
The Rate of Entropy Production as a Lyapunov Function in 
Biophysical-chemical Systems

José Manuel Nieto-Villar,a Mariano Bizzarrib and Ricardo Mansilla c, d*

a Department of Physical-Chemistry, A. Alzola Group of Thermodynamics of Complex Systems of M.V. Lomonosov Chair, Faculty of 

Chemistry, University of Havana, Cuba
b Department of Experimental Medicine, Sapienza University of Rome, via A. Scarpa 16-00161 Rome, Italy
c Centro Peninsular en Humanidades y Ciencias Sociales, CEPHCIS, UNAM, México
d Centro de Investigaciones Interdisciplinarias en Ciencias y Humanidades, UNAM, México

*Corresponding author: José Manuel Nieto-Villar, Email: nieto@fq.uh.cu

Abstract

An overview of the link between nonequilibrium thermodynamics and complexity theory is offered here, showing 
how the entropy production rate can be quantified through the spectrum of the Lyapunov exponents. The work shows 
how the entropy production per unit of time meets the necessary and sufficient conditions to be a Lyapunov function 
and constitutes per se an extremal principle. The entropy production fractal dimension conjecture is also established. 
The work demonstrates how the rate of entropy production as a non-extremal criterion represents an alternative 
way for sensitivity analysis of differential equations. Finally, in an extension to biophysical-chemical systems, on the 
one hand, the study presents the use of the dissipation function as a thermodynamic potential out of equilibrium in 
the characterization of biological phase transitions. On the other hand, it evidences that the entropy production rate 
represents a physical quantity that can be used to evaluate the complexity and robustness of cancer.
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Introduction 

The advent of the so-called chaos theory initially 
(Schuster, 2006) and the more recent developments 
in the sciences of complexity (Nicolis & Nicolis 
2007) have drastically changed the vision of science, 
particularly the thermodynamics of irreversible 
processes. 

The linear region of irreversible processes lies on 
a well-consolidated theory (Prigogine 1947; De 
Groot & Mazur 1962; Katchalsky & Curran 1965). 
However, the non-linear region is still waiting for a 
formalism to be built, on the one hand, while on the 
other, such a formalism also should incorporate 
complex phenomena. A first approximation in this 
direction, linking the thermodynamics of 
irreversible processes with nonlinear dynamics, was 
elaborated in the seminal work of Prigogine and 
colleagues (Nicolis & Prigogine 1977) under the 
name "dissipative structures." Beck & Schlögl 
published the work "Thermodynamics of chaotic 
systems" in the 1990s (Beck & Schlögl 1993), 
approach the subject. Although still far from a 
finished formalism, these works undertook the first 
steps in such a direction. 

An extensive list of works in the literature 
addresses the relationship between nonequilibrium 
thermodynamics and complex phenomena 
(Gaspard et al. 2007; Nicolis & De Decker 2017; 
Nicolis & Nicolis 2010). A thermodynamic 
formalism of complex phenomena should be able to 
answer three fundamental aspects: 1. Formulate 
extremal principle for complex phenomena on a 
macroscopic scale; 2. Establish methods to 
determine stability in nonequilibrium states; 3. 
Formalize criteria to characterize the complexity at 
the macroscopic level of natural systems. 

This work aims to offer a unifying overview of the 
relationship between nonequilibrium 
thermodynamics and non-linear dynamics, which, 
even far from establishing a finished formalism, 
serves as a starting point for what could constitute 
the theoretical bases of the "thermodynamics of 
complex phenomena." The work is structured as 
follows: Section 1 summarizes the fundamental 
aspects of the formalism of the thermodynamics of 
irreversible processes in the linear region; Section 2 
offers an overview of the advances between 

nonequilibrium thermodynamics and complex 
phenomena; Section 3 provides an extension to 
biophysical-chemical systems. 

 

1. The Formalism of the 
Thermodynamics of Irreversible 
Processes in the Linear Region 

The seminal works of Onsager (Onsager 1931), 
De Groot-Mazur (De Groot & Mazur 1962), and 
Prigogine (Prigogine 1947) established the bases of 
the thermodynamics of irreversible processes. This 
formalism was based on four fundamental pillars: 

1. Accept as a fundamental postulate that the 

production of entropy per unit of time i
S

dt

δ
, is 

positive definite, that is: 

0
i

i

S
S

dt

δ
≡ ≥& , (1) 

2. Validity of the Onsager reciprocity relations. 
3. Fulfillment of the "local equilibrium" 

hypothesis. 
4. The existence of linear relationships between 

flows and forces. 
In this way, the fundamental expression of the 

Second Law can be generalized as 

S e i
dS S S

dt dt dt

δ δ
= + , (2) 

where S

S

dS
S

dt
≡ &  is the entropy rate of the system, 

e

e

S
S

dt

δ
≡ &  is the rate of entropy exchange with the 

surroundings or entropy flow, and i

i

S
S

dt

δ
≡ &  is the 

rate of entropy production. The Eq. (2) can be 
rewritten as 

S e i
S S S= +& & & , (3) 

Thus, the evolution criterion can be generalized 
as: 0

i
S >& , which constitutes one of the postulates on 

which the formalism of irreversible processes rests 
and the essence of the Second Law. Additionally, it 
gives a physical meaning to time, which has been 
coined in the literature as The Arrow of Time 
(Coveney & Highfields 1991). 
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Sometimes, it is convenient, as we will see later, 
to use, instead of the rate of entropy production, the 
so-called dissipation function introduced by Lord 
Rayleigh, 

i
TSΨ ≡ & , since it converts the entropy 

production rate into an out-of-equilibrium 
thermodynamic potential. 

Formally, the rate of production of entropy, 
i

S& , 

can be evaluated as 

i k k

k

S J X=&
, (4) 

where, 
k

J  represents generalized flows, e.g., heat 

flow, substance flow, etc., and 
k

X  are the 

generalized forces, that is, the causes that give rise to 
the appearance of flows, temperature gradients, 
substances, etc. 

A linear relationship can be established between 
the flows and the generalized forces, known as the 
phenomenological (De Groot & Mazur 1962), which 
was established empirically long before the formal 
structure of the thermodynamics of irreversible 
processes was established. Hence, we have 

k kk k
J L X= , (5) 

where, 
kk

L  is known as a direct 

phenomenological coefficient, for example, the 
coefficient of thermal conductivity, λ , diffusion 
coefficient, D , etc. The formal structure of the 
thermodynamics of irreversible linear processes is 
based on the existence of equality, Eq. (5), that is the 
validity of linear relationships between generalized 
forces and flows. When there is no such 
phenomenological relationship, we speak of the 
non-linear region. It is essential to highlight that 
linearity in dynamic systems should be distinct from 
the existence of the linear dependence between flows 
and generalized forces, Eq. (5). 

Of great importance are the coupling or 
interference processes (Prigogine 1961), which are 
subject to the Curie Principle of symmetry 
(Prigogine 1961); for example, given any two 
processes that are coupled under the Curie Principle, 
such that 

1 11 1 12 2

2 21 1 22 2

,J L X L X

J L X L X

= +

= +
, (6) 

where 
11 22

,L L  are the straight phenomenological 

coefficients and 
12 21

,L L  are known as cross-

phenomenological coefficients. As we mentioned 
previously, point 2, concerning the so-called 
Onsager Reciprocity Principle, it is true that, 

12 21
L L= , (7) 

In other words, the so-called Onsager Reciprocity 
Principle (De Groot & Mazur 1962; Onsager 1931) 
establishes that whenever an appropriate choice is 
made for the flows 

k
J  and the forces 

k
X , the matrix 

of phenomenological coefficients is symmetric. 
Thus, considering Eqs. (6, 7) and substituting them 
in Eq. (4), we have that the rate of production of 
entropy for the coupling is given by 

( )2 2

11 1 12 21 1 2 22 2

2 2

11 1 12 1 2 22 2
   2 0.

i
S L X L L X X L X

L X L X X L X

= + + +

= + + ≥

&

, (8) 

The Eq. (8) is a semi-positive definite quadratic 
form by the Second Law. Linear algebra imposes 
restrictions on the phenomenological coefficients in 
formula (8); it must be true that 

( )
11 22

2

12 21 11 22

0, 0

4 .

L L

L L L L

> >

+ <
, (9) 

The straight coefficients are always positive 
magnitudes, while the crossed ones can take any 
value as long as the inequality of the last expression 
of Eq. (9). 

The stationary states, also known as fixed points 
in the theory of dynamical systems (Andronov et al. 
1966), are states through which different processes, 
physical, chemical, biological, etc. (De Groot & 
Mazur 1962; Katchalsky & Curran 1965) and are of 
particular interest in the framework of the theory of 
complexity sciences (Nicolis & Nicolis 2007). 

Formally, a dynamical system can be defined as 
the ordered pair ( ),

t
Ε Τ  where Ε  represents an 

appropriate manifold and 
t

Τ  is a one-parameter 

group of diffeomorphisms under the parameter t  
often represented by time. If one has an atlas of local 
charts for the manifold E, on those charts, it is 
possible a representation the dynamical system in 
the following form: ( ) ( )( )X t F X t=& , where F  is 

the vector field associated with the one-parameter 
group of diffeomorphisms. 

It is said that the solution ( )
0

X t X=  is an 

equilibrium position or a stationary state of the 
system if ( )

0
0F X = . We further say that 

0
X  is an 
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attractor of the system, if for any other solution
( )X t , whose initial conditions are close enough to

0
X , we have ( )

0
X t X→  when t → ∞ . 

From a nonequilibrium thermodynamics point of 
view (De Groot & Mazur 1962), a stationary state is 
formally defined as a dynamic state, for which it is 
true that during a finite time, the state variables and 
the control parameters remain constant, and 
dissipative flows are verified, that is to say 0

i
S >& , in 

such a way that 

i e
S S= −& & , (10) 

That is, at the same rate that entropy is produced 

i
S& , exchanges with surroundings 

e
S& , in such a way 

that 0
S

S =& . Furthermore, steady states are 

characterized by the number of forces k  that remain 
constant; hence, the stationary states of an order 
made references to k  (De Groot & Mazur 1962). For 
instance, in Eq. (8), assuming there is a steady state, 
for 

2
X  constant, that is, of order one, 1k = , we 

should have to verify Prigogine's Theorem of 
Minimum Entropy Production or Prigogine's 
Principle (Prigogine 1961), which ensures the 
stability of the stationary state, that is, out of 
equilibrium, which constitutes an extension of the 
stability criterion in the vicinity of the equilibrium, 
Gibbs-Duhem Principle (Kondepudi & Prigogine 
1998). In this way, Prigogine's Principle represents, 
in fact, an extremal principle if the linear 
relationships between flows and forces are 
fulfilled—Eq. (5). 

Glansdorff and Prigogine tried to generalize 
Prigogine's Principle, known as the "general 
criterion of evolution" (Glansdorff & Prigogine 
1971), demonstrating how the rate of entropy 
production, Eq. (8), constitutes from physics, a 
natural Lyapunov function (Mawhin 1996). 
According to the procedure proposed by Glansdorff 
and Prigogine, the entropy production per unit of 
time 

i
S&  is identified as a Lyapunov function, ( )V x , 

( )
i

S V x≡& , such that 

( ) 0,

0.

i

i

S V x

dS

dt

≡ ≥

≤

&

& , (11) 

The Eulerian derivative of the entropy 

production rate, Eq. (4), is given by 

( ) ( )
     ;

i k k

k k

k k

X i J i

dS dX dJ
J X

dt dt dt

d S d S

dt dt

= +

= +

 
&

& &
, (12) 

Considering Eq. (8) and substituting in Eq. (12), 
one has: 

( )

( )

1 2

1 2

1 2

1 2

,

;

X i

J i

d S dX dX
J J

dt dt dt

d S dJ dJ
X X

dt dt dt

= +

= +

&

&
, (13) 

Taking into account Eqs. (6), (7), and (13), and 
substituting in Eq. (12) is obtained 

( )

( )

( )

1 2

1 2
2 2 ,

         2 ,

1
0;

2

i

X i

i

d S dX dX
J J

dt dt dt

d S

dt

d S

dt

= +

=

<

&

&

&

 (14) 

In this way, it is demonstrated that formula (14), 
as the production of entropy per unit of time, is a 
physical magnitude that constitutes per se a 
Lyapunov function if there is a linear dependence 
between the flows and the generalized forces. As 
can be seen, the general criterion of evolution, 
formula (14), is restricted to the linear region of 
irreversible processes. 

2. Thermodynamic Formalism of 
Complex Processes 

As we commented at the beginning, unlike the 
formalism of the thermodynamics of irreversible 
processes in the linear region, where most of its 
precepts are consolidated, the nonlinear region is 
still in the making; due to this, it is still premature to 
speak of a finished formalism. That is why we intend 
to provide a landscape approach to the subject and, 
above all, try to articulate the thermodynamic 
formalism of irreversible processes with that of 
nonlinear dynamics so that it allows us to offer a 
thermodynamic approach to complex phenomena 
(Mansilla & Nieto-Villar 2017). 

On the one hand, it is essential to be clear about 
what we refer to as complex (Bizzarri et al. 2020). 
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Hence, the complexity manifested by dynamical 
systems highlights the following general and critical 
aspects of understanding this phenomenon: 

1. Complex should not be seen as synonymous 
with complicated since a system described by few 
degrees of freedom can exhibit high complexity 
during its evolution; on the contrary, a system that 
requires many degrees of freedom to be able to 
describe itself and which is therefore complicated, 
may or may not exhibit complex behavior. 

2. Complexity manifests itself through the 
appearance of emergent properties. These are 
macroscopic observables that can only sometimes be 
deduced from the interaction rules that govern the 
evolution of the different components of the 
systems. 

3. The dimension of the patterns, both temporal 
and spatial, is generally not an integer and is greater 
than its topological dimension; therefore, they are 
said to have a fractal dimension (Betancourt-Mar et 
al. 2016). 

4. On many occasions, the complex processes 
described through deterministic dynamic systems 
show a sensitive dependence on the initial 
conditions. This behavior can be confused with 
stochastic processes and is known as deterministic 
chaos (Strogatz 2000). The most important 
consequence of this property is the impossibility of 
making predictions about the system's evolution in 
the long term. In other words, the so-called 
Laplacian determinism collapses. 

5. For a deterministic dynamic system to exhibit 
complex behavior, it must meet two fundamental 
requirements: nonlinear and that feedback 
processes exist (Nieto-Villar et al. 2013). 

6. The fundamental mechanism that describes a 
system's emergent properties and complexity is 
based on the occurrence of bifurcations (Nicolis 
1972; Nicolis & Daems 1998), a dynamic analog of 
phase transitions. The bifurcations exhibit a 
universal character in their phenomenology 
(Kuznetsov 2013), making them independent of the 
system's characteristics and representing a source of 
innovation and diversification because they give 
systems a new type of solution. The fluctuations, 
which have a microscopic origin, grow and amplify 
until they reach the macroscopic level, which leads 
to a break in the spacetime symmetry, giving rise to 

self-organization outside of thermodynamic 
equilibrium, the establishment of order, and 
coherence on a macroscopic scale, and consequently 
to the appearance of complexity. 

Hence, the term complex should not be seen as a 
synonym for complicated; that is, dynamic systems 
self-organize temporally and spatially out of 
thermodynamic equilibrium, a term coined by 
Prigogine as Dissipative Structures (Prigogine 
1978), which gives rise to the manifestation of 
complex phenomena. 

On the other hand, Seth Lloyd compiled an 
extensive, still incomplete list of ways to measure 
complexity (Lloyd 2001). This include Shannon, 
Gibbs-Boltzmann, Renyi, Tsallis, Kolmogorov-Sinai 
entropies, and fractal dimension. 

Even today, there is a great controversy 
concerning the thermodynamic formalism of 
irreversible processes, including Prigogine's 
Principle of Entropy Production. According to 
Bruers (Bruers 2006), at least "six principles" can be 
mentioned: 1. Principle of minimum dissipation 
close to equilibrium; 2. Principle of minimum 
production of entropy near equilibrium; 3. Principle 
of maximum production of entropy near 
equilibrium; 4. Non-variational principle far from 
the equilibrium of maximum production of entropy; 
5. Variational principle far from the equilibrium of 
maximum production of entropy; 6. Optimization of 
the principle of minimum production of entropy. 

Chemical reactions constitute an ideal model to 
delve into the subject since, firstly, they can occur 
"close to or far" from thermodynamic equilibrium, 
and, secondly, there is no linear relationship 
between the generalized flow, the rate of reaction ξ&  , 

and generalized force, an affinity for the inverse of 

temperature 
1

T
A . Furthermore, their dynamics 

exhibit a wide range of temporal and spatial complexity 
(Nieto-Villar & Velarde 2001), and the developed 
formalism can be extended to biological systems. 

Briefly, we will show how it is possible to 
generalize, at least for chemical and biological 
processes, the "general criterion of evolution" of 
Glansdorff-Prigogine (Glansdorff & Prigogine 1971), 
demonstrating how the rate of entropy production is 
a Lyapunov function without the need for the linear 
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relationships between flows and forces hold. 
Lyapunov, in his 1892 doctoral thesis (Mawhin 

1996), developed a mathematical method that 
allowed knowing the evolution and global stability of 
a dynamical system, known as the Lyapunov 
function ( )V x  (see Fig. 1 in Appendix). Thus, we 

have succinctly that: 
Let p  be a fixed point, a steady state of a flow 

( )dx
x f x

dt
≡ =& , such that, if for some neighborhood 

N  of p  the following conditions hold: 

1. ( ) 0V x > x p∀ ≠  in N  and ( ) 0V p = ;  

2. The Eulerian derivative, 
( )

0
dV x

dt
≤  for x∀  in 

N . 

The function ( )V x  is called Lyapunov´s 

function. Thus, it can be stated that for all 
0

t t≥  , p  

is stable, and if 
( )

0
dV x

dt
< , the equilibrium position 

is asymptotically stable. 
On the one hand, we show that the entropy 

production per unit time, at least for chemical 
reactions, meets the necessary and sufficient 
conditions of a Lyapunov function (Nieto-Villar et 
al. 2003) and, in fact, constitutes an extremal 
criterion per se, regardless of whether the network 
of chemical reactions is "near" or "far" from 
equilibrium. Recently, it has been demonstrated in 
reaction-diffusion-type systems (Ledesma-Durán & 
Santamaría-Holek 2022). 

On the other hand, it was shown (Nieto-Villar et 
al. 1995; Garcia-Fernández et al. 1996; Nieto-Villar 
et al. 2013; Nieto-Villar et al. 2022) using an Ansatz 
through a functional of the rate of entropy 
production of the control parameters of the dynamic 
system, Ω , as 

( ) 0
i

S f= Ω >& , (15) 

Thus, it is found that the Eulerian derivative of 
Eq. (15) holds the following: 

0
i i

dS S d
=

dt dt

∂ Ω
≤

∂Ω
≡ ℑ

& &
, (16) 

In this way, we have the acceleration of the 

production of entropy rate, i
dS

dt
ℑ ≡

&
, which 

constitutes per se a potential function out of equilibrium. 

The works of Hoover and Nose (Hoover & Posch 
1994; Hoover 2007) and Gaspard (Gaspard 2007) 
showed that the rate of entropy production 

i
S&  is 

related to the spectrum of the Lyapunov exponents 

j
λ  through the relationship, 

0
i

i j

j

dS
S

dt
λ≡ ≈ − >& , (17) 

The formula, Eq. (17), establishes per se a natural 
link between the formalism of the thermodynamics 
of irreversible processes and nonlinear dynamics 
regardless of whether the system evolves "close" or 
"far" from thermodynamic equilibrium. 

It is known that sensitivity analysis of differential 
equations has been used successfully to determine 
the fundamental steps in a reaction mechanism 
(Varma 2005). Edelson's pioneering works (Edelson 
& Allara 1980; Edelson & Thomas 1981; Edelson 
1983) allowed the identification of the fundamental 
steps in a mechanism and its reduction. Later, 
Turanyi used the method in the famous Belousov-
Zhabotinsky BZ reaction (Turányi 1990; Gyorgyi et 
al. 1990; Turányi 1993), drastically reducing the 
model mechanism, GTF, from 81 to 42 steps. 

As an alternative method to the sensitivity 
analysis, we proposed using the entropy production 
rate as a non-extremal criterion, called the Method 
of Dominant Steps (Nieto-Villar & Velarde 2001; 
Nieto-Villar et al. 2022; Rieumont-Briones et al. 
1997). For this, we postulate that those steps that 
exhibit a greater value of entropy production would 
be the fundamental ones in a reaction mechanism 
for fixed values of the control parameters. 

Let be a mechanism of reaction composed of n-
reaction steps and m-species, represented by 
equality (18), as 

1 2

1

 

         

i i

m n m n

x x

x x−

=

=

M , (18) 

Thus, we have that the rate of production of 
entropy of the step-n is given by 

( ) ln 0
n

i n n n

n

S R
ξ

ξ ξ
ξ

+

+ −

−

= − ≥
&

& & &
& , (19) 

where , 
n n

ξ ξ+ −
& &  are forward a reverse chemical 

rate of the step-n. Step n will be dominant compared 



91

The Rate of Entropy Production as a Lyapunov Function in Biophysical-chemical Systems

to step n-1 if it is fulfilled that: 
1i n i n

S S −>& & . In this 

way, the rate of entropy production, as a non-
extremal criterion, generalizes the so-called 
"maximum entropy" criterion later proposed by 
Martyushev and Seleznev (Martyushev & Seleznev 
2006) and constitutes a complementary method to 
the sensitivity analysis of differential equations. 

The fractal dimension f
D  represents one of the 

most important properties of an attractor of a 
dynamic system and a way to estimate the 
complexity of spatiotemporal patterns from the 
geometric point of view (Farmer 1982), as we 
mentioned at the beginning of this section. 
Grassberger (Grassberger & Procaccia 1983) 
proposed a generalization of the fractal dimension, 
the generalized fractal dimension q

D  as 

( )
( )lim

1ln

q

q

S R
D

ε

ε
→∞

= , (20) 

where ( )
q

S R  is the Renyi´s entropy (Rényi 

1960). From the formula, Eq. (20), three basic 
dimensions are obtained as particular cases: 

0 1 2
, ,D D D ; the Hausdorff-Besicovitch fractal 

dimension 
0

D , the informational dimension 

(Farmer 1982), 1
1

lim
q

q

D D
→

= , and the correlation 

dimension 
2

D . In the case of fractals, the three 

dimensions are approximately equal, while in 
multifractals, it is true that: 

0 1 2
D D D> >  (Farmer 

1983). 
An alternative and straightforward way to 

compute the fractal dimension of a dynamical 
system is through the spectrum of Lyapunov 
exponents. j

λ , known as the Lyapunov dimension 

L
D  defined through the Kaplan-York conjecture 

(Frederickson 1983) as: 

1

1

j

ii

L

j

D j
λ

λ
=

+

= +


, (21) 

where j  is the largest integer for which it is 

true that: 
1 2

0
j

λ λ λ+ + + ≥L . By analogy to Eq. 

(21), we established through an ansatz the 
following conjecture: the fractal dimension of 
entropy production (Betancourt-Mar et al. 2016), 
defined as: 

1

i

S ni

i

i= j+

S
D = j +

λ 
 
 


&

&

, (22) 

where the entropy production per unit time 
i

S& , is 

evaluated through the formula (17), n  is the number 
of all Lyapunov exponents. 

3. Extension to Biophysical-
Chemical Systems 

Finally, we will provide a brief landscape of the 
application of the thermodynamic formalism of 
complex processes in biological systems, 
particularly on the topic of the emergence and 
evolution of cancer. Non-equilibrium 
thermodynamics has been successfully used in 
studies of longevity, aging, the origin of life, and, in 
particular, cancer (Miquel et al. 1984; Balmer 1982; 
Nieto-Villar et al. 2003; Molnar et al. 2005; Luo 
2009; Lucia 2014; Lucia et al. 2015; Marin & Sabater 
2017; Triana et al. 2018; Betancourt-Mar et al. 2018; 
Montemayor-Aldrete et al. 2020; Mesa-Rodríguez 
et al. 2022; Michaelian 2022; Nieto-Villar & 
Mansilla 2022; Miranda & Souza 2023). 

We must start with a formal definition: …cancer 
is a complex network of cells that have lost their 
specialization and control of growth, and that 
appears through a "biological phase transition" 
leading to spatiotemporal self-organization outside 
the thermodynamic equilibrium. This exhibits high 
robustness, adaptability, complexity, and hierarchy, 
which enables the creation of new information and 
learning capacity (Montero et al. 2018). 

The diagnosis of the proliferative and invasive 
capacity of a tumor is a complicated issue since these 
terms include many factors. Let us highlight two 
fundamental ones: aggressiveness, which is related 
to the speed of tumor growth, and malignancy, the 
ability of the tumor to invade and infiltrate healthy 
tissue, associated with its morphological 
characteristics (roughness) (Norton 2005). 

The growth rate of the tumor, ξ&  is given by 

m ap
ξ ξ ξ= −& & & , (23) 

where ,
m ap

ξ ξ& &  are the rates of mitosis (cell 

division) and apoptosis (programmed cell death), 
respectively. By analogy to Eq. (19), we can evaluate 
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the production of entropy per unit of time 
i

S& , 

during the growth of a tumor (Izquierdo-Kulich et 
al. 2011) as 

( ) ln 0
m

i m ap

ap

S
ξ

ξ ξ
ξ

= − ≥
&

& & &
& , (24) 

On the other hand, we developed a method based 
on knowing the rates of mitosis 

m
ξ&  and apoptosis ap

ξ&  

(Izquierdo-Kulich & Nieto-Villar 2013) to quantify 
morphological characteristics (roughness) of the 
tumor, the malignancy of a tumor, through the 
fractal dimension f

D , as 

5
ap m

f

m ap

D
ξ ξ

ξ ξ

−
=

+

 
 
 

& &

& &
, (25) 

Considering Eqs. (23) and (25), we can rewrite 
Eq. (24) depending on the rate of tumor growth, ξ&  

and the fractal dimension of the tumor f
D  as 

5
ln

1

f

i

f

D
S R

D
ξ

−
=

+

 
 
 

& & , (26) 

In this way, an appropriate expression is 
obtained, Eq. (26), to evaluate the production of 
entropy per unit of time 

i
S& , during the emergence 

and evolution of cancer, which relates to two 
fundamental properties of tumors: aggressiveness 
and malignancy (Izquierdo-Kulich et al. 2011). Thus, 
we can affirm that the production of entropy per unit 
of time represents a physical quantity to evaluate 
cancer's complexity as well as robustness, namely 
the ability of a system to continue functioning in the 
face of internal or external perturbations or 
fluctuations. 

Landau's seminal work (Landau & Lifshitz 1964) 
proposed a theory of continuous phase transitions in 
which symmetry breaking occurs near the critical 
point. In correspondence with the formalism 
proposed by Landau, a potential function is defined 
Φ , known as the Landau potential. The Landau 
potential Φ  is defined in terms of the state variables 
that characterize the system, for example, 
temperature and pressure, as well as a function of 
the so-called order parameter η , which is 
empirically defined. 

To formalize out-of-equilibrium phase 
transitions, a term we coined as biological phase 

transition (Betancourt-Mar et al. 2017), during the 
emergence and evolution of cancer, we selected the 
dissipation function, 

i
TSΨ ≡ & , which is a non-

equilibrium thermodynamic potential as an analogy 
to the Landau potential Φ . 

Thus, we have that, in the case of the emergence 
and evolution of cancer, biological phase transition 
is selected as an order parameter η , the difference 

between the fractal dimension of healthy cells H

f
D  

and the fractal dimension of tumor cells T

f
D  , such 

that: 
H T

f f
D Dη = − , (27) 

Thus, we have that at the critical point 
C

P  it holds 

that 0η =  and so on in any other "ordered" phase 
0η ≠ . In this way, the order parameter η  is called 

the degree of complexity (Betancourt-Mar et al. 
2017). 

Considering Eqs. (27) and (26), and making a 
power series expansion of the dissipation function 

Ψ , assuming for simplicity that 1
H

f
D = , is obtained 

( ) ( ) ( ) ( )2 4

0
, , , ,

C C C C

f f f f
d d d dξ ξ α ξ η β ξ ηΨ = Ψ + +& & & & , 

(28) 
Eq. (28) represents an out-of-equilibrium 

extension of Landau's Theory and allows formalizing 
biological phase transitions through non-
equilibrium thermodynamics. In this way, we 
understand how the development of a primary 
tumor from a microscopic level—an avascular 
growth—to a macroscopic level—the vascular 
phase—and the subsequent appearance of 
metastases do not occur simply by accumulation of 
malignant cells but through bifurcations, i.e., a 
biological phase transition (Izquierdo-Kulich et al. 
2013; Llanos-Pérez et al. 2015; Llanos-Pérez et al. 
2016; Martin et al. 2017; Betancourt-Mar et al. 2017; 
Guerra, A, et al. 2018; Betancourt-Padron et al. 
2020; Nieto-Villar & Mansilla 2021). 

Conclusions and Remarks 

In summary, non-equilibrium thermodynamics 
and nonlinear dynamics articulate coherently. This 
let us establish a formal path of what could become 
the thermodynamics of complex processes. As 
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essential aspects, it was shown that: 
1. On the one hand, the entropy production rate 

is a physical magnitude representing a Lyapunov 
function per se, regardless of whether the dynamic 
system is close to or far from equilibrium, 
constituting an extremal criterion. 

2. Conversely, the entropy production rate 
constitutes a complementary method to the 
sensitivity analysis of differential equations and 
appears as a non-extremal criterion. 

3. An extension of the formalism to biophysical-
chemical systems, on the one hand, shows the use of 
the dissipation function as a non-equilibrium 
thermodynamic potential in the characterization of 
biological phase transitions. 

4. On the other hand, it was evidenced that the 
rate of entropy production represents a physical 
magnitude useful to evaluate the complexity and 
robustness of cancer and it may be used as a 
quantitative index of the metastatic potential of 
tumors. 
 

Appendix: Lyapunov Function 

Let the dynamical system be defined by: 

                  ⋮
 = , … , ⋮, … ,                       (1) 

where the functions , …  are assumed to be 
continuous and have continuous first-order partial 
derivatives with respect to all variables , … , . Let 
us further suppose that: 
 0, … ,0 = 0 ;  = 1, …  
 
That is, the origin of the coordinates 0, … ,0 is an 
equilibrium position of the system. 
It is said that the function , …  is a Lyapunov 
function for the equilibrium position of the system if:  , …  is continuous in a neighborhood  of 
the point 0, … ,0, as well as all its first-order 
derivatives with respect to the variables , … , . 
Further: , …  ≥ 0 
 
in the neighborhood  of the point 0, … ,0.  

b) The derivative concerning the system (1):  , … 
=   , …   

< 0 
where , …  is a trajectory of the system 
(1). 
Notice that:   , …   

=  〈 , …  , , … 〉 
That is, the scalar product of the gradient of the 
function , …  evaluated in the trajectory , …  of the system and the vector field of 
the system evaluated in the same trajectory: , …  = , … , , … , , … ,  
The fact that this scalar product is less than zero 
indicates that the angle between the vector  
and , …  must be bigger than 90°. This condition 
guarantees the asymptotic stability of the 
equilibrium position 0, … ,0.  
Figure 1 shows what was previously described for the 
case of  = 2. 
 

 

Figure 1 
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