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Abstract

Chess is a much-studied virtual world in which human and artificially-intelligent players move pieces toward
desired ends, within established rules. The typical scenario involves top-down control where a single cognitive
agent plans and executes moves using the pieces as its embodiment within the chess universe. However, ultimately
both biological and engineered agents are composed of parts, with radically differing degrees of competency. The
emerging field of Diverse Intelligence seeks to understand how coherent behavior and goal-directed navigation of
problem spaces arises in compound agents from the interaction of their simpler components. Thus, we explored the
world of chess rules from the perspective of collective intelligence, and characterized a bottom-up version of this
classic game in which there is no central controller or long-term planning. Rather, each individual piece has its own
drives and makes decisions based on local, limited information and its own goals. We analyzed the behavior of this
distributed agent when playing against Stockfish, a standard chess algorithm. We tested a few individual policies
designed by hand, and then implemented an evolutionary algorithm to see how the individuals’ behavioral genomes
would evolve under selection applied to the chess-based fitness of the collective agent. We observed that despite the
minimal intelligence of each piece, the team of distributed chess pieces exhibit Elo of up to ~1050, equivalent to a
novice human chess player. And, compared to advanced chess engines like Stockfish, the distributed chess pieces
are significantly more efficient in computing. Distributed chess pieces select their next move approximately 7 times
faster than the Stockfish Engine with a search depth of 8. Investigating different local policies for the distributed
agents, we found that policies promoting offense, such as swarming the opposing king and opposing highest valued
piece, moving less cautiously, and a radius of vision of 4 spaces yields optimal performance. Comparisons between
centralized and distributed versions of familiar minimal environments have the potential to shed light on the scaling
of cognition and the requirements for collective intelligence in naturally evolved and engineered systems.
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Introduction

Intelligence, both natural and artificial, has fascinated
thinkers for millennia. One especially interesting
emerging field is that of Diverse Intelligence, which
includes efforts to understand problem-solving
competencies in unconventional embodiments outside
of familiar brainy animals (ranging across minimal
chemical models, unicellular organisms, plants, tissues,
robots, hybrid cyborgs and hybrots, and software
AT’s) (Sole, Moses, & Forrest 2019; Lyon 2006; Lyon
et al. 2021; Levin et al. 2021; Lyon 2020; Lyon 2015;
Vallverdu et al. 2018; Baluska & Levin 2016). Another
component of this effort is the goal of understanding
the scaling of collective intelligence (Berdahl et al.
2018; Couzin 2007; Couzin 2009; Couzin 2018; Couzin
2002; Deisboeck & Couzin 2009; Levin 2022; Trianni &
Campo 2015; Gomes, Urbano, & Christensen 2013): how
do the capabilities of swarms relate to the competencies
of the subunits of which they are made (Levin 2022)?
How much foresight, sensing, and memory is needed
in the components to endow a composite agent with a
specific level of competency in a given problem space?
The latter is not only of concern to swarm roboticists
(Trianni & Campo 2015; Gomes, Urbano, & Christensen
2013; Brambilla et al. 2013; Barca & Sekercioglu 2013)
and ethologists studying ant colonies and bird flocks
(Letendre & Moses 2019; Gordon 2016a; Gordon
2016b; Gordon 2016¢; Reid et al. 2016; Reid et al.
2015a; Reid et al. 2015b), but is also a central issue for
understanding human cognition. While many think of
themselves as unified, individual agents, the reality is
that we too are a collective of neural cells, and start life
as a single cell which proliferates into a collective that
navigates anatomical space long before we can navigate
3-dimensional behavioral space and linguistic spaces
(Fields & Levin 2022). Even after embryogenesis, the
neuropsychology of split-brain patients and dissociative
identity states reveal that our cognitive system is far
from a monolithic, unified controller (Miller & Triggiano
1992; Putnam 1992; Braude 1995; Gazzaniga 2005;
Montgomery 2003). Elucidating the functional policies
that enable highly complex cells to work together
toward the emergence of a high-order Self, which has
memories, goals, preferences, and capabilities that
belong to it and none of its parts (Dewan 1976; Solms
2018; Paulson et al. 2017; Ramstead et al. 2019; Badcock
et al. 2019; Friston & Buzsaki 2016; Pezzulo, Rigoli, &
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Friston 2015; Friston & Frith 2015), is an essential part
of understanding what we are and how minds like ours
arise. In a sense, all real-world intelligence is collective
intelligence (composed of parts), underscoring the
importance of understanding how the properties of
subunits give rise to system-level problem-solving
behavior.

1. Multiscale Competency Architecture

Our goal is to understand biology’s multiscale
competency architecture (Pio-Lopez et al. 2023;
Levin 2023a; Levin 2023b; Levin 2023c). We seek
to understand the “cognitive glue” that enables
collective intelligence in living tissue, including neural
systems as well as non-neural ones (which in turn
drives regenerative medicine research programs by
exploiting the information-processing capabilities
of cells and tissues [Lagasse & Levin 2023; Mathews
et al. 2023]). We characterize the biological policies
for communication, cooperation, and competition
between parts (Gawne, McKenna, & Levin 2020;
Boddy et al. 2015) that engineering may want to
emulate, in creating robust intelligences. Here, we take
a minimal model approach, using the game of chess
as a highly simplified universe, with well-defined and
much studied dynamics, in which we can ask questions
about how problem-solving competencies can emerge
from extremely sparse bottom-up capabilities. We
use principles of agent-based modeling (Griffin 2006;
Steinbacher et al. 2021) to implement a chess player
as a collection of individual pieces with their own
perspective and agency. That is, instead of a top-down
human or computer controlling all a player’s moves, we
let the pieces decide and move themselves.

The popular game of chess has been enjoyed by
millions of people throughout history (Hearst & Knott
2009; Sharples 2017; Davidson 2012; Dangauthier et
al. 2007). With an exorbitant number of games played,
different openings, tactics, and theories have been
developed and analyzed. When playing a traditional
game of chess, an integrated “player” creates strategies
with the ultimate goal of checkmating the opponent
player. While in the past these have been human minds,
over the last few decades it has become clear that
artificial intelligences excel at navigating the space of
behaviors in the chess universe (Fujita 2022; Maharaj,
Polson, & Turk 2022; Schmid et al. 2022).
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Figure 1: Bottom-up chess: a schematic of
our simulation environment. (A) Distributed
Pieces (playing as Black, top) have individual
autonomy and collectively determine the next
move. The white pieces are subject to top-down
control by Stockfish engine. (B) Each piece is
able to detect information about other pieces
within their radius of vision. (C) An evolutionary
algorithm is wrapped around the logic of games
played by the piece-players, and this algorithm
determines the genomes of each player (the
genomes determine the policies by which
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The traditional mode requires a player to exploit
counterfactual thought in order to choose moves, long-
term planning to consider the large tree of possible
moves, and the ability to make choices that often
require sacrifice (temporary reduction of advantage,
or delayed gratification), as well as modeling of their
opponent and their likely actions. We wondered: how
much of this is actually necessary to play a game of
chess, and how crucial is the centralized architecture
that directs all the pieces?

Here, we compare the traditional top-down
mode with a more biological scenario, in which each
component has its own goals (“goals” are meant in the
cybernetic sense, not requiring human-level second-
order metacognition, i.e. not requiring “I know that
I have goals”). Specifically, we sought to implement
many extremely simple piece-players, who had no
ability to plan and very limited knowledge of the board.
Each piece-player could only see its local environment,
had no direct control over any other pieces, no
memory, and had no capability for counterfactual
projections into the future. In this scheme, each piece
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had its own agency, and was seeking to maximize the
“nutritional value” of other pieces it captures. Under
these conditions, with no central planner or controller
provided, would a passable game of chess emerge?
What would be its observable characteristics? How
would its efficiencies compare to the conventional
version? What properties of the tiny individual proto-
minds would most impact the quality of play of the
collective? And, how would evolution work, if each
piece-player acted independently, but the selection
took place on an entire team of piece-players? We
investigated those questions using the system shown
in Figure 1.

2. Methods

We used two experimental methods (in both of
which, all pieces followed the same policy): manual
design of perception-action policies for the pieces, to
test specific hypotheses of what aspects might improve
the collective agent’s ability to win, and an evolutionary
strategy for determining optimal policies.




Organism

I'stand on
my
designated
spot, waiting
for the match
to begin

S Chess as a Model of Collective Intelligence:

Analyzing a Distributed Form of Chess with Piece-wise Agency

The chess
engine
makes its
move

—>

I collect all data regarding the
positions of the pieces within
my radius of vision, including
allied and enemy pieces.
share the locations of the
opposing king or highest
valued piece to my teammates

IfTam in danger,
hungry, or have not
moved in a while, [

take that into account
accordingly by
importance

i

Find the move
that serves my
self-interests and

team, and
potentially
execute it

agrees with the |[¢——]

If a move puts me in
danger, but I will be
defended by an
allied piece,
determine whether
the risk is worth it

If I can capture another
piece, or received a signal
from other allied pieces, or
can trade with the opposing
piece for better value, take
that into account accordingly
by importance

Figure 2: The cyclical selection process
for the next move (the decision-making of
an individual piece). (A) Perspective of an
individual Distributed Piece (playing as Black).
Each piece-player underwent a decision-
making process to determine its desired move
based on its “biological needs”. The piece-
player with the strongest desire to move got
to play, determined by its genetic makeup.

(B) An individual piece-player’s cognition was
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2.1. The Umwelt of a Single Chess Piece
Agent

Without a central host controlling all the pieces,
every piece-player made decisions on its own (the
proto-cognitive world of such simple agents have
been studied previously [Beer 2014; Albantakis et al.
2014; Edlund et al. 2011]). We roughly mapped the
agents’ goal—to capture other pieces—to a biological
imperative to catch and eat others in order to maintain
metabolic status and survive. The pieces also had
rudimentary sensory capacities, that allowed them to
get information about their local neighborhood. Thus,
each chess piece had four fundamental characteristics:
value, radius of vision, hunger level, and a turn counter.
A piece was assigned a relative value according to the
standard chess piece value convention (Capablanca
2006; Chess.com 2024a): Pawns a value of 1, Knights
and Bishops a value of 3, Rooks a value of 5, and
Queens a value of 9. (Kings did not have a value as they
cannot be captured.) The radius of vision was a whole
number between 0 and 7 inclusively that described the
number of adjacent squares it could detect (including
diagonal squares), i.e., R ,R,R,, .., R, (see Figure 1).

Hunger levels reflected how many moves ago a
piece-player last captured another. All piece-players
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One move

Radius

limited to its radius of vision (represented
schematically by the blue cones). Piece-players
transferred information about the positions of
opposing pieces (specifically the king and the
highest valued piece in view) to one another,
expanding their spatial awareness (represented
by the green cone). Nevertheless, piece-players
were limited to analyzing a maximum of one
move when determining the risk of their next
move. In addition, they had no recollection of
previous moves per se; rather, they only knew
how many turns ago they last played.

in the manual experiments started with a controlled
hunger level of o (i.e. no hunger). In the evolution
experiments, the hungerlevels were distributed through
a Gaussian function amongst the piece-players, to
increase diversity of the population and reflect a natural
environment. The Gaussian distribution used a mean
of 7.5 and a standard deviation of 3, and the hunger
levels were rounded to integers. With each turn on the
chess board a piece-player made, its hunger level was
incremented by one. When a “predator” piece-player
captured a “prey” piece-player, the predator’s hunger
level reset to 0, indicating that it has previously eaten o
moves ago (i.e. the current move).

The turn characteristic represented how many moves
ago a piece-player’s last move occurred. With each turn
on the chess board, the turn value was incremented by
one. When a piece-player moved, its turn parameter
reset to 0, indicating that it has previously moved o
moves ago (i.e. the current move).

As an agent, the primary motivator for a piece-player
was to fulfill its nutritional needs by capturing another
piece of the opponent, preferably of higher value. In
accordance with typical chess strategies, a piece-player
might also be interested in improving its position to
capture other pieces. At the same time, piece-players
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might have the goal to prevent themselves from being
captured, either by staying protected in the range
of a same-side piece (minimizing chances of being
captured) or moving away from the targeted path of
an opposing piece. Apart from a piece’s self-interest,
it can be motivated to attack the opposing king and
defend the same-side king, as well as capture the
opposing highest-valued piece.

A piece-player’s sensory horizon was limited by its
radius of vision. A piece-player could observe other
pieces surrounding it and differentiate which side it
belonged to. Also, a piece-player could detect the type
of a piece near it, as well as the latter’s distance away
and location. A piece-player was apprised of how each
piece moves (including itself) according to the official
chess rules (FIDE 2023). Using the information about
“moves”, a piece-player thus had information about
what squares other pieces could attack or defend
(within the piece-player’s field of vision).

Pieces here did not have memory of previous
moves and could not think multiple moves ahead.
However, before making the next move, a piece-player
was programmed to disclose information about the
locations of opposing pieces within its field of view to
other same-team pieces (long range communication)
by providing the coordinates of the opposing pieces.
For example, if the opposing king was within the
radius of a piece-player, then the piece-player would
communicate this information to the other piece-
players who also opposed that king. Conversely, if the
same-side king detected it was in danger (i.e. that there
was an opposing piece within its radius), the king would
communicate this information to the other piece-
players on that king’s team so they could potentially
advance closer to protect the king. Every piece-
player was programmed to communicate accurate
information to other pieces (by relaying from one
piece to another), and to receive accurate information
automatically without conflicts or errors. Information
was received simultaneously and in parallel, before
any move was made. While the distributed pieces took
their own well-being into account, they could also
determine their course of action based on information
transferred from other pieces. In addition, each piece
knew its own value and the value of other pieces. A
piece’s decision to capture was therefore influenced by
the comparison of the value of itself and of an opposing
piece (see Figure 1 and Figure 2).
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Furthermore, as each piece had its own perspective
on its outside world, it was faced with the natural
limitation of not being able to see the entire board,
similar to the local perspectives of cells within a body
and the need for biological systems to form their own
perspectives, interpretations, and models of their
microenvironment (Levin 2023a; Bongard & Levin
2023; Levin 2024).

2.2, Life in Chessworld: The Algorithm of a
Single Game

Inbiological scenarios, multiple agents can effectively
act at the same time. In a standard chess game, a
centralized algorithm decides which of their pieces will
be moved at a given turn. In our case, the distributed
agents would all try to act in each time step, due to their
self-interests. We implemented our simulation on a
linear computer architecture by providing a turn-based
scheme that regulated the order of operations for the
pieces as follows. Each piece-player initially had a radius
of vision R,. It first identified whether any pieces could
be captured, and if there were, the piece-player with the
highest sum of hunger level and turn would capture,
and if there was a tie, it would be broken in favor of the
piece-player in position to capture the highest valued
piece. If a piece-player could capture multiple pieces,
it would capture the higher valued one. If no pieces
could be captured, then the following predefined steps
occurred, varying in accordance with the experiment
being performed (described in subsections below): the
scheme selected the next piece-player to be moved based
on necessity (a rough analogy to how cognitive systems
use attention and prioritization drives to choose among
actions [Bongard & Levin 2023]):

1. If a piece-player was in danger (i.e., risk of being
captured) and not defended, then that piece-player was
prioritized first to move.

a. Among the piece-players that were in danger, the
scheme prioritized piece-players who had the highest
hunger value and turn.

b. Among the remaining pieces that were not in
danger, the scheme prioritized piece-players who had
the highest hunger value and turn. This step is done as
backup for step 2 in case the pieces in danger have no
safe square to move to.

2. If a piece-player’s move would place it in danger,
that specific move was prioritized last.

3. Once the most prioritized move had been executed,
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and the opposing team responded, this process would
repeat until a checkmate or stalemate occurred.

We described how these rules were applied in detail
in our different experiments in the following sections.
While many possible methods could be explored, we
chose this logic flow as an analog to “motivation” (i.e., it
models the idea that agents with the most opportunity
or the most threat would be the most active and most
likely to act quicker than others).

2.3. Evolution in Chessworld: How
Genomes Change over Time

In the evolutionary algorithm, 13 different genes
were encoded into one chromosome, described in
Tables 1 and 2. The chromosome contained five
positional genes that controlled a piece-player’s
radius of vision and how a piece-player’s state (e.g.
its position, hunger level, turn) would influence its
next move. Additionally, each chromosome included
eight action genes that control the favorability of each
potential move for the piece-player. The complete
move selection process is described in Figure 2.
There was no developmental process here (genotype
directly encodes phenotype with no generative layer
or complex mapping between them).

Once the game started and the chess engine
made its move, each piece-player analyzed all the
information within its radius of vision. A piece-
player examined its current state by considering
factors such as its position, hunger level, and turn.
Before a piece made a turn, it was assigned an initial
move score of zero. Then, the score was updated
in accordance with positional genes based on
information of itself and its neighbors. The positional
genes and their range of values are summarized in
Table 1 [Appended at end].

To calculate the score of each piece-player’s next
possible moves, we took the current positional score
of each piece-player and assigned it to all its possible
moves, giving all possible moves a value. In addition,
every action gene updated a prospective move’s score
based on information of the move’s outcome. The
action gene and their range of values are summarized
in Table 2 [Appended at end]. For example, if a rook
had a positional value of 50, all its possible moves
get a value of 50. If a possible move would place the
piece-player into danger, the move’s score updated,
according to Positional Gene #4 in Table 2.
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The piece with the highest move score executed their
move. The chess engine responded, and the cycle repeated
until the game ended in checkmate or stalemate.

2.4. Implementation Details

All simulations for both portions were built using
Python 3.12.0. The opposing side to the distributed
piece-players was controlled by Stockfish 15.1, winx64
avx2 version (The Stockfish developers, n.d.). To
integrate the Stockfish engine with Python, the Python
library (Zhelyabuzhsky 2022) was used. To ensure
the engine selects moves quickly and accurately, the
Stockfish engine was set to a depth of 8, and a skill
level of 20. The Stockfish engine selected the third best
move (average ELO [Elo 2008] of 300) for the manual
portion, and randomly selected either the second best
move or the third best move for the evolution portion
to increase difficulty (average ELO of 500). This
arrangement matched the skill level of the piece-players
to ensure no side overpowers the other. We used a
standard 8x8 chess board with standard chess rules,
except for the En Passant (Chess.com 2024b) rule for
simplicity. One game took approximately 0.8 seconds
to compute. One trial consisted of 50 chess matches
between the Stockfish chess engine and the distributed
pieces and lasted around 40 seconds to be completed.
One generation for the evolution component took on
average 3 minutes. For the manual experiments, 10
trials were conducted for every experiment setting,
taking 40 seconds for each. Trial results were recorded,
and the mean along with standard deviation was taken
for each experiment.

In the evolutionary algorithm, the skill level of the
engine gradually increased every 25 generations by
1 from level o to level 20. The winning percentage of
the piece-players for each trial served as the fitness
value and was expected to approach a fitness value of 1
(100%). PyGAD 3.2.0 was used for the genetic evolution
(Gad 2023). We used a population size of 200 trials per
500 generations and calculated the fitness of each trial
in parallel. The genetic evolution was conducted on a
Linux server, running on 2x AMD EPYC 7532, 32x2 core,
64x2 thread, 512GB RAM. In the genetic algorithm, the
random mutation probability parameter was set to 10%
and the single-point crossover parameter was enabled.
Piece-players in each trial were characterized with a
chromosome of 13 genes, controlling the influence of
each policy in its decision-making.
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3. Results

3.1. Minimal Distributed Agents Can Play
Chess

We first established a baseline in which pieces guided
by totally random legal actions played against the Stockfish
chess engine for 50 matches. As might be expected, the
random moving pieces had a 0% winning percentage
against the Stockfish engine out of 50 chess matches,
playing at an Elo of around o (Chess.com 2024b)—roughly
the level of a person who only knows how pieces move and
knows no strategy, but all moves were legal.

To determine whether distributed agents could play
chess against a classical (unified) player, we then had the
distributed chess pieces play against the Stockfish engine
using the logic described in the manual policies portion
of the Methods (see subsection “Life in Chessworld: The
Algorithm of a Single Game”) and a radius of R,. The
distributed pieces were able to obtain an average win
rate of 20%+6% in the manual experiments alone. After
four evolutions running in parallel, the pieces were able
to achieve a peak winning percentage of 44%+2%. The
distributed pieces played at a maximum Elo of 1050 and
an average Elo of 750 (Chess.com 2024b), equivalent to
a casual chess player who knows the rules and is familiar
with basic strategy. The pieces were successfully able
to form defensive structures and avoid active dangers
(Figure 3A). However, the pieces performed poorly near

Figure 3: Scenarios of distributed agents in action. A)
The black pieces, played by the distributed pieces, have a
significant material advantage over the white pieces. However,
the distributed pieces inadvertently force a stalemate by
eliminating any squares the white king can move to. B)
The black pieces, played by the distributed pieces, create a
defensive structure, forming two pawn chains of length
three. A black rook and black bishop defended a pawn at the
b7 square, a black bishop defends the black pawn on the {6
square. The black queen protects three pawns, and a bishop,
creating a defensive front.
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the end of the game when encircling and checkmating
the king (Figure 3B). Often, the large quantity of pieces
eliminated any paths for the opposing king to go,
resulting in a stalemate. In addition, an inadvertent
blunder of a significant piece like the queen (because of
the limited radius of vision, or poor risk taking) at the
beginning of the matches would make the distributed
pieces’ chances of winning significantly worse.
Computationally, the Stockfish engine at a depth of 8
determined the next move in around 5.8 milliseconds,
while the distributed piece-players collectively decided
on their next move in a total of 2.0 milliseconds.

3.2. Radius of Vision Positively Correlates
with Winning Percentage

We next sought to understand whether, and to
what degree, being able to see further along the board
would enable the collective to play better. Thus, to
analyze the correlation of radius of vision and winning
percentage in the manual experiments, we altered the
radius settings (8, between R and R7) to analyze which
was most optimal.

The mean and standard deviation of the data are
shown in Figure 4A [Appended at end]. We found that
the winning percentage sharply increased fromradiiR  to
R,, but plateaued for radii R —R_with minor fluctuations.
The highest winning percentage became apparent from
aradius of R, with a 21%+3%. We conclude that a larger
radius of vision improves performance for all pieces, but
the gains drop off and having information about distant
regions of the board does not add much to the efficacy of
play under these conditions.

We then tested the evolutionary approach, setting
possible radius bounds for alleles in the population
to range from R, to R inclusively. Initially, the
frequency of each radius was randomized (Figure 4B).
Throughout the evolution, the radius of the best trial
in each generation fluctuated between R—R . At the
end of the evolution, R, appeared the most frequently
in the final population (as seen in Figure 4C), with
27%+15% of trials in the final population having an R,
radius. The evolution had a higher winning percentage
(44%+2%) than the manual experiments’ results
because the evolution balanced all the policies together,
complementing the optimal radius (R,). Comparing
Figure 4B and Figure 4C, there is a contrast between
the frequency of radii at the beginning of the evolution,
and at the end [Appended at end].
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3.3. Long Range Information Transfer
Positively Correlates with Winning
Percentage

To determine the benefits of information transfer
between piece-players, a long-range communication
rule was implemented in the manual experiments
during a turn only when the opposing king was within
the radius of a piece-player. We utilized the base scheme
described in Methods section. Before moves were sorted
based on whether a move would place a piece-player in
danger, moves that increased the distance between the
piece and the opposing king were prioritized last. If the
opposing king was not in the radius of a piece, the pieces
would play according to the base scheme. Keeping the
radius to R, we compared the winning percentages
of the winning performance without the new rule and
with the new rule. We observed that R, had a winning
percentage of 20%+4%. The winning percentage of the
experiment with the new rule increased to 24%+6%
(Figure 5A) [Appended at end]. (1-tailed, two-sample
equal variance [homoscedastic] T-test, p=0.066).
Thus, we observed that the long-range communication
group’s winning percentage was 4% more than the
control group.

We then tested the evolutionary approach with
the same goal, by comparing the frequency of genes
in the initial and final population. Genes related to
long-range information transfer had parameter values
between -100-100 (see Policy 6, 7 and 8 in Table 2).
The parameter values of each trial in a generation were
grouped in ten bins, each bin of size 20 (as seen in
Figure 5B-5G) to capture the main features of the data.
The results of the genetic algorithm revealed that genes
related to long-range information transfer were reliably
selected for in the population with the best fitness.

Starting with the gene that controlled whether a
piece-player prioritized moving closer to the opposing
king (see Policy 6 in Table 2), we observed that on
average, 290%+14% of parameter values in the final
population were concentrated between 20 and 4o,
while 18%+13% of values were concentrated between
0 and 20 in the four evolutions (Figure 5C), deviating
from the random trend in the initial population
(Figure 5B). The most successful individuals in each of
the four runs had parameter values of 7, 21, 23, and 40,
showing the prioritizing moving closer to the opposing
king (Policy 6 in Table 2) was favorable in the decision-
making of a piece.
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Then, we analyzed the gene that controls whether a
piece-player prioritized moving closer to the defending
king if an opposing piece is in the defending king’s
radius of vision (see Policy 7 in Table 2). We observed
that on average, 32%+15% of parameter values in the
final population were concentrated between -40 and
-20 (Figure 5E). The most successful individuals in each
of the four runs had parameter values of -8, -9, -29,
and -38, deviating from the random trend in the initial
population (Figure 5D). This implies that prioritizing
moving closer to the same-side king (Policy 7 in Table
2) was unfavorable in the decision-making of a piece.

Then, we analyzed the gene that controls whether a
piece-player prioritized moving closer to the highest-
valued piece (see Policy 8 in Table 2). We observed
that on average, 22%+11% of parameter values in the
final population were concentrated between 20 and
40 (Figure 5G), deviating from the random trend in
the initial population (Figure 5F). The most successful
individual within the population in the four runs had
parameter values of -5, 34, 49, and 96, demonstrating
that prioritizing moving closer to the highest-valued
piece (Policy 8 in Table 2) was favorable in the decision-
making of a piece.

From the results, the ability to transfer long-range
information about the opposing king and the highest
valued piece proved to be highly favorable. Defending
the same-side king proved to be unfavorable, as the
parameter values were largely negative, also showing
that the pieces fared better on the offensive.

3.4. Courage is More Favorable than
Caution in Certain Scenarios

We next sought to understand the contribution of
risk-taking and risk aversion to the quality of play by the
collective agent. To determine whether pieces should act
more courageously or cautiously for the best winning
percentage, we analyzed the performance difference
between these two strategies. A piece was cautious
when it deliberately avoided or prevented the risk of
being captured by choosing an alternative safe move.
A piece was courageous when exposing itself to risk.

To implement these strategies in the manual
experiments, we utilized the base scheme described
in Methods section. However, we changed how pieces
made decisions based on danger in two experiments.
The first experiment examined when pieces acted
cautiously, following the base scheme. The second
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experiment showcased when a piece acted courageously
for accepting therisk of being captured. This experiment
is the same as the first one, except a piece-player is not
considered to be in danger if it was defended by another
same-side piece-player. In addition, a piece-player’s
move is not considered dangerous if a piece would be
(after the potential move) defended by another same-
side piece. We observed (Figure 6A) [Appended at end].
that the winning percentage was 18%+6% when the
piece had only a sense of danger. When the piece could
detect that it was defended and in danger at the same
time (resulting in no action), the winning percentage
was 15%+5%. We see that the more cautious pieces
have a mildly higher winning percentage than the
courageous ones.

To have a more accurate understanding of which
specific courageous and cautious strategies are optimal,
we allowed evolution to set the risk-taking level for
the pieces. Genes related to courage and caution had
parameter values between -100-100 (see Policy 2, 5 in
Table 1 and Policy 4, 5 in Table 2). The parameter values
of each trial in a generation were grouped in ten bins,
each bin of size 20 (as seen in Figure 6B-61) to capture
the main features of the data. The results of the genetic
algorithm revealed that genes that encouraged more
risk were more favorable. Starting with the gene that
controls how motivated a piece is to escape imminent
danger (see Policy 2 in Table 1), we observed that
62%+14% of parameter values in the final population
were between 20 and 40, (Figure 6C), deviating from
the random trend in the initial population (Figure 6B).
The most successful individual within the population in
the four runs had parameter values of 12, 12, 20, 22,
demonstrating that the gene had a large influence on
the decision-making of a piece.

We then analyzed the gene influencing the decision-
making for a piece when the piece is defended by
another same-side piece (see Policy 5 in Table 1).
76%+4% of parameter values in the final population
were concentrated around 0-20 (Figure 6E), deviating
from the random trend in the initial population
(Figure 6D). The most successful individual within the
population in the four runs had a weighting of 3, 7, 9,
and 18, indicating that the gene had some influence in
the decision-making.

We then analyzed the gene that controls voluntary
decision of a piece to put itself in danger (see Policy 4
in Table 2). We observed that 83%+1% of the parameter
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values in the final population on average were between
0-40 among four evolutions (Figure 6G), deviating from
the random trend in the initial population (Figure 6F).
The most successful individual within the population
in the four runs had a weighting of 1, 2, 2, and 3,
highlighting that this policy had some influence in the
decision-making of a piece.

We then analyzed the gene influencing the decision-
making for a piece when the piece’s next move would
be defended by another same-side piece (see Policy 5 in
Table 2). 81%+5% of the parameter values in the final
population were between 0-20 among four evolutions
(Figure 61I), deviating from the random trend in the
initial population (Figure 6H). The most successful
individual within the population in the four runs had
a weighting of 5, 23, 24, and 34, highlighting that this
policy had some influence in the decision-making of a
piece, and making it more cautious.

The results show that piece-players that were at risk
of being captured were more eager to move than piece-
players that were not at risk of being captured, meaning
piece-players were cautious. In addition, piece-players
in general acted courageously and moved to squares
that could lead them to be captured (Figure 6J). Genes
depending on whether a piece-player is protected and
whether a piece’s move would be protected by other
pieces had minor influence on the decision-making
about the next move, however still favoring protection
over risk. Thus, piece-players were cautious about their
position when they were at risk of capture, and were
courageous when making a move.

3.5. Having More Patience when Hungry,
and Less Patience when Not Having Moved
in a While, is Optimal

The ability to perform “delayed gratification” in a
problem space-making moves that temporarily take
the agent further from its goals in order to recoup gains
later—is one metric of basal intelligence (James 1890).
It is interesting to ask what kind of policy should be
used among the components of a collective intelligence
to determine which ones get to act at what time, for
optimal adaptive performance. Thus, we next sought
to determine what was the optimal move order for the
pieces, we analyzed which strategy is more optimal—
making decisions based on the hunger level, turn, or
both. We compared the results to when neither of the
attributes are applied. A piece-player was considered to
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be more patient when its hunger level and/or turn was
high, but the piece refrained from moving. A piece was
considered to be less patient if its hunger level and/or
turn was high, and the piece prioritized its self-interests
and moved.

For our first experiment, we prioritized pieces with
the highest hunger value and turn (as described in the
base scheme). For the second experiment, we prioritized
neither of these values instead. For the third experiment,
we prioritized pieces with the highest hunger value,
and for the fourth experiment, we prioritized pieces
with the highest turn instead. Keeping the radius to R,
we compared the winning percentages of the winning
performance of each of the moves’ ordering methods.
From the four experiments, we observed that the control
had a 14%+5% winning percentage, the hunger based
moving pieces had a 10%+3% winning percentage, and
the alternating order moving pieces had a 16%+4%
winning percentage (Figure 7A) [Appended at end].
It appears the collective did best when emphasizing a
strict turn order for its members.

To analyze which strategies were most optimal
and their magnitude of impact, we conducted the
evolutionary by comparing the frequency of genes in
the initial and final population. Genes related to hunger
and turn had parameter values between 0.0-5.0 (see
Policies 3 and 4 in Table 1). The parameter values of
each trial in a generation were grouped in ten bins, each
bin of size 0.5 (as seen in Figure 7B-7E) to capture the
main features of the data. The results of the genetic
algorithm revealed that having more patience when
hungry and less patience when not having moved in a
while is optimal.

For the gene controlling how motivated a piece
is based on their hunger (see Policy 3 in Table 1), we
observed that on average, 77%+6% of the parameter
values in the final population were concentrated
around 0-0.5 (Figure 7C), deviating from the random
trend in the initial population (Figure 7B). The most
successful individual within the population in the
four runs had parameter values of 0.05, 0.1, 0.1, and
0.2, demonstrating that a piece ignoring their hunger
completely is optimal.

Then, we analyzed the gene that controls how
motivated a piece is based on their turn (see Policy
4 in Table 1). We observed on average, 36%+14% of
the parameter values in the final population were
concentrated around 3.50-4.00, and ~60% of values
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were above 3.5, with the maximum possible parameter
value being 5 (Figure 7E), deviating from the random
trend in the initial population (Figure 7D). The most
successful individual within the population in the four
runs had parameter values of 2.7, 3.4, 3.6, and 3.6,
indicating that the policy had a large impact on the
decision-making of a piece.

The hunger level multiplier clearly indicates that
the hunger level was almost negligible in the decision-
making process, meaning it is best when piece-players
are patient with their hunger when making decisions.
Conversely, the turn multiplier shows that prioritizing
to make a turn after not doing so in a while is deemed to
be more beneficial.

3.6. Adding a “Threatening” Drive
Significantly Improves Performance

In the basic scheme, the only drive that guides
pieces’ behavior is the ability to consume another piece.
We next sought to examine the consequences of giving
them a motivation to threaten another piece. Moves
were prioritized based on whether they would place an
opposing piece in danger. We varied the radius of vision
from R to R and compared the winning percentage
to the original base scheme (Fig. 4A). The winning
percentages of this experiment were significantly
higher than the base scheme (except for R and R ), with
higher radius of vision performing better. For example,
the winning percentage for R with the new rule was
42%+5%, while the winning percentage for R without
the new rule was 20%+6% (1-tailed, two-sample equal
variance (homoscedastic) T-test, p<<0.01). The ELO
improved by ~50.

4. Discussion

We tested the hypothesis that a passable game
of chess could be played without a central planner,
memory, training in prior games, forethought, or
consideration of the consequences of specific actions.
By implementing a bottom-up, distributed player
where the pieces had their own agency, we created an
alternative to conventional chess AI (Duca Iliescu 2020;
K.B. 2021)—one based on the concepts of collective
intelligence (Couzin 2007; Couzin 2009; Couzin et al.
2002; Deisboeck & Cousin 2009; McMillen & Levin
2024; Witkowski & Tkegami 2019; Pinero & Sole 2019;
Sole et al. 2016; Heylighen 2013; Wheeler 1911; Ward
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et al. 2008; Bazazi et al. 2008). We found that this very
minimal system operates at the level of a human novice
when each piece is computing its own desired moves.
Using evolutionary algorithms with only 13 possible
parameters, a ragtag group of player-pieces can in
aggregate increase its score to an ELO of 1050, which
is comparable to the score needed to be competitive
against a beginner.

4.1. Parameters Impacting Play Quality

A critical component of any collective intelligence
is the set of policies which regulate their actions and
interactions. As with many examples of collective
problem-solving, the parameter values that improve
the functionality of the group are not obvious and
hard to predict from first principles (McMillen &
Levin 2024; Rahwan 2019). Our exploration of the
parameter space and evolutionary search found
several ways to optimize the performance; First, that
the optimal radius of vision was R4. The reason why it
was not significantly higher (like R6 or R7) was most
likely because a too large radius of vision can hamper
a piece’s decision-making: with too much awareness
of opposing pieces across the board, a piece may
move to aggressively, stranded in enemy territory
and ultimately sacrificed. Conversely, a lower radius
of vision that 4 performed significantly worse,
presumably because unaware of the whereabouts of
opponent’s pieces, therefore diminishing captures
and diminishing the winning percentage of the
collective. The radius of R4 allows for the balance
between controlled risk taking and capture.

We found that the best performance came when
pieces were more cautious about their current position,
i.e. escape imminent danger if an opposing piece is
attacking them, but more courageous (i.e. take more
risks) when selecting their next move. They avoided
imminent threats, regardless of whether they were
defended by a same-side piece. The pieces were content
with placing themselves at risk while moving to squares
where they would be protected, thus expanding the
position and working as a collective. This configuration
allows offensive attacks, while preventing passive
play and takes into consideration the present danger/
defense set up.

For long-range communication, the policy of having
knowledge of the opposing king’s position and the
opposing highest valued piece allowed for swarming.
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This ability was influential, which is reflective by
the increase in winning percentage in the manual
experiments. The ability to defend the same-side
king had a negative influence in the decision-making
process. This is because defending the same-side king
promotes passive play, allowing the chess engine to
take down the distributed agents. As a result of these
policies, pieces were able to collectively surround the
opposing king to deliver checkmates more consistently,
and attack the opposing highest valued piece, all while
playing offensively.

Moves driven by hunger level were seen to
be suboptimal. In the manually-parametrized
experiments, moving based on hunger level decreased
the winning percentage compared to the other moves’
ordering strategies. Moreover, the hunger level
multiplier in the evolution portion was almost at its
minimum, because hunger level provided little input
in the decision-making for the next move. On the
other hand, having the desire to move when having
not moved in a while (based on turn) was favored
significantly more in the evolution, and moving based
off turn boosted the winning percentage. In classical
chess theory, it is typically suggested to move a
wide range of pieces to develop and strengthen the
chess position, which is what the distributed agents
confirmed.

4.2. Emergent Collective Goals

One formalism for the study of collective intelligence
is the notion of the cognitive light cone—the spatio-
temporal radius of the largest state that an agent can
actively work towards (Levin 2019). Here, pieces
are limited by their radius of vision. However, when
pieces are able to communicate with one another, they
are able to expand their spatial cognition and receive
information about pieces across the board when
applicable. An example of this is knowing the location of
the opposing king. If a piece were to attempt to target an
opposing king in their radius of vision, the probability
of the king stepping into the radius of vision (e.g. R ) is
not high, making the policy ineffective, with few pieces
being able to know the location of the opposing king
at a given time. When pieces are able to communicate
to other pieces about the location of the opposing
king, pieces are able to create consistent pressure
throughout the match and checkmate the opposing
king. This expansion of cognition is significant, in that
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a piece does not require its own large radius of vision
like R_to successfully apply pressure. A smaller radius
of vision is sufficient for a piece’s needs, because the
collective communication provides a larger effective
sensory radius—like that seen in group sensing in
weakly-electric fish who can effectively “see” through
each other’s senses (Pedraja & Sawtell 2024).

Each piece-player has its immediate goal to survive
by working to capture valuable opposing pieces. From
pawn to queen, every piece player moves and positions
themselves in such a way that satisfies its metabolic
instincts. However, transcending the level of the
individual, the functional purpose of the collective
is ultimately to checkmate the opposing king. This is
an emergent outcome, not specifically encoded in the
algorithm. Despite having desires and constraints
that occasionally hamper play, the individuals’
primary motivations (e.g. capturing opposing pieces)
align with the collective’s overarching goal. These
motivations converge into one effort, thereby boosting
the resiliency of the collective and allowing them to
reach their goal in the face of internal adversity.

One fascinating question, bearing on discussions
of whether intelligence is intrinsic or observer-
dependent (Bongard & Levin 2023), is: what does an
external observer, who knows nothing about the inner
construction of each player, think of the games that
our swarm plays? Would a chess-savvy observer see
game-level goals being pursued—emergent long-term
strategies in the eye of the beholder that do not exist
in the ground truth of the algorithms being pursued by
the agents (Heider & Simmel 1944; Scholl & Tremoulet
2000)? We recently showed a similar phenomenon in
sorting algorithms (Zhang, Goldstein, & Levin 2024),
which were exhibiting several behavioral problem-
solving traits that had not been baked in to their
algorithm directly (Zhang, Goldstein, & Levin 2024).
In our dataset, what could be observed were: pawns
marching forward despite not having the knowledge
of queen promotion, especially the center pawns, the
queen and pieces in the center of the board were active
at the very beginning of a chess game, and pieces went
on the attack (offensive), venturing to the opposite
side of the board. They did not play passively.

Central to the function of collectives are the balances
of cooperation and competition among their members
(Gawne, McKenna, & Levin 2020; Strassmann &
Queller 2010). The distributed pieces in the Chessworld
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might have two types of conflict, intra-pieces
conflict, and inter-pieces conflict. Intra-piece conflict
encapsulates the conflict of self-interests between the
pieces. More notably, factors like nutritional needs,
patience, and protection (all ingrained in each piece)
may cause conflict among pieces (only emergent in
gameplay) in the decision to move or avoid moving.
Inter-pieces conflict expresses the individual piece’s
disunity with the group’s goals. A piece’s desire
might not be in accordance with the team’s goals. For
example, a piece might be used as a sacrifice, or be
prevented from moving due to the strategic position
on the board. These inter-pieces conflicts appear in
gameplay depending on the game dynamics.

4.3. How Does Bottom-up Chess Play
Compare to Human Players? An Informal
Analysis

One of the authors (GC) is a former chess player
(max. Elo rating = 2270) with 15 years of chess coaching
experience from absolute beginners to international
masters, and a prolific researcher in chess expertise
(Bilali¢, McLeod, & Gobet 2007; Campitelli & Gobet
2008; Campitelli, Gobet, & Bilali¢ 2014). GC has played
several games against the distributed piece player
and observed its behavior. He made the following
observations. The distributed piece engine plays like a
clever 6-year-old child who has just learned the rules
of the game. The engine is excellent at detecting when
it can capture an opponent’s piece, which is common
in novice players with some experience in chess
playing, but not so common in children who have just
learned the rules of the game. Individual differences
are typically observed, with more intelligent children
detecting they can capture pieces faster than other
children (Campitelli et al. 2007). Another characteristic
of the distributed piece engine is that of following the
concept of development. In chess, is a strategic concept
by which a player moves several pieces at the beginning
of the game; rather than moving the same piece several
times (Capablanca 1921). Development is one of the
first strategic concepts taught to novices (Rozman
2023), with intelligent children learning this concept
faster than other children. Another characteristic of
the engine that resembles. The development applied
by the distributed chess engine is not optimal (i.e., it
does not move the pieces to the best positions) but,
again, it reflects a smart kid who, instead of moving
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the same piece several times discovers that it is better
to develop several pieces.

An important characteristic of the distributed
chess engine is its difficulty to check mate the
opponent. It is capable of capturing opponent pieces,
but its behavior denotes it does not have the concept
of check, let alone that of check mate. Therefore, it
either stalemates the opponent or check mates the
opponent by chance. Again, this is a very common
occurrence in children’s games in which one of the
players is much better than the opponent and captures
all their pieces (except the King) but they struggle to
checkmate the opponent.

The version of the distributed engine that contains
a “threatening drive”, which improved performance
relative to the original engine as shown in Figure 8
[Appended at end], shows a very different “human
style”. The “threatening drive” version does not do
piece development well because it is very keen on
attacking, moving a piece to attack an opponent’s
piece and in the next move it moves the same piece
again to capture the opponent’s piece. This version
does not look clever any longer as it sometimes moves
the Queen to attack a pawn and captures the pawn,
allowing the opponent to capture the queen. Rather,
it is a very aggressive player. On the other hand,
this version is a much better player at endgames in
which all the pieces of the opponent are captured
and the engine has to checkmate the opponent. The
“threatening drive” version behaves as a child who has
just learned how to check and checks the opponent
all the time. Given that it checks the opponent, this
version is more likely to check mate the opponent
that the version without the threatening drive.
Summing up, the previous version is a better and
more conservative player in the opening stage, and
the current version is an aggressive player during the
whole game, and better player in the endgame, given
that it is more likely to check mate the opponent.

4.4. Limitations of the Study

There are several aspects of the current system
and dataset which will be developed and explored in
subsequent work. These include additional analysis
of the games to uncover novel emergent features of
strategy, allowing more individual identity to the
different types of pieces (specialization), and a deeper
investigation of the role of scheduling in this process.
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In current digital architectures, it is very difficult to
truly implement simultaneous actions by a swarm—
while possible in the (macroscopically) continuous
3D world, standard architectures must break down
the moves into atomic operations, preventing truly
independent activity. The role of these dynamics in the
outcomes must be studied more deeply and examined
in parallel architectures. Likewise, the implementation
of negotiation among the pieces could enrich game-
theoretic perspectives and evolutionary dynamics.

Additional future work will be focused around finding
ways that improve play further while maintaining the
minimal nature of the agents. For example, we recently
suggested the role of stress sharing as another kind of
cognitive glue (Shreesha & Levin 2024); this and other
biological dynamics will be explored. Finally, it will
be important to extend this approach to other classic
games (checkers, Go, etc.) beyond our analysis of chess,
to see where it is successful and what game conditions
are or are not ideal for a distributed approach.

Conclusions

It is tempting to draw categorical distinctions
between swarms and “true unified beings” like human
beings and other brainy organisms. However, all of
us are made of parts and all intelligences are, in a
sense, collective intelligences. Even human beings
are made of components which must work together
to result in a degree of unified performance (Sole,
Moses, & Forrest 2019; Pinero & Sole 2019; Seoane
2019; Martinez-Corral et al. 2019; Manicka & Levin
2019)—collective dynamics which exhibit occasional
breakdowns, resulting in cognitive dissociation or
morphogenetic dissociation disorder known as cancer
(Braude 1995; Levin 2019; Levin 2021). Thus, there are
no truly unified, monolithic, monadic chess players,
and our individual neurons likely do not know about
the strategies of chess any more than our in silico
virtual players do. However, neurobiological studies
of novices and chess grandmasters have revealed
differences—specifically,  increased  whole-brain
functional connectivity patterns (Song et al. 2022;
Liang et al. 2022; Amidzic et al. 2001). Thus, using
information theory to understand the relationship
between parts and whole (Kolchinsky et al. 2014;
Sporns 2011; Bullmore & Sporns 2009; Tononi,
Edelman, & Sporns 1998; Tononi, Sporns, & Edelman
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1994; Albantakis et al. 2017; Hoel et al. 2016; Hoel,
Albantakis, & Tononi 2013) in minimal model systems
and strongly constrained virtual worlds are likely
to enable rich comparison between artificial life and
natural biological beings. It is also interesting however
that while in our simulation, both the individual agents
and the collective intelligence both live in the same
world (Chessworld), biological collective intelligences
project themselves into new worlds, as evolution
pivots the tools needed to navigate physiological and
gene expression spaces into anatomical morphospace,
3D behavioral space, linguistic space, and many others
(Fields & Levin 2022; Levin 2023).

We believe it is essential to develop a science
not only of emergent complexity (Adami 2002;
Prokopenko, Boschietti, & Ryan 2009), but of emergent
cognition: to be able to predict the appearance of, and
characterize the problem-solving competency and
effective goals of, novel unconventional agents such as
swarms of robots or minimal active matter (Blackiston
et al. 2023; Strong, Holderbaum, & Hayashi 2024;
Adamatzky, Chiolerio, & Szacilowski, 2020; Cejkova et
al. 2017; Hanczyc 2014), of large-scale financial and
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political structures constructed in societies, and in the
collective intelligence of our own brains, composed of
large numbers of competent cells which nevertheless
give rise to problem-solving, forward-thinking beings
(Chater 2018; Seth 2013) (Tononi, Edelman, & Sporns
1998; Friston 2013; Ramstead et al. 2022) with
many unanswered questions about our nature, our
capabilities, and ways in which those supervene on the
biochemistry and physiology of our components.
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Policy # Name Description Value Range
. Radius | Determines the radius of vision of a chess 27
piece.
. Increments the positional score by the value of
Imminent . . : . :
2 D | this policy multiple times for every opposing -100-100
anger e . = aa " gl
piece in radius that is attacking it
9 H]_],leI:ElH Multiplies the hunger level by the value of this 0-5
Multiplier policy.
Turn . 1s s T . _— )
4 Multiplier Multiplies the turn by the value of this policy. 0-5
Updates the positional score by the value of
5 Pratection | this policy for every same-side piece that is -100-100
defending it.

52
Organisms



Organisms

53

Chess as a Model of Collective Intelligence:
Analyzing a Distributed Form of Chess with Piece-wise Agency

Table 2. Action genes and behavioral parameters their loci determine

Policy # Name Description Value Range
Increments the move score by the value of
1 Capture this locus only if a piece can capture another -100-100
piece.
F Increments the move score by the value of
avorable . . .
2 this locus only if a piece can capture an -100-100
capture . . .
opposing piece of higher or equal value.
U Updates the move score by the value of this
nfavorable . . .
3 Capture 1qcus only if a piece can capture an opposing -100-100
piece of lower value.
Updates the move score by the value of this
Dangerous locus if the; move places a piece.in danger.
4 Move The score is updated multiple times for -100-100
every opposing piece in radius that would be
attacking it.
Increments the move score by the value of
Defended this locus if a same-side piec;e will defend
5 Move the moved piece. The score is updated -100-100
multiple times for every same-side piece
that would be defending.
If the opposing king is in the radius of any
A distributed piece and the move brings the
6 PPT OaCh. i 1 to the sing king, it -100-100
Obposine King | Piece closer to the opposing king,
PPOSINg BN | i crements the move score with the value of
this locus.
If the same-side king is in danger (an
Move Closer to | opposing piece is within its radius) and the
7 Same Side | move brings the piece closer to the same- -100-100
King side king, the value of this locus increments
the move score.
Approach
Highest If the move brings the piece closer to the
8 Valued opposing highest-valued piece, the value of -100-100
Opposing | this locus increments the move score.
Piece
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Figure 4: Effect of range of vision on play quality. (A) Winning percentage by players using each radius of vision (N=50). R and R, winning
percentages were significantly lower than R, (B) Initial frequency distribution of radius values (N=200) across the population before
evolution for Radius of Vision (Policy 1in Table 1) between R and R7. (C) Final frequency distribution of radius values (N=200) across the
population before evolution for Radius of Vision (Policy 1 in Table 1) between R, and R .

Figure 5 (next page): Long Range Communication among pieces increases winning percentage. (A) Comparison between the control
group, and the group with long range communication (N=50). The control group not including long range communication had a winning
percentage of 20%+4% while the group including long range communication had a winning percentage of 24%+6%. T-test resulted in a
0.066 significance value. (B) Initial frequency distribution of parameter values (N=200) across the population before evolution for the
gene that controls whether a piece moves closer to the opposing king (Policy 6 in Table 2). Parameter values were randomized, resulting
in bars of similar size (C) Final frequency distribution of parameter values (N=200) across the population after the evolution for the gene
that controls whether a piece moves closer to the opposing king (Policy 6 in Table 2). 29%+14% of parameter values in the final population
were concentrated between 20 and 40, while 18%+13% of values were concentrated between o and 20. (D) Initial frequency distribution
respectively of parameter values (N=200) across the population for the gene controlling whether a piece moves closer to the defending
king if an opposing piece is in the defending king’s radius of vision (see Policy 7 in Table 2). (E) Final frequency distribution respectively of
parameter values (N=200) across the population for the gene controlling whether a piece moves closer to the defending king if an opposing
piece is in the defending king’s radius of vision (Policy 7 in Table 2). (F) Initial frequency of parameter values (N=200) respectively for the
gene controlling whether a piece moves closer to the highest-valued piece (Policy 8 in Table 2). (G) Final frequency of parameter values
(N=200) respectively for the gene controlling whether a piece moves closer to the highest-valued piece (see Policy 8 in Table 2).
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Figure 6: Courage is more favorable than caution in certain scenarios . (A) Pieces that are more cautious (denoted as ‘Does Not Detect
Defending Pieces’) have a higher winning percentage than those that have more courage (denoted as ‘Detects Defending Pieces’) (N=50).
(B) Initial frequency distribution of parameter values (N=200) across the population before evolution for the gene that controls how
motivated a piece is to escape imminent danger (see Policy 2 in Table 1). (C) Final frequency distribution of parameter values (N=200)
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across the population after the evolution for the gene that controls how motivated a piece is to escape imminent danger (see Policy 2 in
Table 1). (D) Initial frequency distribution respectively of parameter values (N=200) across the population for the gene influencing the
decision-making for a piece when the piece is defended by another same-side piece (see Policy 5 in Table 1). (E) Final frequency distribution
respectively of parameter values (N=200) across the population for the gene influencing the decision-making for a piece when the piece
is defended by another same-side piece (see Policy 5 in Table 1). (F) Initial frequency of parameter values (N=200) respectively for the
gene controlling the voluntary decision of a piece to put itself in danger (see Policy 4 in Table 2). (G) Final frequency of parameter values
(N=200) respectively for the gene controlling the voluntary decision of a piece to put itself in danger (see Policy 4 in Table 2). (H) Initial
frequency of parameter values (N=200) respectively for the gene influencing the decision-making for a piece when the piece’s next move
would be defended by another same-side piece (see Policy 5 in Table 2). (I) Final frequency of parameter values (N=200) respectively for
the gene influencing the decision-making for a piece when the piece’s next move would be defended by another same-side piece (see Policy
5in Table 2). (J) The black pieces are played by the distributed pieces. In this position, the black light squared bishop is under attack by the
white queen and is inclined to move out of danger. The black bishop accepts the risk of moving to the square at the end of the green arrow
because a same-side piece-player (black pawn) is defending that square, despite the white queen and white bishop guarding that square.
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Figure 7: Quality of performance is best optimized when using strict turn order to determine activity of the agents. (A) Different ordering
strategies of moves when no captures are available (N=50). (B) Initial frequency distribution of multiplier values (N=200) for the gene
controlling how motivated a piece is based on their hunger (Policy 3 in Table 1). (C) Final frequency distribution of multiplier values
(N=200) for the gene controlling how motivated a piece is based on their hunger (Policy 3 in Table 1). (D) Initial frequency distribution of
multiplier values (N=200) for the gene that controls how motivated a piece is based on their turn (Policy 4 in Table 1). (E) Final frequency
distribution of multiplier values (N=200) for the gene that controls how motivated a piece is based on their turn (Policy 4 in Table 1).
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