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Abstract

Identifying the association between phenotypes and genotypes is the fundamental basis of genetic analyses. 
Although genomic technologies used to generate data have rapidly advanced within the last 20 years, the statistical 
models used in genome-wide associations studies (GWAS) to analyze these data are still predominantly based 
on the model developed by Fisher more than 100 years ago. The question is, does Fisher’s theory need to be 
replaced or improved, and if so, what should come next? The theory developed by Fisher was inspired by the 
field of probability. To make use of probability not only did Fisher have to assume valid a number of questionable 
hypotheses, but he also had to conceptually frame genotype-phenotype associations in a specific way giving 
primordial importance to the notion of average. However, the “average” in probability results from the notions 
of “imprecision” or “ignorance”. After reviewing the historical emergence and societal impact of probability as 
a method, it is clear what is needed now is a new method acknowledging precision in measurements. That is, a 
method that does not rely on categorizing or binning data.
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Introduction

Genome-wide association studies (GWAS) based 
on statistics have had a huge impact on the field of 
genetics by providing a method to map genotypes 
(DNA variants) and continuous phenotypes, namely 
the observable characteristics of an organism varying 
in a continuous way. GWAS has in turn facilitated the 
understanding of biology, the development of new 
therapeutics in medicine and the improvement of 

agricultural species (Visscher et al. 2017). Statistical 
models describing the relationship between genotype 
and phenotype were first developed by R.A. Fisher 
more than 100 years ago and remain a cornerstone 
of genotype-phenotype mapping today (Fisher 1919; 
1923). However, ongoing debates exist in this field 
related to the validity of Fisher’s theory (Nelson, 
Pettersson, & Carlborg 2013; Visscher & Goddard 
2019), in turn, raising questions regarding the current 
paradigm in quantitative genetics.
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Controversies exist in sciences because a given 
theory is not supported by a subset of observations or is 
limited in its ability to provide information.

Controversy can act as an engine of progress; 
resulting in the generation of new developments that 
better describe or enable better description of reality. 
Such new ideas are not necessarily radical, i.e. do not 
negate the seminal idea, but come as a generalization of 
seminal concepts. In this context, the best and probably 
most notable example is the transition that occurred 
in physics between Newton and Einstein regarding the 
notions of space and time.

However, because “scientists” are also immersed in 
a social culture, new ideas rarely come out the blue, but 
result from a specific construction of knowledge that 
is, to some extent, biased by the society in which they 
exist. That is to say, to understand the true meaning of 
seminal ideas, it is also strongly advised to be cognizant 
that they are in part a product of their time.

Scientifically speaking, GWAS are situated at a 
junction between genetics, statistics, and probability. 
Genetics is a field of knowledge that has been studied 
in depth both scientifically, epistemologically and 
sociologically by many renowned authors (Boichard 
et al. 2016; Gayon 2016; Prunet & Meyerowitz 2016; 
Quintana-Murci 2016; Schacherer 2016; Weissenbach 
2016), and there would be very little gain to add more 
to these works. Likewise, the history of statistics is 
a field that has been covered by many authors and 
in particular by S.M. Stigler in his remarkable book 
(Stigler 1990). On the contrary, the field of probability 
and its repercussion on GWAS and statistics, both 
scientifically, epistemologically, and sociologically 
is less well known. In fact, most graduate students 
in quantitative genetics who tend to be remarkably 
good at using statistics, would find very difficult to 
dissociate statistics from probability. Indeed, they 
will know and use the normal distribution or similar 
probability density functions to substantiate their 
inference(s) but only a few, if any, will wonder what 
the limits regarding the use of such distributions are 
and where they come from. Students are not to blame 
for this since the blending of statistics and probability 
virtually exists in all books dealing with population 
biology or quantitative genetics. For example, if one 
were to ask oneself “what is a phenotype?” and then 
look into books to get an answer, one will rapidly find 
that the notion of phenotype is represented exclusively 

as a probability density function. Why this is the case 
is linked to the rise of probability in the field of biology. 

The bond between statistics and probability has 
permeated virtually all fields of biology to the point 
where the coupling of “statistics and probability” is 
now a biological reality, i.e. not a thought construction 
or a method anymore. An example of such widespread 
and subconscious use of probability concerns the 
notion “significance”. From cell biology to population 
genetics, any result is deemed scientifically adequate, 
i.e. significant, provided that its p-value falls within 
agreed limits. Whilst this approach is mathematically 
sound, it also includes a number of assumptions 
without consideration of the restrictions they impose. 
In this context, it is important to recall that probability 
density functions originate through the notion of 
“imprecision” or “error”. The normal distribution was 
known originally as the “error function” or “law of 
errors”. The error function states that if an experiment 
can be repeated identically to itself an infinite number 
of times in identical circumstances, then, provided 
that the outcome of experiments are numerical data, 
the distribution of those data should follow the error 
function (the normal distribution). In essence, the 
error function: (i) justifies why experimental results 
are not identical, even though they arise from repeated 
and identical experiments, and (ii) tells us that the 
average is the numerical value of the thing that was 
meant to be measured.

Whilst one is free to use the field of probability 
to extract any result from measurements, the use of 
a probability density function such as the normal 
distribution imposes that the object studied must be 
conceptualized in a certain way. Perhaps one of the most 
important aspect as far as genotype-phenotype mapping 
and biology are concerned, involves the fact that all 
individuals are considered “identical” entities. To what 
extent two individuals in a population are identical 
is open to question. A nonetheless important aspect 
is the notion of “infinity”. Interpolating a histogram 
representing the frequency of occurrence of categories 
of phenotype values using the formula of the normal 
distribution requires this notion of the continuum 
limit to be valid. However, to what extent the notion 
of “infinity” is granted in any field of sciences is rarely 
discussed. It is worth recalling that to justify his theory 
Fisher had to use the “infinite population” hypothesis, 
which we know, is unrealistic, if not impossible.
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This opinion paper is not about questioning 
the entire field of probability, but to indicate the 
shortcomings when using probability as a tool to 
conceptualize the relationship between genotype and 
phenotype. This will show that the rise and societal 
importance of the notion of “average” in genotype-
phenotype mapping came, historically, from the field 
of “biometry” in a dark period of our civilization 
marked by the predominance of eugenics theory; 
and that using probability as a mathematical field to 
substantiate any such premise was, simply, based on 
wrong assumptions. Although eugenics thoughts have 
been relegated to history, the predominance of the 
notion of “average” resulting from our initial belief 
in the normal distribution is still very present in our 
society. In fact, the rise of the normal distribution as 
well as its impact on our society has been defined as 
“biopolitics” and is now an entirely dedicated research 
field in sociology or philosophy (Rose 2001). Whilst 
conceptualizing the average is, in itself, not the real 
issue, it is its connection with something that ought 
to be normal, i.e. the normal distribution, that poses 
problem; as the tendency is to think that any value that 
is not average is linked to some randomness or error, 
i.e. is a nuisance.

We shall see that this reflection opens the way to 
different concepts to provide accurate information on 
genotype-phenotype mapping that are not based on 
the notion of “error”.

1. Statistics

At this point, it is important to recall what statistics 
is, at least for the sake of students. Statistics comes 
from the Latin statisticium, which refers to “the state 
of things” and is borne out from the need to order 
observations and represent those in the form of tables 
and graphs involving specific parameters summarizing 
the information contained in the data. Historically, 
collecting data outdates, by millennia, the field of 
probability and the reason is simple. Estimating the 
power of any chief of state, or similar, relies on good 
knowledge of characteristics related to population, 
military potential, wealth and so on. That is, governance 
and authority rely on data. Whilst Mesopotamians left 
traces of such activity in the form of tables of data made 
in clay dating back more than 6000 years (Droesbeke 
& Tassi 1990), the field of statistics as we know it today 

was reinvented  through the rise of probability when 
scientists were trying to make sense of disparate data 
accumulated from scientific measurements. The need 
to determine as exactly as possible the “true” outcome 
or result of a set of scientific observations relied on 
understanding the notion of measurement errors, 
and it is the estimation of such errors that led to the 
collision between, and fusion of, the fields of statistics 
and probability.

To summarize, one can say that to draw 
inferences from the comparison of data, a method 
is needed that requires some understanding 
about its accuracy, including ways of measuring 
the uncertainty in data values. In this context, 
statistics is the science of collecting, analyzing, 
and interpreting data; whilst probability, defined 
through relative frequencies, is central to 
determining the validity of statistical inferences.

2. Probability

In early 20th century, the intertwined fields of 
statistics and probability had grown up to reach almost 
full maturity. Both fields arose through one of the 
greatest journeys of the human mind, trying to decipher 
the notion of evidence, i.e. what is provable, and provide 
this evidence in an interpretation to determine reality. 
Renowned authors in the field of probability agree that 
this field started with Jacob Bernoulli’s (1654–1705) 
definition. Namely, that the probability of an event 
is the ratio of one outcome compared to all possible 
outcomes; defined by Bernoulli as, 

“that a particular thing will occur or not occur in the 
future as many times as it has been observed, in simi-
lar circumstances, to have occurred or not occurred in 
the past” (Stigler 1990, p. 65). 

In Bernoulli’s definition, the probability represents a 
degree of certainty that can only be described a posteriori 
using the frequency of occurrence of the “thing”. Beyond 
characterizing a degree of certainty, this definition also 
encompasses indirectly a certain notion of “immanence” 
as the “thing” can be characterized by its reappearance. 
Indeed, the ratio of a specific outcome to all possible 
outcomes is “expected” to reoccur provided similar 
contexts are possible. 

“Immanence” and “expectation” are interesting 
concepts when applied to sciences as they imply a certain 



10

On the Meaning of Averages in Genome-wide Association Studies: What Should Come Next?

degree of stability or invariance that may result from 
the presence of laws. However, a line should be drawn 
here between the notions of probability and scientific 
law, as a degree of certainty is by no way a proof or a 
demonstration. “Proof” or “demonstration” involve an 
articulation, i.e. a causality, between elements leading to 
the “particular thing” to be observed. Consequently, the 
“thing” is only secondary to this articulation, as it is this 
articulation that provides a conceptual understanding 
of its occurrence and notably its reason of being. 
Therefore, with such an articulation or causality leading 
to the “thing”, the “thing” is necessarily defined as an 
evident a priori resulting from the scientific law.

A different way to phrase this is to say that averages 
and variances can always be defined in any population 
of data. The point, though, concerns their scientific 
meanings or pertinences. Pierre-Simon Laplace (1749–
1827) gave the example of the Sun rising every morning 
and the time at which this occurs. Whilst regularity would 
be found in the data it would not inherently inform one 
of gravitational laws (Laplace 1995). That is to say that 
whilst a scientific law fits Jacob Bernoulli’s definition 
of the probability, the converse is not necessarily true. 
Consequently, there is a vast conceptual difference 
between “empirical” and “mechanistic” sciences. 

In his unfinished work Ars Conjectandi published 
eight years after his death, Jacob Bernoulli provided, 
thanks to his measure of probability, the weak law of 
large numbers (Todhunter 2014, pp. 56–77; Stigler 1990, 
pp. 63–98). This law was refined by Abraham de Moivre 
(1667–1754) (de Moivre 2013; Stigler 1990, pp. 63–98) 
providing a proof that if an observable is “expected” to 
occur with a defined degree of certainty, it must follow 
what we call today the Bernoulli distribution.

To avoid confusion a precision is required 
concerning the works by de Moivre and Gauss. De 
Moivre was interested in the probability of winning 
a game. When playing with cards for example, the 
entire set of outcomes can be determined as the 
set of cards is known and given from the start. This 
is different than trying to determine the “true” 
outcome from a set of data since the entire set of 
possible outcomes is unknown and given only as 
observational measurements. This point has led to 
some controversies as to who discovered the “normal 
distribution” first between C.F. Gauss (1777–1853) 
and Moivre as Gauss was interested in observational 
measurements (not games). The point however is that 

both manage to deduce the mathematical form of the 
Normal distribution in different ways. 

In short, what Moivre demonstrated is a version of 
what, today, we call the central limit theorem. Moivre’s 
theorem stipulates that if it is possible to make a 
very large number of independent measurements of 
the same “thing” in similar contexts, then a specific 
distribution of that “thing” would ensue. This was the 
first mathematical description of what would become 
the normal distribution with the “thing” being the 
expectation, i.e. average, with a variance inversely 
proportional to the number of measurements made. 
In essence, by doing a very large (infinite) number of 
measurements one would amplify and make visible the 
“thing” to be observed. 

To Abraham de Moivre, this distribution 
demonstrated the intervention of God in which the 
“thing” was just awaiting to be discovered and measured, 
namely the “thing” had to have a fundamental meaning. 
His work was supposed 

“to cure a kind of superstition, which has been of long 
standing in the world, that there is … such a thing as 
Luck, good or bad” (Moivre 2013, p. 4 of the 1718 pre-
face, 1st edition). 

This way of thinking had to have a profound 
repercussion in different fields from biology to sociology. 
Indeed, this vision propelled the method of relative 
frequency, and therefore the normal distribution 
including its ontological parameters that are average 
and variance, as a reliable estimation of the a priori 
unknown probability. In short, the normal distribution 
had to happen since it provided the degree of certainty 
of the phenomenon observed. This, in turn, may explain 
why the notion of “infinite population” was used by 
Fisher as an attempt to promulgate scientific laws.

Whilst Thomas Bayes (1702–1761) and Pierre-Simon 
Laplace later demonstrated the weakness of the a priori 
argument as developed by de Moivre (see Appendix), 
the idea that the normal distribution was a fundamental 
trait of life was nonetheless accepted. The general 
acknowledgement of such trait of life was emphasized, 
for example, by Adolphe Jacques Quetelet (1796–1874) 
and his belief in the “average man” or the “social 
physics” (Porter 1985); or by Francis Galton’s (1822–
1911) narrative describing the “human ability” as a 
heritable trait (Galton 1886). As much as we know today 
that those sort of beliefs are strongly limited (wrong) 
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since they exclude the socialization of individuals; it 
is important to recall that Quetelet and Galton were, 
during their times, trying to “improve” society and can 
be regarded as some sort of “sociologists”— missing 
an adequate term that could allude the notion of “past 
or outdated sociology”—that were the product of their 
times (Wright 2009).

To justify this statement, it is important here 
to recast the sociological impact that the field of 
probability has had on our society. Indeed, with the 
normal distribution being a fundamental trait of life, 
thinking or solving problems in term of probability by 
using the method of relative frequency was essential. 
In fact, with this method, it was, at least in theory, 
possible to forecast any event (e.g. being killed in the 
street; dying of a disease; being wrongly judged by a 
barrister, etc.) (Laplace 1995; Samueli & Boudenot 
2009). The point to be emphasized here is that the 
field of probability has been used as a “scientific 
justification” of a “general biometry” whereby a set of 
people/individuals were, and still are, modelled as a 
“population”. As an example, Quetelet believed that 
one ought to investigate the “social body” and not the 
“peculiarities distinguishing the individuals composing 
it” (Faerstein & Winkelstein 2012). This way of framing 
individuals at the end of the 18th century allowed a 
shift in judicial and social policies in which the “social 
body”, that is the distribution density function of 
any population of measurements and its properties 
(averages and variances), formed the core of what 
needed to be understood and controlled (Rose 2001). 
Thus, the singular identity of individuals disappeared 
into the “social body”, and the “social body” became 
then a tool to process the identification of individuals. 
It is therefore not surprising that during the same 
period the “judicial anthropometry” emerged, whereby 
arrested individuals were measured to construct 
database aiming at identifying potential criminals in 
the society (García Ferrari & Galeano 2016). Likewise, 
it is not surprising that how different phenotypes 
can be, they are represented by distribution density 
functions today.

Given that the field of probability and its 
consequences, i.e. mean and variance, were “in the 
air” at that time, Fisher’s theory, in which the notion 
of “average” is central was sociologically accepted by its 
contemporary society. Thus, the “infinite population” 
hypothesis that Fisher had to put forward to explain 

why genotype-phenotype can associate did not carry 
much doubt, how questionable it was.

More than 100 years later one can now try to think 
about those shortcomings.

3. Shortcomings of Genotype-
Phenotype Mappings Using the Error 
Function

Whilst the notion of distribution opened the way to 
data analysis, the validity of the central limit theorem, 
i.e. the normal distribution, comes with some ties. 

The first of which relates to the notions linked to the 
“thing” and “similar contexts”, that is, the “thing” being 
measured as well as the context in which the “thing” is 
measured must be identical. The second tie resides in 
the utilization of “infinity”, or the notion that a large 
number of experiments needs to be made for “God’s will 
to be visible”. 

Those two ties are clear constraints concerning the 
use probabilities and as such are worth developing in 
the context of genotype-phenotype mapping since they 
will allow one to understand how the human mind has 
conceptually framed this field.

3.1. Identity and Probability

The first tie is a fundamental constraint as it reposes 
on a clear understanding of what identity is. One may 
say that one individual, say Paul, is identical to himself 
and that he defines his own context; but saying that 
Paul and Jacques can be considered as identical is a step 
that goes beyond any assumption defining a probability 
when biology is considered. Let us be precise. One can 
decide to measure Paul’s height a large number of times 
and define a probability since the “thing” to measure 
and its “context” are always Paul’s height and Paul, 
respectively. Accordingly, one would deduce Paul’s 
average height and some standard deviation linked to 
some measurement errors. So, as much as a phenotype 
like height may be universally defined for human beings 
the identities between the individuals forming the 
population are different if two different individuals are 
measured, i.e. Paul is not Jacques. Naturally, nothing 
forbids us from determining the distribution of the 
phenotype height for each individual separately to 
reform the distribution of heights in a population. If 
so, one would then define the distribution of heights 
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but not the distribution of individual heights since the 
identities of Paul and Jacques would be dissolved into 
the former distribution. This remark underlines that 
using the distribution of phenotypes in a population is 
equivalent to dissolving contexts, in this case, identities. 
Accordingly, with the distribution of heights one is left 
with the few moments of the distribution, i.e. average, 
variance, skewness and so on, providing a very short 
summary of the diversity and identity of individuals. 
Deciding to consider a phenotype distribution, despite 
the definition of probability, is then equivalent to 
consider Paul and Jacques as meaningless envelops of 
something more important that would spread across 
the population. Clearly, that “thing” awaiting to be 
observed or measured are genes (or Mendelian factors) 
and their effects, and the distribution of any phenotype 
would result from a condensate of independent genes 
without envelop/identity limiting them. The notion of 
“condensate” is historically important as R.A. Fisher 
was influenced by physics and most particularly in how 
statistical physics managed to relate the microscopic 
and macroscopic properties of ideal gases (Fisher 
1923; Morrison 1997). One can then understand R.A. 
Fisher’s method as a way to define each gene microstate 
across the population distribution as being a particular 
gas molecule with given property. The sum of genes 
including their properties would then define the 
moments of the phenotype distribution, i.e. average 
value and variance for example. 

However, if GWAS is used to determine genotype-
phenotype relationships, then there is an apparent 
problem when the “method of averages” as advocated by 
R.A. Fisher does not recover the average and variance of 
the phenotype. In this case, the notion of “environment” 
is added to complete the phenotype distribution. 
Despite the fact that the environment is in general ill-
defined, it is added with the implicit intention to recover 
the phenotype distribution, i.e. to complete the faith in 
the normal distribution. What is puzzling with such 
intention is that one knows that for each phenotype 
measured, namely each individual, corresponds to 
genes in specific states and one may wonder whether 
dissolving individuals into a phenotype distribution, 
and assuming its universal relevance, does not lead to 
more complications. 

Let us frame this in the context of frequentist 
probability as used in GWAS. We said earlier that the 
normal distribution was known as the “error” function. 

In practice, the use of frequentist probability, and the 
resulting binning or categorization of data, is justified 
when inaccuracy exists in experimental measurement.  
For example, measuring a continuous phenotype 
such as the height of individuals with a ruler with 
centimeter graduations, i.e., to the nearest centimeter, 
warrants the use of frequentist probability. In this case, 
a frequency table of phenotype values can be defined 
through 1 cm-width bins or categories, from which the 
probability density functions can be deduced to address 
the statistical inferences. 

However, this method becomes problematic when 
the measurement of phenotype values can be carried 
out with very high precision, for example using highly 
advanced imaging techniques or biosensing technologies 
(Macdonald, Hawkes, & Corrigan 2021). In this case, each 
individual measured could return a unique phenotype 
value. The phenotype values being unique, how can 
“randomness in the data” be defined, and frequentist 
probability used, to determine any inferences? 

In general, the solution to this problem is to increase 
the population size to sample, such as to recreate 
bins or categories matching the available precision. 
How strange that, whilst precision is fully available 
in the first place, the method advocating phenotype 
categories, i.e. creating a sort of wilful ignorance 
regarding phenotype values, is still suggested. Again, 
this is linked the hundredth-plus years old faith in the 
normal distribution, i.e. the error function and the 
importance we ought to give to the notions of average 
and variance.

3.2. Infinity and Probability

Let us now explore the second tie, namely the 
“infinite population” hypothesis. This hypothesis is 
fascinating as its attempt is to reconcile genotype-
phenotype mapping, i.e. GWAS, with the field of 
probability. It is mathematically true that if one were 
able to repeat the same experiment an infinite number 
of times one would be entitled to use the normal 
distribution in the continuum limit as an a priori, 
and use its full mathematical expression. One may 
then question to what extent is the notion of “infinity” 
granted in any field of knowledge. As an example, 
the normal distribution is inherent to some branches 
of physics and no one with a background in physics 
would question its usage and validity.
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One may then argue that if physics is allowed to use 
the normal distribution and deduces average(s), then 
why would this be an issue for quantitative genetics? 

The answer to this question lies in the very definition 
of what physics and biology try to address as sciences. 
If physics defines average(s), i.e. can conceptually 
consider the normal distribution a.k.a. error function 
leading to the Dirac distribution as an asymptotic limit 
when no other parameter (such as the thermal energy 
or the Planck constant) constrain this limit, it is because 
physics aims to uncover the intemporal Laws of Nature. 
It is this notion of intemporal Laws that underscores 
the notion of infinity or immanence or potential 
repeatability of experiments in physics. This warrants 
the use of the central limit theorem. 

On the contrary, life is driven by evolution, i.e. 
changes in average(s). Thus, life’s average(s) are not 
absolute but function of time and their history, i.e. 
are not immanent(s) but contingent(s). Time and 
history are fundamental conceptual parameters for 
understanding life.

To conclude, whilst the normal distribution can be 
a useful representation of data, the conclusions drawn, 
need to be mindful of the underlying conceptualization 
of the system studied as well as the scientific 
interpretations underscored. As a result, the normal 
distribution and its ontological parameters, i.e. average 
and variance need to be handled very carefully. Indeed, 
distribution density functions can always be derived 
for any process when data points, i.e. numbers, form 
the outcome of this process. That is to say that because 
distribution density functions in biology can always 
be derived, average and variance are not necessarily 
scientifically pertinent parameters.

3.3. What is the Option, What Comes Next 
Beyond the Binning or Categorization of 
Phenotype Values?

Controversy exists in the field of genotype-phenotype 
associations (Nelson, Pettersson, & Carlborg 2013). 
Attempts are being made to ameliorate inferences 
drawn by GWAS. For example, Bayesian models 
have been used to enhance any potential evidence 
of genotype-phenotype relationships (Beaumont & 
Rannala 2004). Whilst Bayesian and Fisher models are 
conceptually different since they envision the notion of 
probability and therefore, evidence, differently, they 

both rely on the concept of an a priori in different ways. 
For Fisher’s model it is the importance of moments and 
in particular the notion of average and variance, namely 
the normal distribution; and for Bayes, the need to use 
a priori “information” whose exact formulation is either 
difficult to obtain (or unattainable in most cases). Whilst 
those two models are conceptually different, they both 
use the notion of probability in a specific way by defining 
probability density functions. However, using probability 
density functions is the central issue at hand.

Indeed, the notion of “imprecision” or “error” defines 
the concept of density that in turn, form the core of 
distribution density functions that lead to the definition 
of average and variance (other moments can be included 
if needed). However, binning or categorizing data to 
create density is equivalent to loosing information 
(wilful ignorance). At the dawn of the 21st century, we 
are getting more precise in our measurements, and one 
may wonder what sort of scientific/mathematical tool 
we should be using if one were able to attain any level 
of precision wanted. Whilst this sounds a bit idealistic 
and, perhaps, unattainable, it is worth recalling that not 
long ago physicists were able to measure remarkably 
small gravitational waves (Abbott et al. 2016) that were 
deemed out of reach a century ago.

The questions are then: how can genotype-phenotype 
mapping be possible without losing information? What 
method should we employ when there is no randomness 
in the data? Or said differently, how can we re-integrate 
the identity and diversity of individuals within 
genotype phenotype mapping such as to re-transform a 
population into a set of individuals?

Such an enterprise means that the notion of average 
and variance must disappear from any association 
study, since it is the grouping of data into categories 
that generate those.

4. From the Method of Averages to a 
Method Based on Curves: Genomic 
Informational Field Theory (GIFT)

As stated, current genome-wide association studies 
rely on the consequences of using probability density 
functions in the continuum limit. That is, on the 
belief that the average and variance (and all the other 
moments of higher order if needed) are meaningful. 
However, other models can be suggested that do not 
require the grouping of data.
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4.1. GIFT as a Method to Determine 
Genotype-Phenotype Mappings

GIFT is a method whose aim is to extract information 
from datasets without requiring the binning or 
categorization of data from which the notions of 
average and variance are ontological parameters when 
the method of relative frequencies is used. One way 
to position the problem is, therefore, to address how 
information can be extracted when phenotype and 
genotype are measured precisely enough such as to rule 
out the need of categories. 

To answer this question, the best is to look 
at the impact of the notion of precision on data 
representations when one moves from imprecisions to 
precise measurements. Figure 1 demonstrates in the 
context of genome-wide association studies the impact 
of increasing the precision in phenotype measurements 

when a population has a finite size. The total number of 
individuals is 1000 in this case. 

The conclusion is obvious: distribution density 
functions such as the normal distributions representing 
genotype and phenotype disappear. Instead, a set of 
code bars emerges. Those code bars are the individuals, 
i.e. people, forming the population. As a result, it is the 
structure of these code bars, namely their arrangement, 
that needs to be understood. Whilst, both color and 
spacing between the bars/individuals are important 
information since they are reminiscent from the use 
of the normal distributions to model genotype and 
phenotype initially, they are now two variables that were 
combined, or convolved, when the method of relative 
frequencies, i.e. normal distributions, were used.

To extract information from the code bars, let us 
now wonder what it means to have information on the 
phenotype as opposed to have none. 

Figure 1: When applied to real data sets, current 
genome-wide association studies rely on probability 
distribution density functions (PDFs), namely the 
creation of frequency plots (method of relative 
frequencies) via the grouping of phenotype values into 
categories representing range of phenotype values (A, 
top-chart). The same method (PDFs) is then applied 
to genotypes (B, top-chart). For diploid organisms, 
such as humans, and for a binary (bi-allelic, A or a) 
genetic marker, any microstate (genotype) can only 
take three values that we shall write as “+1”, “0” and 
“-1” corresponding to genotypes aa (blue), Aa (white) 
and AA (red), respectively. The comparison of the two 
top charts in (A) and (B) demonstrates how genotype 
are associated with the phenotype, as in this case any 
phenotype category can be decomposed using the 
underlying microstate categories. However, grouping 
data into categories is legitimate so long that the width 
of the category is justified. The width of categories is 
justified provided that imprecision exists in phenotype 
measurements. For example, if height in human was 
the phenotype of interest measured with a ruler with 
inch graduations, namely measured to the nearest inch 
(scale of imprecision), then the width of categories 
would be 1 inch. However, a method based on the 
notion of imprecision has limited value when precision 
is available, and new methods are required. Indeed, by 
increasing the precision in phenotype measurements it 
is possible to envision, in a near future, the possibility 
to deal with genotype and phenotype under the form 
of “code bars” (A & B, bottom-charts) as opposed to 
PDFs . The question is then, how can information be 
extracted from those “code bars”?
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To answer this question the best thing is to further 
simplify the problem by considering the colored 
bars only and not their spacing. Imagine, therefore, 
that a set of individuals has been genotyped and that 
those individuals are picked at random. That is, there 
is no information on any phenotype. Imagine also 
that one decides to concentrate, for example, on the 
genome position 1000000 on chromosome 4 for all 
the individuals since this genome position happens 
to display a biallelic single nucleotide polymorphisms 
(SNPs) across the set of individuals.

Thus, upon calling randomly but sequentially 
individuals, the genotypic information obtained in 
due course can therefore be represented as a random 
string of genotypes including “+1”, “0” and “-1” 
microstates (representing homozyte-AA, heterozygote-
Aa and homozygote-aa). An example of such random 
configuration is: 

[0, +1, 0, -1, -1, +1,0, …, -1, +1, +1, 0, -1, 0, +1, …,0, 0, 
-1, +1, 0, +1, -1]

Note that the order in which the individuals were 
called is linked to the position in the string. Let us now 
repeat the same experiment using the same individuals 
in a context where accurate information on a chosen 
phenotype is available. That is, we call the individuals 
as a function of the magnitude of their phenotype we 
consider. For example, if the phenotype is height, 
one starts by calling the smallest individual and all 
subsequent individuals through successive increments 
in their phenotype height. Note again that because each 
individual has a unique phenotype value there is no 
possibility for two individuals to be called at once.

If the genome position 1000000 on chromosome 4 
is involved in the formation of the phenotype, then one 
would expect a change in the configuration of the string 
of microstates based on the fact that homozygotes 
would be found at the extremities of the string and 
heterozygotes towards the middle (see Figure 1). An 
example of such a string would be:

[+1, +1, +1, +1,0, +1, +1, …, +1, 0, 0, 0, -1, 0, -1, …, -1, 0, 
-1, -1, -1, -1, -1]

Thus, the only thing that changes between the 
random and the phenotype-ordered configurations 
is the way the genetic microstates are allocated to 

positions in the string. However, as the genome position 
1000000 on chromosome 4 is the only one that has been 
considered, the two configurations contain the same 
number of “+1”, “0” and “-1”, since the same individuals 
were considered between the two configurations.

The ansatz is then to consider the cumulative sum 
of microstates as a function of the position in the string. 
Indeed, it is clear from the examples given above that 
if one starts by adding the microstates together, then 
differences will be seen in the resulting cumulative 
sums. To give an example, let us consider the two strings 
above and note “θ0 (j)” and “θ(j)” the cumulative sums of 
microstates in the random and ordered configurations 
where “j” is the position in the string. Then adding the 
microstates starting from the left side of the strings one 
finds:

θ0 (j = 1) = 0 = 0
θ0 (j = 2) = 0+1 = +1
θ0 (j = 3) = 0+1+0 = +1
 …..

θ(j = 1) = +1 = +1
θ(j = 2) = +1+1 = +2
θ(j = 3) = +1+1+1 = +3
….

As a result, the difference “θ(j)-θ0 (j)” is expected 
to be indicative of the importance of the phenotypic 
information. The fact that the same individuals were 
considered in both configurations also impose a 
conservation relation under the form: θ(N)-θ0 (N) = 0. 

4.2. The notion of phenotypic fields

It is then possible to interpret the information 
on the phenotype as a field acting differently on 
microstates (Rauch et al. 2022; Wattis et al. 2022). 
The notion of phenotypic field is a natural concept 
since it is the information on the phenotype that 
promotes a migration of microstates, and as a result 
imposes a change between the two aforementioned 
configurations. To some extent, the different 
microstates “respond” differently to the phenotypic 
information and physics fields theory can be 
applied on this closed system. Closed system means 
that the individuals are the same between the two 
configurations. 
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Consider that there are “N+”, “N0” and “N-” genetic 
microstates “+1”, “0” and “-1”, respectively, it follows 
that when the random configuration is considered, at 
any position in the string the probability of finding 
either “+1”, “0” or “-1”, is simply: ω+

0  = N+/N, ω+
0 

= N0/N and ω0
0  = N-/N. That is to say that when 

no information on the phenotype is available the 
presence probability of microstates can be derived 
relatively simply. Accordingly, the cumulative sum of 
microstates in the random configuration, θ0, is simply
    
        θ0(j) = ∑x

J
= 1(+1)∙ω+

0 +(0)∙ω0
0 +(-1)∙ω-

0  = ∑x
J

= 1(ω+
0 -ω-

0 )

One notes here that the difference “ω+
0 - ω-

0 ” can 
also be rewritten as

For the second configuration, one can then deploy 
physics’ arsenal and it is then possible to write 
(Rauch et al. 2022; Wattis et al. 2022) the presence 
probabilities of microstates “+1”, “0” and “-1” at any 
position j = 1,…,N in the string as a function of the 
fields under the form

Where “u+(j)”, “u0(j)” and “u-(j)” are field 
functions to be defined representing the impact of the 
information on the phenotype on microstates “+1”, “0” 
and “-1”, respectively. The latter formulae are similar 
to “Laplace’s formula” (Box 1). When non-null, those 
fields guarantee a change in configurations. The 
second cumulative sum is then

 θ(j) = ∑x
J

= 1(+1)∙ω+(x)+(0)∙ω0(x)+(-1)∙ω-(x) = ∑x
J

= 1(ω+ 
(x)-ω-(x))

As a result, the difference in the cumulative sums 
can be expressed as 

One deduces with this development that if the 
genome position 1000000 on chromosome 4 does 
not participate to the formation of the phenotype, 
i.e. when the fields are null, then one can set: θ(j)-
θ0(j)~0. That is, having no information on the 
phenotype is similar to an absence of genotype-
phenotype association. 

Finally, the conservation relation that is, θ(N)-θ0 
(N) = 0, is written as

4.3. Conceptual Consequences of GIFT: 
Genotype-Phenotype “Loop” 

At the conceptual level, what has been done is 
intuitive and relatively simple. However, in term of 
genetics what has been achieved so far is rather at odds 
with traditional ways of thinking about the notion of 
gene. Indeed, by defining the difference “θ(j)-θ0(j)” 
one can say that it is the phenotype, i.e. phenotypic 
field or information, that organizes the configuration 
of genotypes and not the converse.

In genetics, the tradition is to think of genes as 
causing phenotypes. Here, a different way of thinking 
is suggested since it is the variation in phenotype 
values, resulting in our ability to generate a ranking 
process, which interacts with the microstates. 
Therefore, the phenotype is able to “select” a set of 
genetic microstates. Recall that microstates “respond” 
to, or interact with, the phenotypic field only if they 
are associated with the phenotype.

Consequently, this model suggests considering a 
genotype-phenotype “loop”, a.k.a. self-consistency. That is 
to say that if genes cause phenotypes (traditional view) and 
that phenotype selects gene microstates (present view), then 
an equivalence exists between phenotype and genotype. 
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Stepping further in that direction one can also say 
that the difference “θ(j)-θ0(j)” resulting from a change 
in microstates configuration is a decomposition of the 
phenotype in the genetic space.  

Let us call “θ(j)-θ0(j)” as the “genetic paths difference” 
of genome position 1000000 on chromosome 4, one 
way to capture the conceptual importance of this “loop” 
is to say that whilst a gene is “Darwinian”, the genetic 
paths difference is “Lamarckian” since the phenotype 
selects the set of microstates it needs to subsist. With 
GIFT those two visions (Darwin vs. Lamarck) are not 
mutually exclusive and as it turns out, Fisher’s theory 
does not disagree with this viewpoint either since 
GIFT can be transformed to “classic” GWAS provided 
categories are considered.

5. From GIFT to Fisher’s Theory by a 
Coarse-graining Process

GIFT is a method advocated when phenotype values 
are unique while traditional GWAS consider categories 
for the phenotype values. The correspondence between 
GWAS and GIFT can be determined provided artificial 
categories are created such as to lose information on 
the phenotype.

Let us consider the presence probability of the 
microstate “q” at the position “j” in the string, where 
“q” replaces the signs “+”, “0” or “-” to allow for succinct 
notations. This probability is formally written as

ωq(j) = ωq
0euq(j)

Note that the denominator given by, 
ω+

0 eu+(j)+ω0
0 eu0(j)+ω -

0 eu-(j),
is equal to one as by definition any position can 

either be a “+”, “0” or “-” microstate.
Consider now an interval of individual positions of 

width “∆j” centred around “j” and define by “∆Nq” the 
number of microstates of type “q” in this interval. One 
can then determine the average number of microstates 
of type “q” in this interval under the form “∆Nq/∆j”. As 
it turns out, “∆Nq/∆j” is also the presence probability of 
microstate of type “q” in this interval.

Consequently, “∆Nq/∆j” can also be written as 

The discreet sum can be transformed into a 
continuous sum under the form:

Where “dx”, is defined as being the difference 
between two consecutive positions, that is the difference 
between the positions “x” and “x-1”. 

As GWAS involves the phenotype values, the 
previous relation must be amended to provide the 
correspondence between GWAS and GIFT. 

Noting “Ωx” the phenotype value at the position 
“x”, one defines then the difference between two 
consecutive phenotype values as: dΩx = Ωx-Ωx-1~λ(Ωx)
dx. In this context “λ(Ωx)” is the rate of changes in 
phenotype values between two positions. Therefore, 
the difference between two positions “x” and “x-1”, 
that is “dx”, can be related to the difference of the two 
consecutive phenotype values at those positions under 
the form, dΩx/λ(Ωx)~dx. Accordingly, the expression 
involving the integral can be transformed as follows

Where the hat on the field is added to inform that 
the field is now expressed in the space of phenotype 
values. Additionally, one can also drop the subscripts 
involving the position by re-writing “Ωj” and “Ω∆j/2” as 
“Ω”and “∆Ω/2”, respectively. 

The two terms “∆Nq” and “∆j” need also to be 
expressed in the space of phenotype values. 

By definition, “∆Nq” is the number of microstates of type 
“q” in the interval of phenotype values “∆Ω”. Using probability 
density functions one can then rewrite, ∆Nq = Nq

0 ∙Pq(Ω)∆Ω, 
where “Nq

0 ” is the total number of microstates of type “q” 
in the population for the genome position considered, and 
“Pq(Ω)” is the probability density function of the microstate. 
Similarly, “∆j” is the number of individuals in the interval of 
phenotype values “∆Ω”. Likewise, one can then rewrite, ∆j = 
N∙P(Ω)∆Ω, where “N” is the total number of individuals in 
the population, and “P(Ω)” is the probability density function 
of the phenotype. 
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Consequently, 

And one deduces finally

As a result, the field is a function of probability 
density functions taken as a whole, and not only a 
function of the average values. That is to say that the 
field contains information on all the moments of the 
probability density functions. With this formalism, the 
variance of microstate distribution density functions 
can be involved in “θ(j)-θ0 (j)”, namely in genotype-
phenotype associations.

To recover Fisher’s theory let us assume an infinitely 
dense population (infinite population). In this case the 
interval “∆Ω” can tend toward zero and as a result, the 
field can be expected to be almost constant over the very 
small interval of phenotype values “∆Ω”. One can then 
neglect the exponential in the integral since in this case 
ûq(y)-û(Ω)~0. Furthermore, as by definition, 

one obtains simply

To express the field in Fisher context, consider now 
that the probability density functions of the microstate 
“q” and of the phenotype value are normally distributed, 
respectively written as, 

where Kq and K are normalization constants, “〈┤〉” 
denotes averages and “σq” and “σ” the variances.

In his seminal paper, (Fisher 1919), Fisher assumed 
also that the variance of microstates are similar to that 
of the phenotype, that is σq~σ. In this context one can 
defines Fisher’s field for the microstate of type “q” as

That is to say that based on Fisher’s seminal idea the 
fields should be linear.

With this assumption, the gene effect, a = 1/2 [〈Ω〉+-
〈Ω〉-], and the dominance, d = 〈Ω〉0-1/2 [〈Ω〉++〈Ω〉-], 
correspond to derivative of the fields under the form 

6. Beyond Fisher

Assume now that σ_q≠σ, one deduces a more 
generic form for the field when normal distributions are 
employed,

Thus, in the general case the fields are expected 
to be non-linear due to unequal variances. What the 
latter relation confirms also is that the variances 
as well as the averages are involved in genotype-
phenotype associations. 

Assume now that 〈Ω〉~〈Ω〉q. Traditional GWAS 
would conclude that the gene effect is null. However, 
in our case, provided that σq≠σ, the fields would be 
non-null still suggesting potential genotype-phenotype 
association. This suggests that considering averages 
only resulting in the notion of gene effect linked to 
averages difference is too restrictive. 
.
7. Environment and Heredity

The difference given by “θ(j)-θ0(j)” provides a 
way to determine genotype-phenotype association 
that depends only on a difference between two 
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configurations involving microstates. That is there is no 
role given to the environment. In fact, the traditional 
notion of environment as defined in GWAS can be 
rederived considering the variance of microstates when 
the phenotypic field is considered.

In Fisher theory, the associations between genotype 
and phenotype are determined exclusively through the 
use of averages. In his seminal paper (Fisher 1919) and 
by considering one particular gene (Mendelian factor) 
involved in the formation of the phenotype, Fisher 
starts by defining two relations that relate the average 
value of microstate distribution density functions, 〈Ω〉
q, to the average value of the phenotype, 〈Ω〉, and to a 
new parameter called today the genetic variance, α2, 
both expressed under the form

Accordingly, the environment is added to complete 
the phenotype distribution density function. More 
specifically, the effect of the environment is defined 
through a variance, σ e

2 , such that 
		            σ2 = σ e

2 +α2

The variance linked to the environment can be 
derived explicitly. Let us recall the relation, Pq(Ω)/
P(Ω) = eûq(Ω), and rewrite it as, ωq

0Pq(Ω) = ωq
0eûq(Ω)P(Ω). 

Summing the latter relation for each microstate, one 
deduces then 

As ∑q=+,0,-ωq
0eûq(Ω) = 1, it follows that the two first 

moments can be determined by

Where the integrals involve all possible phenotypic 
values. Those integrals can be rewritten also as

Owing to the fact that ∫(Ω-〈Ω〉q)Pq(Ω)dΩ = 0, the 
first integral gives 

As ∑q=+,0,-ωq
0 = 1, one deduces that the first integral 

provides indeed the first relation linking the averages as 
given by Fisher. 

  By developing the quadratic term in the second 
integral and owing to the fact that, ∫(Ω-〈Ω〉q)

2Pq(Ω)dΩ 
= σq

2, one deduces 

As by definition α2 = ∑q=+,0,-ωq
0 (〈Ω〉q-〈Ω〉)2, the 

environment is therefore linked to the variance of 
microstates under the form 

To conclude, with GIFT the definition of the 
environment in genotype-phenotype associations results 
from the variance of microstates. However, a theory 
entirely focused on averages to determine associations 
and considering the variances as mere fluctuations 
would have missed the importance of the variance of 
microstates in the associations themselves. This is why 
the environment is often considered as an “intruder” in 
GWAS but always present, and why heredity linked to the 
variances and defined as the ratio between the genetic 
variance and the phenotypic variance is often used to 
determine genotype-phenotype associations.

Conclusion

The field of probability is borne out from our desire 
to provide a foundation to the notion of “evidence”. The 
method of relative frequencies is fundamentally based 
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on the notions of “imprecision”, “uncertainty”, “error” or 
“ignorance”. Whilst there are some advantages to using 
frequentist probabilities to work with derived parameters 
such as, for example, the average or the variance when 
the conditions underlying the existence of probability 
are met; it is paramount to realize that the “average” 
and the “variance” result from the acknowledgement 
that a void exist in our knowledge. Because those two 
parameters have had a life on their own sociologically, 
mostly through diverse analogies such as for example the 
definition of the “social body”, they appear legitimate to 
us. However, there are no good reasons to think always 
in term of “average” or “variance” or both. One can still 
feel ripples of such analogies in the 21st century. For 
example, the Body Mass Index (BMI) was invented by 
Quetelet (Faerstein & Winkelstein 2012) and is used 
to underscore health/obesity based on a distribution 
density function. One may then wonder about the 
universality of considering this distribution density 
function when rugby or American football players who 
won the six-nation tournament or the super bowl are 
considered, who would probably offset any BMI limits. 
The problem is that deciding to consider those players 
separately would split the “social body” demonstrating 
the overall futility of considering probability density 
functions as universal identifying of population. Again, it 
is the individuals/people that form a population, not the 
opposite way around.

Aside from considering “population”, the problem 
culminates when, in addition, one tries to force a 
population into the field of probability as a number of 
assumptions need to be made that are not always realistic.

The method suggested (GIFT) tries to remove our 
reliance on the notion of average by considering the 
shortcoming of frequentist probability and creating 
a new mathematical object. This new mathematical 
object, called the genetic paths difference, takes 
for granted that no obvious void is present in 
our knowledge because precision (in phenotypic 
measurements) can exist. The advantage of using this 
model is that it does not contradict Fisher but, instead, 
generalizes it by giving a role also to the variance of 
microstates. Indeed, specific fields can be derived 
using Fisher’s assumptions. The potential role of 
the variance of microstates in genotype-phenotype 
associations is, currently, a highly debated matter 
(Nelson, Pettersson, & Carlborg 2013). The model 
exposed herein will probably help in this matter. 

Perhaps the most important point with this model 
(GIFT) is that, as opposed to using a population 
to determine genotype-phenotype associations, 
the reintegration of individuals into genome-wide 
association studies permits us to think about the self-
consistency of genetics that is the “loop” that exists (and 
must exist) between phenotype and genotype. This can 
provide a basis to comprehend the notion of epigenetics 
and in particular the notion of phenotype plasticity 
in evolution and in genome-wide association studies, 
whereby phenotype alterations can happen without 
affecting the DNA composition (Fusco & Minelli 2010; 
Sommer 2020). 
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Appendix: “Probability” (Abraham de 
Moivre) vs. “Conditional Probability” 
(Thomas Bayes) vs. “Generalized 
Probability” (Pierre-Simon Laplace)

The theory of probability is to define a mathematical 
framework to model random events. There are different 
ways to define, as well as interpret, a probability 
epistemologically. Defined by Bernoulli and developed 
by de Moivre the most common definition is when 
the frequency of events can be defined, also known as 
frequentist probability. In this case, the probability of 
a particular event can be defined objectively. However, 
the use of the normal distribution formula defined in 
the continuum limit implies the possibility to repeat 
independently an infinite number of times the same 
experiment. There is thus an empirical problem since 
it is not possible to clearly define “infinite number of 
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times”. This in turn means that the probability can only 
be defined subjectively when dataset is limited. This 
subjective approach was developed by T. Bayes and is 
known as “conditional probability”. Bayes managed 
to provide an expression for the resulting probability 
of a hypothesis upon the addition of some evidence to 
the antecedent body of knowledge. In this case, Bayes 
showed that the posterior probability varies directly 
as the prior or antecedent probability. That is to say 
that if the evidence is what is expected, it casts little 
credit upon any particular hypothesis. Consequently, 
trying to promulgate Bayes’ method as an objective 
one is, practically speaking, impossible since there is 
nothing trivial in determining a meaningful antecedent 
probability out of the blue. In Bayes case, the only 
solution to generate an objective probability is by 
knowing all antecedent probabilities. This viewpoint 
was developed by Laplace. Laplace understood that 
the field of probability can be used as a measure of our 
“ignorance” concerning a process only in two different 
cases. Assume an event determined by different causes. 
One can then determine the probability of the event 
knowing the causes or, the probability of the causes 
knowing the event. To demonstrate this point, assume 
that three possible causes, noted “+1”, “0” and “-1”, 
generate an event and note by P(+1), P(0) and P(-1) 
the probability of these causes. Then P(+1), P(0) and 
P(-1) can be rewritten, respectively, as P(+1) = N+1/N, 
P(0) = N0/N and P(-1) = N-1/N, where “N+1”, “N0”, “N-

1” are the number of times the causes “+1”, “0” or “-1” 
were observed/measured, and “N” is the total number 
of observations or measurements made. If among those 
“N” observations or measurements made the number of 
times the event “E” was observed/measured is “NE”, then 
the probability of the event “E” occurring is, P(E) = NE/N. 
One can also determine the probability that the event 
“E” occurs as a result of the cause “+1”, noted P(E/+1). 
In this case, P(E/+1) = (NE)+1/N+1, where “(NE)+1” and 
“N+1” are, respectively, the number of times the event 
“E” and the cause “+1” were simultaneously observed or 
measured. Note that (NE)+1 is a subset of the total number 
of events “NE” since they are only determined by “+1”. 
Consequently, since only three causes can determine 
the event “E” one can write, (NE)+1+(NE)0+(NE)-1 = NE, 
and as a result, NE = P(E/+1)N+1+P(E/0)N0+P(E/-1)
N-1. Dividing the latter relation by “N” one finds, P(E) 
= P(E/+1)P(+1)+P(E/0)P(0)+P(E/-1)P(-1). One can 
then determine the probability that the event observed 

is caused by “+1” by using the ratio (NE)+1/NE = P(E/+1) 
N+1/NE. By multiplying and dividing the right-hand side 
by “N” one deduces finally, (NE)+1/NE = P(E/+1)P(+1)/
[P(E/+1)P(+1)+P(E/0)P(0)+P(E/-1)P(-1)]. The ratio 
(NE)+1/NE is the probability that “+1” caused the event 
and as a result this ratio can be re-noted P(+1/E). One 
deduces then the formula wrongly attributed to Bayes 
since Laplace derived it in 1776:

 P(+1/E) = P(E/+1)P(+1)/[P(E/+1)P(+1)+P(E/0)
P(0)+P(E/-1)P(-1)]

This type of formula is the one used in this manuscript 
and derived in (Rauch et al. 2022; Wattis et al. 2022). 
The important property of this relation is that the notion 
of “density” disappears since the right-hand side is a 
ratio of probabilities. Note also that if an event is always 
observed/measured then NE = N and the denominator 
is equal to one leading to: P(+1/E) = P(E/+1)P(+1). The 
later relation is the true Bayes’ formula.
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