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Abstract

An overview of the link between nonequilibrium thermodynamics and complexity theory is offered here, showing
how the entropy production rate can be quantified through the spectrum of the Lyapunov exponents. The work shows
how the entropy production per unit of time meets the necessary and sufficient conditions to be a Lyapunov function
and constitutes per se an extremal principle. The entropy production fractal dimension conjecture is also established.
The work demonstrates how the rate of entropy production as a non-extremal criterion represents an alternative
way for sensitivity analysis of differential equations. Finally, in an extension to biophysical-chemical systems, on the
one hand, the study presents the use of the dissipation function as a thermodynamic potential out of equilibrium in
the characterization of biological phase transitions. On the other hand, it evidences that the entropy production rate
represents a physical quantity that can be used to evaluate the complexity and robustness of cancer.
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Introduction

The advent of the so-called chaos theory initially
(Schuster, 2006) and the more recent developments
in the sciences of complexity (Nicolis & Nicolis
2007) have drastically changed the vision of science,
particularly the thermodynamics of irreversible
processes.

The linear region of irreversible processes lies on
a well-consolidated theory (Prigogine 1947; De
Groot & Mazur 1962; Katchalsky & Curran 1965).
However, the non-linear region is still waiting for a
formalism to be built, on the one hand, while on the
other, such a formalism also should incorporate
complex phenomena. A first approximation in this
direction, linking the thermodynamics of
irreversible processes with nonlinear dynamics, was
elaborated in the seminal work of Prigogine and
colleagues (Nicolis & Prigogine 1977) under the
name "dissipative structures." Beck & Schlogl
published the work "Thermodynamics of chaotic
systems" in the 1990s (Beck & Schlogl 1993),
approach the subject. Although still far from a
finished formalism, these works undertook the first
steps in such a direction.

An extensive list of works in the literature
addresses the relationship between nonequilibrium
thermodynamics and complex phenomena
(Gaspard et al. 2007; Nicolis & De Decker 2017;
Nicolis & Nicolis 2010). A thermodynamic
formalism of complex phenomena should be able to
answer three fundamental aspects: 1. Formulate
extremal principle for complex phenomena on a
macroscopic scale; 2. Establish methods to
determine stability in nonequilibrium states; 3.
Formalize criteria to characterize the complexity at
the macroscopic level of natural systems.

This work aims to offer a unifying overview of the
relationship between
thermodynamics and non-linear dynamics, which,

nonequilibrium

even far from establishing a finished formalism,
serves as a starting point for what could constitute
the theoretical bases of the "thermodynamics of
complex phenomena." The work is structured as
follows: Section 1 summarizes the fundamental
aspects of the formalism of the thermodynamics of
irreversible processes in the linear region; Section 2
offers an overview of the advances between

SAPIENZA

nonequilibrium thermodynamics and complex
phenomena; Section 3 provides an extension to
biophysical-chemical systems.

1. The Formalism of the
Thermodynamics of Irreversible
Processes in the Linear Region

The seminal works of Onsager (Onsager 1931),
De Groot-Mazur (De Groot & Mazur 1962), and
Prigogine (Prigogine 1947) established the bases of
the thermodynamics of irreversible processes. This
formalism was based on four fundamental pillars:

1. Accept as a fundamental postulate that the

oS
production of entropy per unit of time—-, is

dt
positive definite, that is:
oS .
—=520,(0)
dt

2. Validity of the Onsager reciprocity relations.

3. Fulfillment of the "local equilibrium"
hypothesis.

4. The existence of linear relationships between
flows and forces.

In this way, the fundamental expression of the
Second Law can be generalized as

das s oS
dt dt dt
where —~=§ , is the entropy rate of the system,
dt

e

—= S'? is the rate of entropy exchange with the
dt

AT
surroundings or entropy flow, and —- =S is the
dt

rate of entropy production. The Eq. (2) can be
rewritten as

S, =S +S,,(3)

Thus, the evolution criterion can be generalized
as: S, >0, which constitutes one of the postulates on

which the formalism of irreversible processes rests
and the essence of the Second Law. Additionally, it
gives a physical meaning to time, which has been
coined in the literature as The Arrow of Time
(Coveney & Highfields 1991).
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Sometimes, it is convenient, as we will see later,
to use, instead of the rate of entropy production, the
so-called dissipation function introduced by Lord
Rayleigh, W =75, since it converts the entropy

production rate into an out-of-equilibrium
thermodynamic potential.

Formally, the rate of production of entropy, S,

can be evaluated as
S =20% )
k
where, J, represents generalized flows, e.g., heat

flow, substance flow, etc., and X, are the

generalized forces, that is, the causes that give rise to
the appearance of flows, temperature gradients,
substances, etc.

A linear relationship can be established between
the flows and the generalized forces, known as the
phenomenological (De Groot & Mazur 1962), which
was established empirically long before the formal
structure of the thermodynamics of irreversible
processes was established. Hence, we have

1 =LX,,(5)

where, L, is known as a direct

phenomenological coefficient, for example, the
coefficient of thermal conductivity, A, diffusion
coefficient, D, etc. The formal structure of the
thermodynamics of irreversible linear processes is
based on the existence of equality, Eq. (5), that is the
validity of linear relationships between generalized
forces and flows. When there is no such
phenomenological relationship, we speak of the
non-linear region. It is essential to highlight that
linearity in dynamic systems should be distinct from
the existence of the linear dependence between flows
and generalized forces, Eq. (5).

Of great importance are the coupling or
interference processes (Prigogine 1961), which are
subject to the Curie Principle of symmetry
(Prigogine 1961); for example, given any two
processes that are coupled under the Curie Principle,
such that

J =L X +LX,

,(6)
JZ = LZIX] + L22X2

where L ,L, are the straight phenomenological

coefficients and L

.-L, are known as cross-
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phenomenological coefficients. As we mentioned
previously, point 2, concerning the so-called
Onsager Reciprocity Principle, it is true that,

L,=L,,(7)

In other words, the so-called Onsager Reciprocity
Principle (De Groot & Mazur 1962; Onsager 1931)
establishes that whenever an appropriate choice is
made for the flows J, and the forces X, , the matrix

of phenomenological coefficients is symmetric.
Thus, considering Egs. (6, 7) and substituting them
in Eq. (4), we have that the rate of production of
entropy for the coupling is given by

S=L X +(L,+L )X X +LX. o

=L X +2L X X +L,X 20, ®

The Eq. (8) is a semi-positive definite quadratic
form by the Second Law. Linear algebra imposes
restrictions on the phenomenological coefficients in
formula (8); it must be true that

L, >0,L,>0

()

, ,(9)
(L,+L,) <4LL

L,

The straight coefficients are always positive
magnitudes, while the crossed ones can take any
value as long as the inequality of the last expression
of Eq. (9).

The stationary states, also known as fixed points
in the theory of dynamical systems (Andronov et al.
1966), are states through which different processes,
physical, chemical, biological, etc. (De Groot &
Mazur 1962; Katchalsky & Curran 1965) and are of
particular interest in the framework of the theory of
complexity sciences (Nicolis & Nicolis 2007).

Formally, a dynamical system can be defined as
the ordered pair (E,T ) where E represents an

appropriate manifold and T is a one-parameter

group of diffeomorphisms under the parameter ¢
often represented by time. If one has an atlas of local
charts for the manifold E, on those charts, it is
possible a representation the dynamical system in
the following form: X (1) = F (X (¢)), where F is
the vector field associated with the one-parameter
group of diffeomorphisms.

It is said that the solution X (#)=X, is an

equilibrium position or a stationary state of the
system if F (X,)=0.We further say that X, is an

UNIVERSITA DI ROMA



88

O]_' g AN1SINS The Rate of Entropy Production as a Lyapunov Function in Biophysical-chemical Systems

attractor of the system, if for any other solution
X (t), whose initial conditions are close enough to

X,,wehave X (1) > X, when 1 — o

From a nonequilibrium thermodynamics point of
view (De Groot & Mazur 1962), a stationary state is
formally defined as a dynamic state, for which it is
true that during a finite time, the state variables and
the control parameters remain constant, and
dissipative flows are verified, that is to say S, >0,in

such a way that

S =-S_,(10)

That is, at the same rate that entropy is produced
Si , exchanges with surroundings S'p , in such a way

that S, =0. Furthermore, steady states are

characterized by the number of forces & that remain
constant; hence, the stationary states of an order
made references to k (De Groot & Mazur 1962). For
instance, in Eq. (8), assuming there is a steady state,
for X, constant, that is, of order one, k=1, we

should have to verify Prigogine's Theorem of
Minimum Entropy Production or Prigogine's
Principle (Prigogine 1961), which ensures the
stability of the stationary state, that is, out of
equilibrium, which constitutes an extension of the
stability criterion in the vicinity of the equilibrium,
Gibbs-Duhem Principle (Kondepudi & Prigogine
1998). In this way, Prigogine's Principle represents,
in fact, an extremal principle if the linear
relationships between flows and forces are
fulfilled—Eq. (5).

Glansdorff and Prigogine tried to generalize
Prigogine's Principle, known as the "general
criterion of evolution" (Glansdorff & Prigogine
1971), demonstrating how the rate of entropy
production, Eq. (8), constitutes from physics, a
natural Lyapunov function (Mawhin 1996).
According to the procedure proposed by Glansdorff
and Prigogine, the entropy production per unit of
time S is identified as a Lyapunov function, V (x),
S =V (x), such that

Sl, =V (x)=0,

ds, , (1)

—L < 0

dt
The Eulerian derivative of the entropy
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production rate, Eq. (4), is given by
ds. dx dJ
—=D Y X,
dt ¢ dt ¢ dt
_4,(8) 4,(5)
dt dt
Considering Eq. (8) and substituting in Eq. (12),
one has:
d (s)  ax dx

, (12)

s

=J—+J,—,
dt dt dt
: ,(13)
d, (S) dJ, dJ,
— =X —+X,—;
dt dt Codt

Taking into account Egs. (6), (7), and (13), and
substituting in Eq. (12) is obtained

d(s) dx, dX,
—==2J —+2J,—,
dt dt dt

d (S

=2 X( 1)’ (14)
dt

ld(S’)<O;
2 dt

In this way, it is demonstrated that formula (14),
as the production of entropy per unit of time, is a
physical magnitude that constitutes per se a
Lyapunov function if there is a linear dependence
between the flows and the generalized forces. As
can be seen, the general criterion of evolution,
formula (14), is restricted to the linear region of
irreversible processes.

2. Thermodynamic Formalism of
Complex Processes

As we commented at the beginning, unlike the
formalism of the thermodynamics of irreversible
processes in the linear region, where most of its
precepts are consolidated, the nonlinear region is
still in the making; due to this, it is still premature to
speak of a finished formalism. That is why we intend
to provide a landscape approach to the subject and,
above all, try to articulate the thermodynamic
formalism of irreversible processes with that of
nonlinear dynamics so that it allows us to offer a
thermodynamic approach to complex phenomena
(Mansilla & Nieto-Villar 2017).

On the one hand, it is essential to be clear about
what we refer to as complex (Bizzarri et al. 2020).
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Hence, the complexity manifested by dynamical
systems highlights the following general and critical
aspects of understanding this phenomenon:

1. Complex should not be seen as synonymous
with complicated since a system described by few
degrees of freedom can exhibit high complexity
during its evolution; on the contrary, a system that
requires many degrees of freedom to be able to
describe itself and which is therefore complicated,
may or may not exhibit complex behavior.

2. Complexity manifests itself through the
appearance of emergent properties. These are
macroscopic observables that can only sometimes be
deduced from the interaction rules that govern the
evolution of the different components of the
systems.

3. The dimension of the patterns, both temporal
and spatial, is generally not an integer and is greater
than its topological dimension; therefore, they are
said to have a fractal dimension (Betancourt-Mar et
al. 2016).

4. On many occasions, the complex processes
described through deterministic dynamic systems
show a sensitive dependence on the initial
conditions. This behavior can be confused with
stochastic processes and is known as deterministic
chaos (Strogatz 2000). The most important
consequence of this property is the impossibility of
making predictions about the system's evolution in
the long term. In other words, the so-called
Laplacian determinism collapses.

5. For a deterministic dynamic system to exhibit
complex behavior, it must meet two fundamental
requirements: nonlinear and that feedback
processes exist (Nieto-Villar et al. 2013).

6. The fundamental mechanism that describes a
system's emergent properties and complexity is
based on the occurrence of bifurcations (Nicolis
1972; Nicolis & Daems 1998), a dynamic analog of
phase transitions. The bifurcations exhibit a
universal character in their phenomenology
(Kuznetsov 2013), making them independent of the
system's characteristics and representing a source of
innovation and diversification because they give
systems a new type of solution. The fluctuations,
which have a microscopic origin, grow and amplify
until they reach the macroscopic level, which leads
to a break in the spacetime symmetry, giving rise to
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self-organization outside of thermodynamic
equilibrium, the establishment of order, and
coherence on a macroscopic scale, and consequently
to the appearance of complexity.

Hence, the term complex should not be seen as a
synonym for complicated; that is, dynamic systems
self-organize temporally and spatially out of
thermodynamic equilibrium, a term coined by
Prigogine as Dissipative Structures (Prigogine
1978), which gives rise to the manifestation of
complex phenomena.

On the other hand, Seth Lloyd compiled an
extensive, still incomplete list of ways to measure
complexity (Lloyd 2001). This include Shannon,
Gibbs-Boltzmann, Renyi, Tsallis, Kolmogorov-Sinai
entropies, and fractal dimension.

Even today, there is a great controversy
concerning the thermodynamic formalism of
irreversible  processes, including Prigogine's
Principle of Entropy Production. According to
Bruers (Bruers 2006), at least "six principles" can be
mentioned: 1. Principle of minimum dissipation
close to equilibrium; 2. Principle of minimum
production of entropy near equilibrium; 3. Principle
of maximum production of entropy near
equilibrium; 4. Non-variational principle far from
the equilibrium of maximum production of entropy;
5. Variational principle far from the equilibrium of
maximum production of entropy; 6. Optimization of
the principle of minimum production of entropy.

Chemical reactions constitute an ideal model to
delve into the subject since, firstly, they can occur
"close to or far" from thermodynamic equilibrium,
and, secondly, there is no linear relationship
between the generalized flow, the rate of reaction & ,

and generalized force, an affinity for the inverse of

1 . .
temperature — A . Furthermore, their dynamics
T

exhibit a wide range of temporal and spatial complexity
(Nieto-Villar & Velarde 2001), and the developed
formalism can be extended to biological systems.

Briefly, we will show how it is possible to
generalize, at least for chemical and biological
processes, the "general criterion of evolution" of
Glansdorff-Prigogine (Glansdorff & Prigogine 1971),
demonstrating how the rate of entropy production is
a Lyapunov function without the need for the linear
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relationships between flows and forces hold.
Lyapunov, in his 1892 doctoral thesis (Mawhin
1996), developed a mathematical method that
allowed knowing the evolution and global stability of
a dynamical system, known as the Lyapunov
function V(x) (see Fig. 1 in Appendix). Thus, we

have succinctly that:
Let P be a fixed point, a steady state of a flow

d.
Ral (x), such that, if for some neighborhood

dt
N of P the following conditions hold:

1. V(x)>0Vx#pin N and V(p)=0;

V(x)

dt

<0 for Vx in

2. The Eulerian derivative,

N.

The function V(x) 1is called Lyapunov’s
function. Thus, it can be stated that forall 1 =2¢, , P
av ( x)

dt
is asymptotically stable.

On the one hand, we show that the entropy
production per unit time, at least for chemical

is stable, and if <0, the equilibrium position

reactions, meets the necessary and sufficient
conditions of a Lyapunov function (Nieto-Villar et
al. 2003) and, in fact, constitutes an extremal
criterion per se, regardless of whether the network
of chemical reactions is "near" or "far" from
equilibrium. Recently, it has been demonstrated in
reaction-diffusion-type systems (Ledesma-Duran &
Santamaria-Holek 2022).

On the other hand, it was shown (Nieto-Villar et
al. 1995; Garcia-Fernandez et al. 1996; Nieto-Villar
et al. 2013; Nieto-Villar et al. 2022) using an Ansatz
through a functional of the rate of entropy
production of the control parameters of the dynamic
system, Q , as

S,=f(Q)>0,(5)

Thus, it is found that the Eulerian derivative of
Eq. (15) holds the following:

ﬁthﬁﬂso,(m

dt 0Q dt
In this way, we have the acceleration of the

i

as.
production of entropy rate, 3=—-, which
dt

constitutes per se a potential function out of equilibrium.

SAPIENZA

The works of Hoover and Nose (Hoover & Posch
1994; Hoover 2007) and Gaspard (Gaspard 2007)
showed that the rate of entropy production S,» is

related to the spectrum of the Lyapunov exponents
A, through the relationship,
ds,

—t=8,=-22,>0,(17)
dt f

The formula, Eq. (17), establishes per se a natural
link between the formalism of the thermodynamics
of irreversible processes and nonlinear dynamics
regardless of whether the system evolves "close" or
"far" from thermodynamic equilibrium.

It is known that sensitivity analysis of differential
equations has been used successfully to determine
the fundamental steps in a reaction mechanism
(Varma 2005). Edelson's pioneering works (Edelson
& Allara 1980; Edelson & Thomas 1981; Edelson
1983) allowed the identification of the fundamental
steps in a mechanism and its reduction. Later,
Turanyi used the method in the famous Belousov-
Zhabotinsky BZ reaction (Turanyi 1990; Gyorgyi et
al. 1990; Turanyi 1993), drastically reducing the
model mechanism, GTF, from 81 to 42 steps.

As an alternative method to the sensitivity
analysis, we proposed using the entropy production
rate as a non-extremal criterion, called the Method
of Dominant Steps (Nieto-Villar & Velarde 2001;
Nieto-Villar et al. 2022; Rieumont-Briones et al.
1997). For this, we postulate that those steps that
exhibit a greater value of entropy production would
be the fundamental ones in a reaction mechanism
for fixed values of the control parameters.

Let be a mechanism of reaction composed of n-
reaction steps and m-species, represented by
equality (18), as

'xl/i = xz/i

,(18)

xm7l/n = .X/

mfn

Thus, we have that the rate of production of
entropy of the step-n is given by

) , , §+/n
Sy, = R(5+/,, =<, Jin="=>0, (19
n
where ¢ o f_/,, are forward a reverse chemical

rate of the step-n. Step n will be dominant compared

Organisms
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to step n-1 if it is fulfilled that: S, >, . In this

way, the rate of entropy production, as a non-
extremal criterion, generalizes the so-called
"maximum entropy" criterion later proposed by
Martyushev and Seleznev (Martyushev & Seleznev
2006) and constitutes a complementary method to
the sensitivity analysis of differential equations.

The fractal dimension D, represents one of the
most important properties of an attractor of a
dynamic system and a way to estimate the
complexity of spatiotemporal patterns from the
geometric point of view (Farmer 1982), as we
mentioned at the beginning of this section.
Grassberger (Grassberger & Procaccia 1983)
proposed a generalization of the fractal dimension,
the generalized fractal dimension D, as

S (R
D, =lim "( )

, (20
P ln( /) (20)
£
where Sq(R) is the Renyi’s entropy (Rényi

1960). From the formula, Eq. (20), three basic
dimensions are obtained as particular cases:
D,,D,D,; the Hausdorff-Besicovitch fractal

dimension D,, the informational dimension
(Farmer 1982), D, =lin]1 D, and the correlation
q—

dimension D,. In the case of fractals, the three
dimensions are approximately equal, while in
multifractals, it is true that: D, > D, > D, (Farmer
1983).

An alternative and straightforward way to
compute the fractal dimension of a dynamical
system is through the spectrum of Lyapunov
exponents. 4, known as the Lyapunov dimension

D, defined through the Kaplan-York conjecture
(Frederickson 1983) as:
2t
| J+l
where J is the largest integer for which it is
true that: 4 +4,+---+4 20. By analogy to Eq.

D =j+ ,(21)

(21), we established through an ansatz the
following conjecture: the fractal dimension of
entropy production (Betancourt-Mar et al. 2016),
defined as:
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S
D 1

=i
i - 22
( &j’( )

where the entropy production per unit time $ ., is

evaluated through the formula (17), 7 is the number
of all Lyapunov exponents.

3. Extension to Biophysical-
Chemical Systems

Finally, we will provide a brief landscape of the
application of the thermodynamic formalism of
complex processes in biological systems,
particularly on the topic of the emergence and
evolution of cancer. Non-equilibrium
thermodynamics has been successfully used in
studies of longevity, aging, the origin of life, and, in
particular, cancer (Miquel et al. 1984; Balmer 1982;
Nieto-Villar et al. 2003; Molnar et al. 2005; Luo
2009; Lucia 2014; Lucia et al. 2015; Marin & Sabater
2017; Triana et al. 2018; Betancourt-Mar et al. 2018;
Montemayor-Aldrete et al. 2020; Mesa-Rodriguez
et al. 2022; Michaelian 2022; Nieto-Villar &
Mansilla 2022; Miranda & Souza 2023).

We must start with a formal definition: ...cancer
is a complex network of cells that have lost their
specialization and control of growth, and that
appears through a "biological phase transition"
leading to spatiotemporal self-organization outside
the thermodynamic equilibrium. This exhibits high
robustness, adaptability, complexity, and hierarchy,
which enables the creation of new information and
learning capacity (Montero et al. 2018).

The diagnosis of the proliferative and invasive
capacity of a tumor is a complicated issue since these
terms include many factors. Let us highlight two
fundamental ones: aggressiveness, which is related
to the speed of tumor growth, and malignancy, the
ability of the tumor to invade and infiltrate healthy
tissue, associated with its morphological
characteristics (roughness) (Norton 2005).

The growth rate of the tumor, ¢ is given by

§=¢ ¢, (23)
where 5 5

ap

are the rates of mitosis (cell

division) and apoptosis (programmed cell death),
respectively. By analogy to Eq. (19), we can evaluate
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the production of entropy per unit of time Si,

during the growth of a tumor (Izquierdo-Kulich et
al. 2011) as

S, =(¢, —éip)ln?zo,(z@

On the other hand, we developed a method based

on knowing the rates of mitosis ¢ and apoptosis f“p

(Izquierdo-Kulich & Nieto-Villar 2013) to quantify
morphological characteristics (roughness) of the
tumor, the malignancy of a tumor, through the
fractal dimension D, , as

5¢, -4,
D, = {—], (25)
S, te,
Considering Egs. (23) and (25), we can rewrite
Eq. (24) depending on the rate of tumor growth, &

and the fractal dimension of the tumor D, as

. . [5-D
S =R&In L1, (26)
1+D,

In this way, an appropriate expression is

obtained, Eq. (26), to evaluate the production of
entropy per unit of time S,, during the emergence

and evolution of cancer, which relates to two
fundamental properties of tumors: aggressiveness
and malignancy (Izquierdo-Kulich et al. 2011). Thus,
we can affirm that the production of entropy per unit
of time represents a physical quantity to evaluate
cancer's complexity as well as robustness, namely
the ability of a system to continue functioning in the
face of internal or external perturbations or
fluctuations.

Landau's seminal work (Landau & Lifshitz 1964)
proposed a theory of continuous phase transitions in
which symmetry breaking occurs near the critical
point. In correspondence with the formalism
proposed by Landau, a potential function is defined
@, known as the Landau potential. The Landau
potential @ is defined in terms of the state variables
that characterize the system, for example,
temperature and pressure, as well as a function of
the so-called order parameter 77, which is
empirically defined.

To  formalize  out-of-equilibrium  phase
transitions, a term we coined as biological phase

Organisms
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transition (Betancourt-Mar et al. 2017), during the
emergence and evolution of cancer, we selected the
dissipation function, ¥ = TS'I., which is a non-

equilibrium thermodynamic potential as an analogy
to the Landau potential @ .

Thus, we have that, in the case of the emergence
and evolution of cancer, biological phase transition
is selected as an order parameter 77, the difference

between the fractal dimension of healthy cells D‘f

and the fractal dimension of tumor cells D/T. , such
that:

1n=D; -D;,(27)

Thus, we have that at the critical point P, it holds

that 77 =0 and so on in any other "ordered" phase
1 # 0. In this way, the order parameter 77 is called
the degree of complexity (Betancourt-Mar et al.
2017).

Considering Egs. (27) and (26), and making a
power series expansion of the dissipation function
¥, assuming for simplicity that D;’ =1, is obtained
¥(¢.d)) =, (¢.d7 ) +a(Sar)n +B(&.d))n"
(28)

Eq. (28) represents an out-of-equilibrium
extension of Landau's Theory and allows formalizing
biological phase transitions through non-
equilibrium thermodynamics. In this way, we
understand how the development of a primary
tumor from a microscopic level—an avascular
growth—to a macroscopic level—the vascular
phase—and the subsequent appearance of
metastases do not occur simply by accumulation of
malignant cells but through bifurcations, i.e., a
biological phase transition (Izquierdo-Kulich et al.
2013; Llanos-Pérez et al. 2015; Llanos-Pérez et al.
2016; Martin et al. 2017; Betancourt-Mar et al. 2017;
Guerra, A, et al. 2018; Betancourt-Padron et al.
2020; Nieto-Villar & Mansilla 2021).

Conclusions and Remarks

In summary, non-equilibrium thermodynamics
and nonlinear dynamics articulate coherently. This
let us establish a formal path of what could become
the thermodynamics of complex processes. As
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essential aspects, it was shown that:

1. On the one hand, the entropy production rate
is a physical magnitude representing a Lyapunov
function per se, regardless of whether the dynamic
system is close to or far from -equilibrium,
constituting an extremal criterion.

2. Conversely, the entropy production rate
constitutes a complementary method to the
sensitivity analysis of differential equations and
appears as a non-extremal criterion.

3. An extension of the formalism to biophysical-
chemical systems, on the one hand, shows the use of
the dissipation function as a non-equilibrium
thermodynamic potential in the characterization of
biological phase transitions.

4.0n the other hand, it was evidenced that the
rate of entropy production represents a physical
magnitude useful to evaluate the complexity and
robustness of cancer and it may be used as a
quantitative index of the metastatic potential of
tumors.

Appendix: Lyapunov Function

Let the dynamical system be defined by:
dxq
3 lflcxl. ‘...,xn)]

fn(xli"" 'xn)

where the functions f,...f,, are assumed to be
continuous and have continuous first-order partial
derivatives with respect to all variables x, ..., x,,. Let
us further suppose that:

@®

dxn

£(0,..,00=0 ; i=1,..n

That is, the origin of the coordinates (0, ...,0) is an
equilibrium position of the system.
It is said that the function V (x4, ... x,,) is a Lyapunov
function for the equilibrium position of the system if:
a) V (x4, ... x,) is continuous in a neighborhood B of
the point (0,..,0), as well as all its first-order
derivatives with respect to the variables x;, ..., x,.
Further:

V(xg,.) =0

in the neighborhood % of the point (0, ...,0).
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b) The derivative concerning the system (1):

d
EV(xl(t), xn(t))

- Z o V(1 (), 2 () o0 (6)

i=1
<0

where (x,(t), ... x,(t)) is a trajectory of the system

(1).

Notice that:

zn:iV(x ®),..x (t))ix ®
Liox; T AT

= (grad V(x,(£), .. %, (£)) , [f1, o ful)
That is, the scalar product of the gradient of the
function V(xy,..x,) evaluated in the trajectory
(xl ), ... xp (t)) of the system and the vector field of
the system evaluated in the same trajectory:

[f 17 f n] =
[fl(xl(t), ...,xn(t)), ...,fn(xl(t), ...,xn(t))]

The fact that this scalar product is less than zero
indicates that the angle between the vector gradV
and [f;, ... f,,] must be bigger than 90°. This condition
guarantees the asymptotic stability of the
equilibrium position (0, ...,0).
Figure 1 shows what was previously described for the
case of n = 2.

VA

VX, X5)

/ grad V

Figure 1

Acknowledgments

Prof. Dr. Germinal Cocho and Prof. Dr. A. Alzola
in memoriam. One of the authors (JMNV) thanked
the CEPHCIS of UNAM Mexico, for the warm

Organisms

UNIVERSITA DI ROMA



O]_' g AN1SINS The Rate of Entropy Production as a Lyapunov Function in Biophysical-chemical Systems

hospitality and the financial support by PREI-
DGAPA-UNAM-2022. Finally, we thank the
anonymous reviewers for their helpful comments
and interesting suggestions.

References

Andronov, A, Vit, A, & Chaitin, C 1966 Theory of
Oscillators. Oxford: Pergamon Press.

Aoki, I 1991, "Entropy principle for human development,
growth and aging", Journal of Theoretical Biology,
vol. 150, no. 2, pp. 215—223.

Balmer, RT 1982 "Entropy and aging in biological
systems", Chemical Engineering Communications,
vol. 17, no.1-6, pp. 171-181.

Beck, C, & Schlogl, F 1993 Thermodynamics of Chaotic
Systems: An Introduction. New York: Cambridge
University Press.

Betancourt-Mar, JA, Rodriguez-Ricard, M, Mansilla, R,
Cocho, G, & Nieto-Villar, JM 2016 "Entropy
production: Evolution criteria, robustness and fractal
dimension", Revista Mexicana de Fisica, vol. 62, no. 2,
pp. 164-167.

Betancourt-Mar, JA, Llanos-Pérez, JA, Cocho, G,
Mansilla, R, Martin, RR, Montero, S, & Nieto-Villar,
JM 2017 "Phase transitions in tumor growth: IV
relationship between metabolic rate and fractal
dimension of human tumor cells", Physica A:
Statistical Mechanics and its Applications, vol. 473,
PP- 344—351.

Betancourt-Mar, JA, Mansilla, R, Cocho, G, & Nieto-Villar,
JM 2018 "On the relationship between aging &
cancer", MOJ Gerontology & Geriatrics, vol. 3, no. 2,
pp. 163—168.

Betancourt-Padron, PJ, Garcia-Medina, K, Mansilla, R, &
Nieto-Villar, JM 2020 "Phase transition in tumor
growth VIII: The spatiotemporal avascular evolution",
Revista Mexicana de Fisica, vol. 66, no. 6, pp. 856—862.

Bizzarri, M, et al. 2020 "Complexity in biological
organization: Deconstruction (and subsequent restating)
of key concepts", Entropy, vol. 22, no. 8, p. 885.

Bruers, S 2006 "Classification and discussion of
macroscopic entropy production principles", arXiv
preprint cond-mat/0604482.

Coveney, P & Highfields, R 1991 The Arrow of Time: A
Voyage Through Science to Solve Time's Greatest
Mystery. Columbine: Fawcett (1%t edition).

De Groot, SR & Mazur, P 1962 Non-Equilibrium
Thermodynamics.  Amsterdam:  North-Holland
Publishing Company.

Edelson, D, & Allara, DL 1980 "A computational analysis
of the alkane pyrolysis mechanism: Sensitivity analysis

94

Organisms

SAPIENZA

UNIVERSITA DI ROMA

of individual reaction steps", International Journal of
Chemical Kinetics, vol. 12, no. 9, pp. 605—621.

Edelson, D, & Thomas, VM 1981 "Sensitivity analysis of
oscillating reactions. 1. The period of the
Oregonator", The Journal of Physical Chemistry,
vol. 85, no. 11, pp. 1555-1558.

Edelson, D 1983 "Sensitivity analysis of proposed
mechanisms for the Briggs-Rauscher oscillating
reaction”, The Journal of Physical Chemistry, vol. 87,
no. 7, pp. 1204—1208.

Farmer, JD 1982 "Dimension, fractal measures, and
chaotic dynamics. In: Haken, H. (ed) Evolution of
Order and Chaos. Berlin, Heidelberg: Springer.
https://doi.org/10.1007/978-3-642-68808-9_20.

Farmer, JD 1982, "Information dimension and the
probabilistic structure of chaos", Zeitschrift fiir
Naturforschung A, vol. 37, no. 11, pp. 1304—1326.

Farmer, JD, Ott, E, & Yorke, JA 1983 "The dimension of
chaotic attractors", Physica D: Nonlinear Phenomena,
vol. 7, no. 1—3, pp. 153—180.

Frederickson, P, Kaplan, JL, Yorke, ED, & Yorke, JA 1983
"The Liapunov dimension of strange attractors",
Journal of Differential Equations, vol. 49, no. 2, pp.
185-207.

Garcia-Fernandez, JM, Nieto-Villar, JM, & Rieumont-
Briones, J 1996 "The rate of entropy production as
an evolution criterion in chemical systems II.
Chaotic reactions", Physica Scripta, vol. 53, no. 6,
pp. 643-644.

Gaspard, P, Henneaux, M, & Lambert, F (eds.) 2007 From
Dynamical Systems Theory to Nonequilibrium
Thermodynamics. Symposium Henri Poincaré,
Proceedings. Brussels: International Solvay Institutes
for Physics and Chemistry.

Gaspard, P 2007 "Time asymmetry in nonequilibrium
statistical mechanics", Advances in Chemical Physics,
vol. 135, pp. 83—134.

Glansdorff, P, & Prigogine, I 1971 Thermodynamics of
Structure, Stability and Fluctuations. New York:
Wiley.

Grassberger, P, & Procaccia, I 1983, "Characterization of
strange attractors", Physical Review Letters, vol. 50,
no. 5, pp. 346—349.

Guerra, A, et al. 2018 "Phase transitions in tumor growth
VI: Epithelial-Mesenchymal transition", Physica A:
Statistical Mechanics and its Applications, vol. 499,
pPp- 208-215.

Gyorgyi, L, Turanyi, T, & Field, RJ 1990 "Mechanistic
details of the oscillatory Belousov-Zhabotinskii
reaction", Journal of Physical Chemistry, vol. 94, no.
18, pp. 7162—7170.

Hoover, WG, & Posch, HA 1994 "Second-law
irreversibility and phase-space dimensionality loss




95

Or g AN1ISIN)S The Rate of Entropy Production as a Lyapunov Function in Biophysical-chemical Systems

from time-reversible nonequilibrium steady-state
Lyapunov spectra”, Physical Review E, vol. 49, no. 3,
pPp. 1913-1920.

Hoover, WG 2007 "Nosé-Hoover nonequilibrium
dynamics and statistical mechanics", Molecular
Simulation, vol. 33, no. 1—2, pp. 13—19.

Izquierdo-Kulich, E, Alonso-Becerra, E, & Nieto-Villar,
JM 2011 "Entropy production rate for avascular tumor
growth", Journal of Modern Physics, vol. 2, no. 06, pp.
615—620.

Izquierdo-Kulich, E, & Nieto-Villar, JM 2013
"Morphogenesis and complexity of the tumor
patterns”. In: Rubio, R. et al. (eds.) Without Bounds:
A Scientific Canvas of Nonlinearity and Complex
Dynamics. Understanding Complex Systems. Berlin,
Heidelberg: Springer. https://doi.org/10.1007/978-3-642-
34070-3_48.

Izquierdo-Kulich, E, Rebelo, I, Tejera, E, & Nieto-Villar,
JM 2013 "Phase transition in tumor growth: I avascular
development", Physica A: Statistical Mechanics and its
Applications, vol. 392, pp. 6616—6623.

Katchalsky, A, & Curran, P 1965 Non-Equilibrium
Thermodynamics in Biophysics. Cambridge: Harvard
University Press.

Kondepudi, D & Prigogine, I 1998 Modern
Thermodynamics, From Heat Engines to Dissipative
Structures. New York: John Wiley & Sons.

Kuznetsov, YA 2013 Elements of Applied Bifurcation
Theory. Cham: Springer.

Landau, LD, & Lifshitz, EM 1964 Curso de Fisica Teérica,
Fisica Estadistica, Vol. 5. México: Reverté.

Ledesma-Duran, A, & Santamaria-Holek, I 2022 "Energy
and Entropy in Open and Irreversible Chemical
Reaction—Diffusion  Systems with  Asymptotic
Stability", Journal of Non-Equilibrium
Thermodynamics, vol. 47, no. 3, pp. 311—328.

Llanos-Pérez, JA, Betancourt-Mar, A, De Miguel, MP,
Izquierdo-Kulich, E, Royuela-Garcia, M, Tejera, E, &
Nieto-Villar, JM 2015 "Phase transitions in tumor
growth: II prostate cancer cell lines", Physica A:
Statistical Mechanics and its Applications, vol. 426,
pp- 88—92.

Llanos-Pérez, JA, Betancourt-Mar, JA, Cocho, G,
Mansilla, R, & Nieto-Villar, JM 2016 "Phase transitions
in tumor growth: III vascular and metastasis behavior",
Physica A: Statistical Mechanics and its Applications,
vol. 462, pp. 560—568.

Lloyd, S 2001 "Measures of complexity: a nonexhaustive
list", IEEE Control Systems Magazine, vol. 21, no.
4, pp. 7-8.

Lucia, U 2014 "Entropy generation and cell growth with
comments for a thermodynamic anticancer approach",
Physica A: Statistical Mechanics and its Applications,
vol. 406, pp. 107-118.

Organisms

SAPTENZA

Lucia, U, Ponzetto, A, & Deisboeck, TS 2015 "A
thermodynamic approach to the 'mitosis/apoptosis’
ratio in cancer", Physica A: Statistical Mechanics and
its Applications, vol. 436, pp. 246—255.

Luo, LF 2009 "Entropy production in a cell and reversal of
entropy flow as an anticancer therapy", Frontiers of
Physics in China, vol. 4, pp. 122-136.

Mansilla, R & Nieto-Villar, JM (eds.) 2017 La
Termodinamica de los sistemas complejos. Mexico
City: UNAM.

Marin, D, & Sabater, B 2017 "The cancer Warburg effect
may be a testable example of the minimum entropy
production rate principle", Physical Biology, vol. 14,
no. 2, pp. 1478-3975.

Martin, RR, Montero, S, Silva, E, Bizzarri, M, Cocho, G,
Mansilla, R, & Nieto-Villar, JM 2017 "Phase
transitions in tumor growth: V what can be expected
from cancer glycolytic oscillations?", Physica A:
Statistical Mechanics and its Applications, vol. 486,
pp. 762—771.

Martyushev, LM, & Seleznev, VD 2006 "Maximum
entropy production principle in physics, chemistry and
biology", Physics Reports, vol. 426, no. 1, pp. 1—45.

Mawhin, J 1996 "The early reception in France of the work
of Poincaré and Lyapunov in the qualitative theory of
differential equations", Philosophia Scientiae, vol.
1(4), pp. 119-133.

Mesa-Rodriguez, A., Gonzalez, A, Estevez-Rams, E, &
Valdes-Sosa, PA, 2022 "Cancer segmentation by
entropic analysis of ordered gene expression profiles",
Entropy, vol. 24, no. 12, p. 1744.

Michaelian, K 2022 "Non-equilibrium thermodynamic
foundations of the origin of life", Foundations, vol. 2,
no. 1, pp. 308-337.

Miquel, J, Economos, AC, & Johnson Jr, JE 1984 "A
systems analysis—thermodynamic view of cellular and
organismic aging". In: Johnson, JE (ed.) Aging and
Cell Function. , pp. 247—280, Boston, MA: Springer US.

Molnar, J, et al. 2005 "Thermodynamic aspects of cancer:
Possible role of negative entropy in tumor growth, its
relation to kinetic and genetic resistance”, Letters in
Drug Design & Discovery, vol. 2, no. 6, pp. 429—438.

Montemayor-Aldrete, JA, Marquez-Caballé, RF, del
Castillo-Mussot, M, & Cruz-Peregrino, F 2020
"General thermodynamic efficiency loss and scaling
behavior of eukaryotic organisms", Biophysical
Reviews and Letters, vol. 15, no. 03, pp. 143—169.

Montero, S, Martin, R, Mansilla, R, Cocho, G, & Nieto-
Villar, JM 2018 Parameters estimation in phase-space
landscape reconstruction of cell fate: A systems biology
approach. In: Bizzarri, M (ed.) Systems Biology:
Methods in Molecular Biology, vol. 1702. New York:
Humana Press. https://doi.org/10.1007/978-1-4939-
7456-6_8.

UNIVERSITA DI ROMA



O]_' g AN1SINS The Rate of Entropy Production as a Lyapunov Function in Biophysical-chemical Systems

Nicolis, G, & Nicolis, C 2007 Foundations of Complex
Systems. Nonlinear Dynamics. Statistical Physics.
Information and Prediction. Singapore: World
Scientific Publishing Co. Pte. Ltd.

Nicolis, G 1972 "Fluctuations around nonequilibrium
states in open nonlinear systems", Journal of
Statistical Physics, vol. 6, pp. 195—222.

Nicolis, G, & Daems, D 1998 "Probabilistic and
thermodynamic aspects of dynamical systems",
Chaos: An Interdisciplinary Journal of Nonlinear
Science, vol. 8(2), pp. 311—-320.

Nicolis, G, & Prigogine, I 1977 Self-Organization in
Nonequilibrium systems. New York: Wiley.

Nicolis, G, & De Decker, Y 2017 "Stochastic approach to
irreversible thermodynamics”, Chaos, vol. 27, no. 10,
art. 104615. https://doi.org/10.1063/1.5001303

Nicolis, G, & Nicolis, C 2000 "What can we learn from
thermodynamics on stochastic dynamics?" In: AIP
Conference Proceedings, vol. 502, no. 1, pp. 333—348.
Ambleside: American Institute of Physics.

Nieto-Villar, JM, Betancourt-Mar, J, Izquierdo-Kulich, E,
& Tejera, E 2013 Complejidad y Auto-organizaciéon en
Patrones Naturales. Editorial UH.

Nieto-Villar, JM, Quintana, R, & Rieumont, J 2003
"Entropy production rate as a Lyapunov function in
chemical systems: Proof”, Physica Scripta, vol. 68, no.
3, Pp. 163—165.

Nieto-Villar, JM, Garcia-Fernandez, JM, & Rieumont-
Briones, J 1995 "The rate of entropy production as an
evolution criterion in chemical systems: I. Oscillating
reactions", Physica Scripta, vol. 52, no. 1, pp. 30—32.

Nieto-Villar, JM, Izquierdo-Kulich, E, Quintana, R, &
Rieumont, J 2013 "Una aproximaciéon del criterio
evolutivo de Prigogine a sistemas quimicos", Revista
Mexicana de Fisica, vol. 59, no. 6, pp. 527—529.

Nieto-Villar, JM, & Mansilla, R 2022 "Longevity, aging
and cancer: Thermodynamics and complexity",
Foundations, vol. 2, no. 3, pp. 664—680.

Nieto-Villar, JM; & Mansilla, R 2021 "Ferroptosis as a
biological phase transition I: Avascular and vascular
tumor growth", European Journal of Biomedical and
Pharmaceutical Sciences, vol. 8, no. 12, pp. 63—70.

Nieto-Villar, JM, Rieumont, J, & Mansilla, R 2022 "The
entropy production rate a bridge between
thermodynamics and chemical Kkinetics", Revista
Mexicana de Fisica E, vol. 19, no. (1 Jan-Jun), art.
010212-1.

Nieto-Villar, JM, Rieumont, J, Quintana, R, & Miquel, J
2003 "Thermodynamic approach to the aging process
of biological systems", Revista CENIC Ciencias
Quimicas, vol. 34, no. 3, pp. 149—157.

Nieto-Villar, JM, & Velarde, MG 2001 "Chaos and
hyperchaos in a model of the Belousov-Zhabotinsky

96

Organisms

SAPIENZA

reaction in a batch reactor", Journal of Non-
Equilibrium Thermodynamics, vol. 25, no. 3—4, pp.
269—278.

Norton, L 2005 "Conceptual and practical implications of
breast tissue geometry: Toward a more effective, less
toxic therapy", The oncologist, vol. 10, no. 6, pp. 370—381.

Onsager, L 1931 "Reciprocal relations in irreversible
processes ", Physical Review, vol. 37, pp. 405—426.

Onsager, L 1931 "Reciprocal relations in irreversible
processes. II", Physical Review, vol. 38, pp. 2265—
2279,

Prigogine, I 1947 Etude thermodynamique des
phenomenes irreversibles. Théses d'agrégation de
I'enseignement supérieur de I'Université Libre de
Bruxelles. Paris: Dunod.

Prigogine, I 1961 Introduction to Thermodynamics of
Irreversible Processes. New York: Wiley.

Prigogine, I 1978 "Time, structure, and fluctuations",
Science, vol. 201, no. 4358, pp. 777-785.

Rieumont-Briones, J, Nieto-Villar, JM, & Garcia, JM 1997
"The rate of entropy production as a mean to
determine the most important reaction steps in
Belousov-Zhabotinsky reaction", Anales Quimica, vol.
93, PP- 147-152.

Rényi, A 1960 "On measures of information and entropy",
In: Proceedings of the fourth Berkeley Symposium on
Mathematics, Statistics and Probability, vol. 1, pp.
547—-561. Berkeley and Los Angeles: University of
California Press.

Schuster, HG, & Just, W 2006 Deterministic Chaos: An
Introduction. Weinheim: Wiley-VCH.

Strogatz, SH 2000 Nonlinear Dynamics and Chaos.
Boulder: Westview Press.

Triana, L, Cocho, G, Mansilla, R, & Nieto-Villar, JM 2018
"Entropy production as a physical pacemaker of
lifespan in mole-rats", International Journal of Aging
Research, vol. 1, no. 5, pp. 1-9.

Turényi, T. 1990, "Sensitivity analysis of complex kinetic
systems. Tools and applications”, Journal of
Mathematical Chemistry, vol. 5, no. 3, pp. 203—248.

Turanyi, T, Gyorgyi, L, & Field, RJ 1993 "Analysis and
simplification of the GTF model of the Belousov-
Zhabotinskii reaction", The Journal of Physical
Chemistry, vol. 97, no. 9, pp. 1931—-1941.

Varma, A, Morbidelli, M, & Wu, H 2005 Parametric
Sensitivity in Chemical Systems. Cambridge:
Cambridge University Press.

UNIVERSITA DI ROMA



