne, Sgroi & Tuckwell 2021). Scientists are 
not immune to the sunk cost fallacy. A scientist who 
spends years designing experiments and writing 
papers based on particular theory would be inherently 
resistant to an alternative theory that jeopardizes the 
value of previous work. Proper skepticism is good, but 
it also important to be open to major shift in research 
directions if circumstances warrant. Government 
agencies can also suffer from the sunk cost fallacy. 
Because government agencies often value institutional 
interests above national interests (Sowell 2018), they 
may be reluctant to abandon a long-term research 
program for an initiative based on a compelling new 
theory. One organization that has successfully tackled 
the sunk cost fallacy is the research arm of the giant 
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tech company Alphabet, which rewards teams for 
discontinuing projects that are unlikely to succeed 
(Teller 2016). 

Another type of pushback to new scientific theories 
comes from the “Machiavelli effect” (Hall 2021). In his 
famous political treatise, The Prince, Machiavelli wrote 
“the innovator has for enemies all those who have done 
well under the old conditions, and lukewarm defenders 
in those who may do well under the new.” According 
to Hall (2021), scientific funding rewards established 
researchers and who are then resistant to new ideas.

Nurse (2021) also suggests that teaching that 
science has ideas, and is not just a litany of data, will 
motivate students. Even elementary school studies 
can be motivated by ideas and theories. In the popular 
American children’s cartoon television show, “The Magic 
School Bus” (Cole & Degan 1994), the science teacher, 
Ms. Frizzle, tells her students to “Take chances, make 
mistakes, and get messy.” Taking chances (trying new 
experiments), making mistakes (proposing reasonable 
theories that may be incorrect) and getting messy 
(engaging in the practical details of experimentation 
and data analysis) is a good advice for all current and 
future scientific researchers.

Conclusion

There is a productive interplay between data, 
knowledge, and theory. Accurate and informative 
data are essential to prediction, data patterns, causal 
inference, and scientific theory. Consider Kepler’s 
trial-and-error method to discover the motion of the 
planets around the sun. At first, Kepler thought the 
motion was circular. But with accurate data from 
Tycho Brahe, Kepler realized that a circular motion 
did not fit the data, and an ellipsis was required 
(Feynman 1965). In clinical prediction, investigators 
need informative features to develop good models, and 
they need data from an external validation sample to 
investigate generalizability. Data patterns can suggest 
new theories in the fields of network correlations, 
principal component analysis, and biologically relevant 
longitudinal response curves. For causal inference 
with multivariate models, investigators need to 
measure and adjust for all important confounders. For 
causal inference with the paired availability design, 
investigators need to select medical centers with no 

changes in relevant protocols over time except for the 
increased availability of treatment.

According to Nurse (2021), theory is needed to 
capitalize on today’s data rich world. Similarly, Hand 
(2016) noted that focusing only on data misses the 
point of science, which is to develop theories. Following 
Nurse (2021), investigators should be encouraged to 
propose reasonable theories. Theories should be stated 
as precisely as possible with multiple theories welcome, 
and, ideally with relatively little pushback from the sunk 
cost fallacy or the Machiavelli effect. Facilitating such a 
culture can make scientific investigation more exciting 
and dynamic for both researchers and students. 

The most underappreciated aspect of the interplay 
among data, knowledge, and theory is that theory can 
guide experimentation and thereby lead to important 
new data which can then lead to new knowledge and 
better theories.
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