
Chess as a Model of Collective Intelligence: 
Analyzing a Distributed Form of Chess with Piece-wise Agency

David Kofmana, Guillermo Campitellib and Michael Levinc*

a School of Computer Science, University of Waterloo, Waterloo, ON, Canada
b Department of Psychology, Murdoch University, Perth, Australia
c Allen Discovery Center and Department of Biology, Tufts University, Medford, MA, USA

*Corresponding author: Michael Levin, Email: michael.levin@tufts.edu

Abstract

Chess is a much-studied virtual world in which human and artificially-intelligent players move pieces toward 
desired ends, within established rules. The typical scenario involves top-down control where a single cognitive 
agent plans and executes moves using the pieces as its embodiment within the chess universe. However, ultimately 
both biological and engineered agents are composed of parts, with radically differing degrees of competency. The 
emerging field of Diverse Intelligence seeks to understand how coherent behavior and goal-directed navigation of 
problem spaces arises in compound agents from the interaction of their simpler components. Thus, we explored the 
world of chess rules from the perspective of collective intelligence, and characterized a bottom-up version of this 
classic game in which there is no central controller or long-term planning. Rather, each individual piece has its own 
drives and makes decisions based on local, limited information and its own goals. We analyzed the behavior of this 
distributed agent when playing against Stockfish, a standard chess algorithm. We tested a few individual policies 
designed by hand, and then implemented an evolutionary algorithm to see how the individuals’ behavioral genomes 
would evolve under selection applied to the chess-based fitness of the collective agent. We observed that despite the 
minimal intelligence of each piece, the team of distributed chess pieces exhibit Elo of up to ~1050, equivalent to a 
novice human chess player. And, compared to advanced chess engines like Stockfish, the distributed chess pieces 
are significantly more efficient in computing. Distributed chess pieces select their next move approximately 7 times 
faster than the Stockfish Engine with a search depth of 8. Investigating different local policies for the distributed 
agents, we found that policies promoting offense, such as swarming the opposing king and opposing highest valued 
piece, moving less cautiously, and a radius of vision of 4 spaces yields optimal performance. Comparisons between 
centralized and distributed versions of familiar minimal environments have the potential to shed light on the scaling 
of cognition and the requirements for collective intelligence in naturally evolved and engineered systems.
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Introduction

Intelligence, both natural and artificial, has fascinated 
thinkers for millennia. One especially interesting 
emerging field is that of Diverse Intelligence, which 
includes efforts to understand problem-solving 
competencies in unconventional embodiments outside 
of familiar brainy animals (ranging across minimal 
chemical models, unicellular organisms, plants, tissues, 
robots, hybrid cyborgs and hybrots, and software 
AI’s) (Sole, Moses, & Forrest 2019; Lyon 2006; Lyon 
et al. 2021; Levin et al. 2021; Lyon 2020; Lyon 2015; 
Vallverdu et al. 2018; Baluška & Levin 2016). Another 
component of this effort is the goal of understanding 
the scaling of collective intelligence (Berdahl et al. 
2018; Couzin 2007; Couzin 2009; Couzin 2018; Couzin 
2002; Deisboeck & Couzin 2009; Levin 2022; Trianni & 
Campo 2015; Gomes, Urbano, & Christensen 2013): how 
do the capabilities of swarms relate to the competencies 
of the subunits of which they are made (Levin 2022)? 
How much foresight, sensing, and memory is needed 
in the components to endow a composite agent with a 
specific level of competency in a given problem space? 
The latter is not only of concern to swarm roboticists 
(Trianni & Campo 2015; Gomes, Urbano, & Christensen 
2013; Brambilla et al. 2013; Barca & Sekercioglu 2013) 
and ethologists studying ant colonies and bird flocks 
(Letendre & Moses 2019; Gordon 2016a; Gordon 
2016b; Gordon 2016c; Reid et al. 2016; Reid et al. 
2015a; Reid et al. 2015b), but is also a central issue for 
understanding human cognition. While many think of 
themselves as unified, individual agents, the reality is 
that we too are a collective of neural cells, and start life 
as a single cell which proliferates into a collective that 
navigates anatomical space long before we can navigate 
3-dimensional behavioral space and linguistic spaces 
(Fields & Levin 2022). Even after embryogenesis, the 
neuropsychology of split-brain patients and dissociative 
identity states reveal that our cognitive system is far 
from a monolithic, unified controller (Miller & Triggiano 
1992; Putnam 1992; Braude 1995; Gazzaniga 2005; 
Montgomery 2003). Elucidating the functional policies 
that enable highly complex cells to work together 
toward the emergence of a high-order Self, which has 
memories, goals, preferences, and capabilities that 
belong to it and none of its parts (Dewan 1976; Solms 
2018; Paulson et al. 2017; Ramstead et al. 2019; Badcock 
et al. 2019; Friston & Buzsaki 2016; Pezzulo, Rigoli, & 

Friston 2015; Friston & Frith 2015), is an essential part 
of understanding what we are and how minds like ours 
arise. In a sense, all real-world intelligence is collective 
intelligence (composed of parts), underscoring the 
importance of understanding how the properties of 
subunits give rise to system-level problem-solving 
behavior.

1. Multiscale Competency Architecture

Our goal is to understand biology’s multiscale 
competency architecture (Pio-Lopez et al. 2023; 
Levin 2023a; Levin 2023b; Levin 2023c). We seek 
to understand the “cognitive glue” that enables 
collective intelligence in living tissue, including neural 
systems as well as non-neural ones (which in turn 
drives regenerative medicine research programs by 
exploiting the information-processing capabilities 
of cells and tissues [Lagasse & Levin 2023; Mathews 
et al. 2023]). We characterize the biological policies 
for communication, cooperation, and competition 
between parts (Gawne, McKenna, & Levin 2020; 
Boddy et al. 2015) that engineering may want to 
emulate, in creating robust intelligences. Here, we take 
a minimal model approach, using the game of chess 
as a highly simplified universe, with well-defined and 
much studied dynamics, in which we can ask questions 
about how problem-solving competencies can emerge 
from extremely sparse bottom-up capabilities. We 
use principles of agent-based modeling (Griffin 2006; 
Steinbacher et al. 2021) to implement a chess player 
as a collection of individual pieces with their own 
perspective and agency. That is, instead of a top-down 
human or computer controlling all a player’s moves, we 
let the pieces decide and move themselves.

The popular game of chess has been enjoyed by 
millions of people throughout history (Hearst & Knott 
2009; Sharples 2017; Davidson 2012; Dangauthier et 
al. 2007). With an exorbitant number of games played, 
different openings, tactics, and theories have been 
developed and analyzed. When playing a traditional 
game of chess, an integrated “player” creates strategies 
with the ultimate goal of checkmating the opponent 
player. While in the past these have been human minds, 
over the last few decades it has become clear that 
artificial intelligences excel at navigating the space of 
behaviors in the chess universe (Fujita 2022; Maharaj, 
Polson, & Turk 2022; Schmid et al. 2022).
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The traditional mode requires a player to exploit 
counterfactual thought in order to choose moves, long-
term planning to consider the large tree of possible 
moves, and the ability to make choices that often 
require sacrifice (temporary reduction of advantage, 
or delayed gratification), as well as modeling of their 
opponent and their likely actions. We wondered: how 
much of this is actually necessary to play a game of 
chess, and how crucial is the centralized architecture 
that directs all the pieces?

Here, we compare the traditional top-down 
mode with a more biological scenario, in which each 
component has its own goals (“goals” are meant in the 
cybernetic sense, not requiring human-level second-
order metacognition, i.e. not requiring “I know that 
I have goals”). Specifically, we sought to implement 
many extremely simple piece-players, who had no 
ability to plan and very limited knowledge of the board. 
Each piece-player could only see its local environment, 
had no direct control over any other pieces, no 
memory, and had no capability for counterfactual 
projections into the future. In this scheme, each piece 

had its own agency, and was seeking to maximize the 
“nutritional value” of other pieces it captures. Under 
these conditions, with no central planner or controller 
provided, would a passable game of chess emerge? 
What would be its observable characteristics? How 
would its efficiencies compare to the conventional 
version? What properties of the tiny individual proto-
minds would most impact the quality of play of the 
collective? And, how would evolution work, if each 
piece-player acted independently, but the selection 
took place on an entire team of piece-players? We 
investigated those questions using the system shown 
in Figure 1.

2. Methods

We used two experimental methods (in both of 
which, all pieces followed the same policy): manual 
design of perception-action policies for the pieces, to 
test specific hypotheses of what aspects might improve 
the collective agent’s ability to win, and an evolutionary 
strategy for determining optimal policies.

Figure 1: Bottom-up chess: a schematic of 
our simulation environment. (A) Distributed 
Pieces (playing as Black, top) have individual 
autonomy and collectively determine the next 
move. The white pieces are subject to top-down 
control by Stockfish engine. (B) Each piece is 
able to detect information about other pieces 
within their radius of vision. (C) An evolutionary 
algorithm is wrapped around the logic of games 
played by the piece-players, and this algorithm 
determines the genomes of each player (the 
genomes determine the policies by which 
each piece acts given specific environmental 
conditions, see Table 1). To determine each 
piece-player’s move, information from its 
genome (positional and action genes) are 
combined with information from the piece-
player’s direct observations, and the move with 
the highest score is selected.
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2.1. The Umwelt of a Single Chess Piece 
Agent

Without a central host controlling all the pieces, 
every piece-player made decisions on its own (the 
proto-cognitive world of such simple agents have 
been studied previously [Beer 2014; Albantakis et al. 
2014; Edlund et al. 2011]). We roughly mapped the 
agents’ goal—to capture other pieces—to a biological 
imperative to catch and eat others in order to maintain 
metabolic status and survive. The pieces also had 
rudimentary sensory capacities, that allowed them to 
get information about their local neighborhood. Thus, 
each chess piece had four fundamental characteristics: 
value, radius of vision, hunger level, and a turn counter. 
A piece was assigned a relative value according to the 
standard chess piece value convention (Capablanca 
2006; Chess.com 2024a): Pawns a value of 1, Knights 
and Bishops a value of 3, Rooks a value of 5, and 
Queens a value of 9. (Kings did not have a value as they 
cannot be captured.) The radius of vision was a whole 
number between 0 and 7 inclusively that described the 
number of adjacent squares it could detect (including 
diagonal squares), i.e., R0, R1, R2, …, R7 (see Figure 1).

Hunger levels reflected how many moves ago a 
piece-player last captured another. All piece-players 

in the manual experiments started with a controlled 
hunger level of 0 (i.e. no hunger). In the evolution 
experiments, the hunger levels were distributed through 
a Gaussian function amongst the piece-players, to 
increase diversity of the population and reflect a natural 
environment. The Gaussian distribution used a mean 
of 7.5 and a standard deviation of 3, and the hunger 
levels were rounded to integers. With each turn on the 
chess board a piece-player made, its hunger level was 
incremented by one. When a “predator” piece-player 
captured a “prey” piece-player, the predator’s hunger 
level reset to 0, indicating that it has previously eaten 0 
moves ago (i.e. the current move).

The turn characteristic represented how many moves 
ago a piece-player’s last move occurred. With each turn 
on the chess board, the turn value was incremented by 
one. When a piece-player moved, its turn parameter 
reset to 0, indicating that it has previously moved 0 
moves ago (i.e. the current move).

As an agent, the primary motivator for a piece-player 
was to fulfill its nutritional needs by capturing another 
piece of the opponent, preferably of higher value. In 
accordance with typical chess strategies, a piece-player 
might also be interested in improving its position to 
capture other pieces. At the same time, piece-players 

Figure 2: The cyclical selection process 
for the next move (the decision-making of 
an individual piece). (A) Perspective of an 
individual Distributed Piece (playing as Black). 
Each piece-player underwent a decision-
making process to determine its desired move 
based on its “biological needs”. The piece-
player with the strongest desire to move got 
to play, determined by its genetic makeup. 
(B) An individual piece-player’s cognition was 
limited to its radius of vision (represented 
schematically by the blue cones). Piece-players 
transferred information about the positions of 
opposing pieces (specifically the king and the 
highest valued piece in view) to one another, 
expanding their spatial awareness (represented 
by the green cone). Nevertheless, piece-players 
were limited to analyzing a maximum of one 
move when determining the risk of their next 
move. In addition, they had no recollection of 
previous moves per se; rather, they only knew 
how many turns ago they last played.
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might have the goal to prevent themselves from being 
captured, either by staying protected in the range 
of a same-side piece (minimizing chances of being 
captured) or moving away from the targeted path of 
an opposing piece. Apart from a piece’s self-interest, 
it can be motivated to attack the opposing king and 
defend the same-side king, as well as capture the 
opposing highest-valued piece.

A piece-player’s sensory horizon was limited by its 
radius of vision. A piece-player could observe other 
pieces surrounding it and differentiate which side it 
belonged to. Also, a piece-player could detect the type 
of a piece near it, as well as the latter’s distance away 
and location. A piece-player was apprised of how each 
piece moves (including itself) according to the official 
chess rules (FIDE 2023). Using the information about 
“moves”, a piece-player thus had information about 
what squares other pieces could attack or defend 
(within the piece-player’s field of vision).

Pieces here did not have memory of previous 
moves and could not think multiple moves ahead. 
However, before making the next move, a piece-player 
was programmed to disclose information about the 
locations of opposing pieces within its field of view to 
other same-team pieces (long range communication) 
by providing the coordinates of the opposing pieces. 
For example, if the opposing king was within the 
radius of a piece-player, then the piece-player would 
communicate this information to the other piece-
players who also opposed that king. Conversely, if the 
same-side king detected it was in danger (i.e. that there 
was an opposing piece within its radius), the king would 
communicate this information to the other piece-
players on that king’s team so they could potentially 
advance closer to protect the king. Every piece-
player was programmed to communicate accurate 
information to other pieces (by relaying from one 
piece to another), and to receive accurate information 
automatically without conflicts or errors. Information 
was received simultaneously and in parallel, before 
any move was made. While the distributed pieces took 
their own well-being into account, they could also 
determine their course of action based on information 
transferred from other pieces. In addition, each piece 
knew its own value and the value of other pieces. A 
piece’s decision to capture was therefore influenced by 
the comparison of the value of itself and of an opposing 
piece (see Figure 1 and Figure 2).

Furthermore, as each piece had its own perspective 
on its outside world, it was faced with the natural 
limitation of not being able to see the entire board, 
similar to the local perspectives of cells within a body 
and the need for biological systems to form their own 
perspectives, interpretations, and models of their 
microenvironment (Levin 2023a; Bongard & Levin 
2023; Levin 2024). 

2.2. Life in Chessworld: The Algorithm of a 
Single Game

In biological scenarios, multiple agents can effectively 
act at the same time. In a standard chess game, a 
centralized algorithm decides which of their pieces will 
be moved at a given turn. In our case, the distributed 
agents would all try to act in each time step, due to their 
self-interests. We implemented our simulation on a 
linear computer architecture by providing a turn-based 
scheme that regulated the order of operations for the 
pieces as follows. Each piece-player initially had a radius 
of vision R2. It first identified whether any pieces could 
be captured, and if there were, the piece-player with the 
highest sum of hunger level and turn would capture, 
and if there was a tie, it would be broken in favor of the 
piece-player in position to capture the highest valued 
piece. If a piece-player could capture multiple pieces, 
it would capture the higher valued one. If no pieces 
could be captured, then the following predefined steps 
occurred, varying in accordance with the experiment 
being performed (described in subsections below): the 
scheme selected the next piece-player to be moved based 
on necessity (a rough analogy to how cognitive systems 
use attention and prioritization drives to choose among 
actions [Bongard & Levin 2023]):

1. If a piece-player was in danger (i.e., risk of being 
captured) and not defended, then that piece-player was 
prioritized first to move. 

a. Among the piece-players that were in danger, the 
scheme prioritized piece-players who had the highest 
hunger value and turn.

b. Among the remaining pieces that were not in 
danger, the scheme prioritized piece-players who had 
the highest hunger value and turn. This step is done as 
backup for step 2 in case the pieces in danger have no 
safe square to move to.

2. If a piece-player’s move would place it in danger, 
that specific move was prioritized last.

3. Once the most prioritized move had been executed, 
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and the opposing team responded, this process would 
repeat until a checkmate or stalemate occurred. 

We described how these rules were applied in detail 
in our different experiments in the following sections. 
While many possible methods could be explored, we 
chose this logic flow as an analog to “motivation” (i.e., it 
models the idea that agents with the most opportunity 
or the most threat would be the most active and most 
likely to act quicker than others).

2.3. Evolution in Chessworld: How 
Genomes Change over Time

In the evolutionary algorithm, 13 different genes 
were encoded into one chromosome, described in 
Tables 1 and 2. The chromosome contained five 
positional genes that controlled a piece-player’s 
radius of vision and how a piece-player’s state (e.g. 
its position, hunger level, turn) would influence its 
next move. Additionally, each chromosome included 
eight action genes that control the favorability of each 
potential move for the piece-player. The complete 
move selection process is described in Figure 2. 
There was no developmental process here (genotype 
directly encodes phenotype with no generative layer 
or complex mapping between them).

Once the game started and the chess engine 
made its move, each piece-player analyzed all the 
information within its radius of vision. A piece-
player examined its current state by considering 
factors such as its position, hunger level, and turn. 
Before a piece made a turn, it was assigned an initial 
move score of zero. Then, the score was updated 
in accordance with positional genes based on 
information of itself and its neighbors. The positional 
genes and their range of values are summarized in 
Table 1 [Appended at end].

To calculate the score of each piece-player’s next 
possible moves, we took the current positional score 
of each piece-player and assigned it to all its possible 
moves, giving all possible moves a value. In addition, 
every action gene updated a prospective move’s score 
based on information of the move’s outcome. The 
action gene and their range of values are summarized 
in Table 2 [Appended at end]. For example, if a rook 
had a positional value of 50, all its possible moves 
get a value of 50. If a possible move would place the 
piece-player into danger, the move’s score updated, 
according to Positional Gene #4 in Table 2.

The piece with the highest move score executed their 
move. The chess engine responded, and the cycle repeated 
until the game ended in checkmate or stalemate.

2.4. Implementation Details
All simulations for both portions were built using 

Python 3.12.0. The opposing side to the distributed 
piece-players was controlled by Stockfish 15.1, winx64 
avx2 version (The Stockfish developers, n.d.). To 
integrate the Stockfish engine with Python, the Python 
library (Zhelyabuzhsky 2022) was used. To ensure 
the engine selects moves quickly and accurately, the 
Stockfish engine was set to a depth of 8, and a skill 
level of 20. The Stockfish engine selected the third best 
move (average ELO [Elo 2008] of 300) for the manual 
portion, and randomly selected either the second best 
move or the third best move for the evolution portion 
to increase difficulty (average ELO of 500). This 
arrangement matched the skill level of the piece-players 
to ensure no side overpowers the other. We used a 
standard 8x8 chess board with standard chess rules, 
except for the En Passant (Chess.com 2024b) rule for 
simplicity. One game took approximately 0.8 seconds 
to compute. One trial consisted of 50 chess matches 
between the Stockfish chess engine and the distributed 
pieces and lasted around 40 seconds to be completed. 
One generation for the evolution component took on 
average 3 minutes. For the manual experiments, 10 
trials were conducted for every experiment setting, 
taking 40 seconds for each. Trial results were recorded, 
and the mean along with standard deviation was taken 
for each experiment.

In the evolutionary algorithm, the skill level of the 
engine gradually increased every 25 generations by 
1 from level 0 to level 20. The winning percentage of 
the piece-players for each trial served as the fitness 
value and was expected to approach a fitness value of 1 
(100%). PyGAD 3.2.0 was used for the genetic evolution 
(Gad 2023). We used a population size of 200 trials per 
500 generations and calculated the fitness of each trial 
in parallel. The genetic evolution was conducted on a 
Linux server, running on 2x AMD EPYC 7532, 32x2 core, 
64x2 thread, 512GB RAM. In the genetic algorithm, the 
random mutation probability parameter was set to 10% 
and the single-point crossover parameter was enabled. 
Piece-players in each trial were characterized with a 
chromosome of 13 genes, controlling the influence of 
each policy in its decision-making. 
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3. Results

3.1. Minimal Distributed Agents Can Play 
Chess

We first established a baseline in which pieces guided 
by totally random legal actions played against the Stockfish 
chess engine for 50 matches. As might be expected, the 
random moving pieces had a 0% winning percentage 
against the Stockfish engine out of 50 chess matches, 
playing at an Elo of around 0 (Chess.com 2024b)—roughly 
the level of a person who only knows how pieces move and 
knows no strategy, but all moves were legal. 

To determine whether distributed agents could play 
chess against a classical (unified) player, we then had the 
distributed chess pieces play against the Stockfish engine 
using the logic described in the manual policies portion 
of the Methods (see subsection “Life in Chessworld: The 
Algorithm of a Single Game”) and a radius of R2. The 
distributed pieces were able to obtain an average win 
rate of 20%±6% in the manual experiments alone. After 
four evolutions running in parallel, the pieces were able 
to achieve a peak winning percentage of 44%±2%. The 
distributed pieces played at a maximum Elo of 1050 and 
an average Elo of 750 (Chess.com 2024b), equivalent to 
a casual chess player who knows the rules and is familiar 
with basic strategy. The pieces were successfully able 
to form defensive structures and avoid active dangers 
(Figure 3A). However, the pieces performed poorly near 

the end of the game when encircling and checkmating 
the king (Figure 3B). Often, the large quantity of pieces 
eliminated any paths for the opposing king to go, 
resulting in a stalemate. In addition, an inadvertent 
blunder of a significant piece like the queen (because of 
the limited radius of vision, or poor risk taking) at the 
beginning of the matches would make the distributed 
pieces’ chances of winning significantly worse. 
Computationally, the Stockfish engine at a depth of 8 
determined the next move in around 5.8 milliseconds, 
while the distributed piece-players collectively decided 
on their next move in a total of 2.0 milliseconds.

3.2. Radius of Vision Positively Correlates 
with Winning Percentage

We next sought to understand whether, and to 
what degree, being able to see further along the board 
would enable the collective to play better. Thus, to 
analyze the correlation of radius of vision and winning 
percentage in the manual experiments, we altered the 
radius settings (8, between R0 and R7) to analyze which 
was most optimal.

The mean and standard deviation of the data are 
shown in Figure 4A [Appended at end]. We found that 
the winning percentage sharply increased from radii R0 to 
R2, but plateaued for radii R2–R7 with minor fluctuations. 
The highest winning percentage became apparent from 
a radius of R4, with a 21%±3%. We conclude that a larger 
radius of vision improves performance for all pieces, but 
the gains drop off and having information about distant 
regions of the board does not add much to the efficacy of 
play under these conditions.

We then tested the evolutionary approach, setting 
possible radius bounds for alleles in the population 
to range from R2 to R7 inclusively. Initially, the 
frequency of each radius was randomized (Figure 4B). 
Throughout the evolution, the radius of the best trial 
in each generation fluctuated between R3–R7. At the 
end of the evolution, R4 appeared the most frequently 
in the final population (as seen in Figure 4C), with 
27%±15% of trials in the final population having an R4 
radius. The evolution had a higher winning percentage 
(44%±2%) than the manual experiments’ results 
because the evolution balanced all the policies together, 
complementing the optimal radius (R4). Comparing 
Figure 4B and Figure 4C, there is a contrast between 
the frequency of radii at the beginning of the evolution, 
and at the end [Appended at end].

Figure 3: Scenarios of distributed agents in action. A) 
The black pieces, played by the distributed pieces, have a 
significant material advantage over the white pieces. However, 
the distributed pieces inadvertently force a stalemate by 
eliminating any squares the white king can move to. B) 
The black pieces, played by the distributed pieces, create a 
defensive structure, forming two pawn chains of length 
three. A black rook and black bishop defended a pawn at the 
b7 square, a black bishop defends the black pawn on the f6 
square. The black queen protects three pawns, and a bishop, 
creating a defensive front.
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3.3. Long Range Information Transfer 
Positively Correlates with Winning 
Percentage

To determine the benefits of information transfer 
between piece-players, a long-range communication 
rule was implemented in the manual experiments 
during a turn only when the opposing king was within 
the radius of a piece-player. We utilized the base scheme 
described in Methods section. Before moves were sorted 
based on whether a move would place a piece-player in 
danger, moves that increased the distance between the 
piece and the opposing king were prioritized last. If the 
opposing king was not in the radius of a piece, the pieces 
would play according to the base scheme. Keeping the 
radius to R2, we compared the winning percentages 
of the winning performance without the new rule and 
with the new rule. We observed that R2 had a winning 
percentage of 20%±4%. The winning percentage of the 
experiment with the new rule increased to 24%±6% 
(Figure 5A) [Appended at end]. (1-tailed, two-sample 
equal variance [homoscedastic] T-test, p=0.066). 
Thus, we observed that the long-range communication 
group’s winning percentage was 4% more than the 
control group.

We then tested the evolutionary approach with 
the same goal, by comparing the frequency of genes 
in the initial and final population. Genes related to 
long-range information transfer had parameter values 
between -100-100 (see Policy 6, 7 and 8 in Table 2). 
The parameter values of each trial in a generation were 
grouped in ten bins, each bin of size 20 (as seen in 
Figure 5B-5G) to capture the main features of the data. 
The results of the genetic algorithm revealed that genes 
related to long-range information transfer were reliably 
selected for in the population with the best fitness.

Starting with the gene that controlled whether a 
piece-player prioritized moving closer to the opposing 
king (see Policy 6 in Table 2), we observed that on 
average, 29%±14% of parameter values in the final 
population were concentrated between 20 and 40, 
while 18%±13% of values were concentrated between 
0 and 20 in the four evolutions (Figure 5C), deviating 
from the random trend in the initial population 
(Figure 5B). The most successful individuals in each of 
the four runs had parameter values of 7, 21, 23, and 40, 
showing the prioritizing moving closer to the opposing 
king (Policy 6 in Table 2) was favorable in the decision-
making of a piece.

Then, we analyzed the gene that controls whether a 
piece-player prioritized moving closer to the defending 
king if an opposing piece is in the defending king’s 
radius of vision (see Policy 7 in Table 2). We observed 
that on average, 32%±15% of parameter values in the 
final population were concentrated between -40 and 
-20 (Figure 5E). The most successful individuals in each 
of the four runs had parameter values of -8, -9, -29, 
and -38, deviating from the random trend in the initial 
population (Figure 5D). This implies that prioritizing 
moving closer to the same-side king (Policy 7 in Table 
2) was unfavorable in the decision-making of a piece.

Then, we analyzed the gene that controls whether a 
piece-player prioritized moving closer to the highest-
valued piece (see Policy 8 in Table 2). We observed 
that on average, 22%±11% of parameter values in the 
final population were concentrated between 20 and 
40 (Figure 5G), deviating from the random trend in 
the initial population (Figure 5F). The most successful 
individual within the population in the four runs had 
parameter values of -5, 34, 49, and 96, demonstrating 
that prioritizing moving closer to the highest-valued 
piece (Policy 8 in Table 2) was favorable in the decision-
making of a piece.

From the results, the ability to transfer long-range 
information about the opposing king and the highest 
valued piece proved to be highly favorable. Defending 
the same-side king proved to be unfavorable, as the 
parameter values were largely negative, also showing 
that the pieces fared better on the offensive. 

3.4. Courage is More Favorable than 
Caution in Certain Scenarios

We next sought to understand the contribution of 
risk-taking and risk aversion to the quality of play by the 
collective agent. To determine whether pieces should act 
more courageously or cautiously for the best winning 
percentage, we analyzed the performance difference 
between these two strategies. A piece was cautious 
when it deliberately avoided or prevented the risk of 
being captured by choosing an alternative safe move. 
A piece was courageous when exposing itself to risk.

To implement these strategies in the manual 
experiments, we utilized the base scheme described 
in Methods section. However, we changed how pieces 
made decisions based on danger in two experiments. 
The first experiment examined when pieces acted 
cautiously, following the base scheme. The second 
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experiment showcased when a piece acted courageously 
for accepting the risk of being captured. This experiment 
is the same as the first one, except a piece-player is not 
considered to be in danger if it was defended by another 
same-side piece-player. In addition, a piece-player’s 
move is not considered dangerous if a piece would be 
(after the potential move) defended by another same-
side piece. We observed (Figure 6A) [Appended at end]. 
that the winning percentage was 18%±6% when the 
piece had only a sense of danger. When the piece could 
detect that it was defended and in danger at the same 
time (resulting in no action), the winning percentage 
was 15%±5%. We see that the more cautious pieces 
have a mildly higher winning percentage than the 
courageous ones.

To have a more accurate understanding of which 
specific courageous and cautious strategies are optimal, 
we allowed evolution to set the risk-taking level for 
the pieces. Genes related to courage and caution had 
parameter values between -100-100 (see Policy 2, 5 in 
Table 1 and Policy 4, 5 in Table 2). The parameter values 
of each trial in a generation were grouped in ten bins, 
each bin of size 20 (as seen in Figure 6B-6I) to capture 
the main features of the data. The results of the genetic 
algorithm revealed that genes that encouraged more 
risk were more favorable. Starting with the gene that 
controls how motivated a piece is to escape imminent 
danger (see Policy 2 in Table 1), we observed that 
62%±14% of parameter values in the final population 
were between 20 and 40, (Figure 6C), deviating from 
the random trend in the initial population (Figure 6B). 
The most successful individual within the population in 
the four runs had parameter values of 12, 12, 20, 22, 
demonstrating that the gene had a large influence on 
the decision-making of a piece.

We then analyzed the gene influencing the decision-
making for a piece when the piece is defended by 
another same-side piece (see Policy 5 in Table 1). 
76%±4% of parameter values in the final population 
were concentrated around 0-20 (Figure 6E), deviating 
from the random trend in the initial population 
(Figure 6D). The most successful individual within the 
population in the four runs had a weighting of 3, 7, 9, 
and 18, indicating that the gene had some influence in 
the decision-making.

We then analyzed the gene that controls voluntary 
decision of a piece to put itself in danger (see Policy 4 
in Table 2). We observed that 83%±1% of the parameter 

values in the final population on average were between 
0-40 among four evolutions (Figure 6G), deviating from 
the random trend in the initial population (Figure 6F). 
The most successful individual within the population 
in the four runs had a weighting of 1, 2, 2, and 3, 
highlighting that this policy had some influence in the 
decision-making of a piece.

We then analyzed the gene influencing the decision-
making for a piece when the piece’s next move would 
be defended by another same-side piece (see Policy 5 in 
Table 2). 81%±5% of the parameter values in the final 
population were between 0-20 among four evolutions 
(Figure 6I), deviating from the random trend in the 
initial population (Figure 6H). The most successful 
individual within the population in the four runs had 
a weighting of 5, 23, 24, and 34, highlighting that this 
policy had some influence in the decision-making of a 
piece, and making it more cautious.

The results show that piece-players that were at risk 
of being captured were more eager to move than piece-
players that were not at risk of being captured, meaning 
piece-players were cautious. In addition, piece-players 
in general acted courageously and moved to squares 
that could lead them to be captured (Figure 6J). Genes 
depending on whether a piece-player is protected and 
whether a piece’s move would be protected by other 
pieces had minor influence on the decision-making 
about the next move, however still favoring protection 
over risk. Thus, piece-players were cautious about their 
position when they were at risk of capture, and were 
courageous when making a move.

3.5. Having More Patience when Hungry, 
and Less Patience when Not Having Moved 
in a While, is Optimal

The ability to perform “delayed gratification” in a 
problem space-making moves that temporarily take 
the agent further from its goals in order to recoup gains 
later—is one metric of basal intelligence (James 1890). 
It is interesting to ask what kind of policy should be 
used among the components of a collective intelligence 
to determine which ones get to act at what time, for 
optimal adaptive performance. Thus, we next sought 
to determine what was the optimal move order for the 
pieces, we analyzed which strategy is more optimal—
making decisions based on the hunger level, turn, or 
both. We compared the results to when neither of the 
attributes are applied. A piece-player was considered to 
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be more patient when its hunger level and/or turn was 
high, but the piece refrained from moving. A piece was 
considered to be less patient if its hunger level and/or 
turn was high, and the piece prioritized its self-interests 
and moved. 

For our first experiment, we prioritized pieces with 
the highest hunger value and turn (as described in the 
base scheme). For the second experiment, we prioritized 
neither of these values instead. For the third experiment, 
we prioritized pieces with the highest hunger value, 
and for the fourth experiment, we prioritized pieces 
with the highest turn instead. Keeping the radius to R2, 
we compared the winning percentages of the winning 
performance of each of the moves’ ordering methods. 
From the four experiments, we observed that the control 
had a 14%±5% winning percentage, the hunger based 
moving pieces had a 10%±3% winning percentage, and 
the alternating order moving pieces had a 16%±4% 
winning percentage (Figure 7A) [Appended at end]. 
It appears the collective did best when emphasizing a 
strict turn order for its members.

To analyze which strategies were most optimal 
and their magnitude of impact, we conducted the 
evolutionary by comparing the frequency of genes in 
the initial and final population. Genes related to hunger 
and turn had parameter values between 0.0-5.0 (see 
Policies 3 and 4 in Table 1). The parameter values of 
each trial in a generation were grouped in ten bins, each 
bin of size 0.5 (as seen in Figure 7B-7E) to capture the 
main features of the data. The results of the genetic 
algorithm revealed that having more patience when 
hungry and less patience when not having moved in a 
while is optimal.

For the gene controlling how motivated a piece 
is based on their hunger (see Policy 3 in Table 1), we 
observed that on average, 77%±6% of the parameter 
values in the final population were concentrated 
around 0-0.5 (Figure 7C), deviating from the random 
trend in the initial population (Figure 7B). The most 
successful individual within the population in the 
four runs had parameter values of 0.05, 0.1, 0.1, and 
0.2, demonstrating that a piece ignoring their hunger 
completely is optimal.

Then, we analyzed the gene that controls how 
motivated a piece is based on their turn (see Policy 
4 in Table 1). We observed on average, 36%±14% of 
the parameter values in the final population were 
concentrated around 3.50-4.00, and ~60% of values 

were above 3.5, with the maximum possible parameter 
value being 5 (Figure 7E), deviating from the random 
trend in the initial population (Figure 7D). The most 
successful individual within the population in the four 
runs had parameter values of 2.7, 3.4, 3.6, and 3.6, 
indicating that the policy had a large impact on the 
decision-making of a piece.

The hunger level multiplier clearly indicates that 
the hunger level was almost negligible in the decision-
making process, meaning it is best when piece-players 
are patient with their hunger when making decisions. 
Conversely, the turn multiplier shows that prioritizing 
to make a turn after not doing so in a while is deemed to 
be more beneficial.

3.6. Adding a “Threatening” Drive 
Significantly Improves Performance

In the basic scheme, the only drive that guides 
pieces’ behavior is the ability to consume another piece. 
We next sought to examine the consequences of giving 
them a motivation to threaten another piece. Moves 
were prioritized based on whether they would place an 
opposing piece in danger. We varied the radius of vision 
from R0 to R7 and compared the winning percentage 
to the original base scheme (Fig. 4A). The winning 
percentages of this experiment were significantly 
higher than the base scheme (except for R0 and R1), with 
higher radius of vision performing better. For example, 
the winning percentage for R7 with the new rule was 
42%±5%, while the winning percentage for R7 without 
the new rule was 20%±6% (1-tailed, two-sample equal 
variance (homoscedastic) T-test, p<<0.01). The ELO 
improved by ~50.

4. Discussion

We tested the hypothesis that a passable game 
of chess could be played without a central planner, 
memory, training in prior games, forethought, or 
consideration of the consequences of specific actions. 
By implementing a bottom-up, distributed player 
where the pieces had their own agency, we created an 
alternative to conventional chess AI (Duca Iliescu 2020; 
K.B. 2021)—one based on the concepts of collective 
intelligence (Couzin 2007; Couzin 2009; Couzin et al. 
2002; Deisboeck & Cousin 2009; McMillen & Levin 
2024; Witkowski & Ikegami 2019; Pinero & Sole 2019; 
Sole et al. 2016; Heylighen 2013; Wheeler 1911; Ward 
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et al. 2008; Bazazi et al. 2008). We found that this very 
minimal system operates at the level of a human novice 
when each piece is computing its own desired moves. 
Using evolutionary algorithms with only 13 possible 
parameters, a ragtag group of player-pieces can in 
aggregate increase its score to an ELO of 1050, which 
is comparable to the score needed to be competitive 
against a beginner.

4.1. Parameters Impacting Play Quality
A critical component of any collective intelligence 

is the set of policies which regulate their actions and 
interactions. As with many examples of collective 
problem-solving, the parameter values that improve 
the functionality of the group are not obvious and 
hard to predict from first principles (McMillen & 
Levin 2024; Rahwan 2019). Our exploration of the 
parameter space and evolutionary search found 
several ways to optimize the performance; First, that 
the optimal radius of vision was R4. The reason why it 
was not significantly higher (like R6 or R7) was most 
likely because a too large radius of vision can hamper 
a piece’s decision-making: with too much awareness 
of opposing pieces across the board, a piece may 
move to aggressively, stranded in enemy territory 
and ultimately sacrificed. Conversely, a lower radius 
of vision that 4 performed significantly worse, 
presumably because unaware of the whereabouts of 
opponent’s pieces, therefore diminishing captures 
and diminishing the winning percentage of the 
collective. The radius of R4 allows for the balance 
between controlled risk taking and capture.

We found that the best performance came when 
pieces were more cautious about their current position, 
i.e. escape imminent danger if an opposing piece is 
attacking them, but more courageous (i.e. take more 
risks) when selecting their next move. They avoided 
imminent threats, regardless of whether they were 
defended by a same-side piece. The pieces were content 
with placing themselves at risk while moving to squares 
where they would be protected, thus expanding the 
position and working as a collective. This configuration 
allows offensive attacks, while preventing passive 
play and takes into consideration the present danger/
defense set up.

For long-range communication, the policy of having 
knowledge of the opposing king’s position and the 
opposing highest valued piece allowed for swarming. 

This ability was influential, which is reflective by 
the increase in winning percentage in the manual 
experiments. The ability to defend the same-side 
king had a negative influence in the decision-making 
process. This is because defending the same-side king 
promotes passive play, allowing the chess engine to 
take down the distributed agents. As a result of these 
policies, pieces were able to collectively surround the 
opposing king to deliver checkmates more consistently, 
and attack the opposing highest valued piece, all while 
playing offensively. 

Moves driven by hunger level were seen to 
be suboptimal. In the manually-parametrized 
experiments, moving based on hunger level decreased 
the winning percentage compared to the other moves’ 
ordering strategies. Moreover, the hunger level 
multiplier in the evolution portion was almost at its 
minimum, because hunger level provided little input 
in the decision-making for the next move. On the 
other hand, having the desire to move when having 
not moved in a while (based on turn) was favored 
significantly more in the evolution, and moving based 
off turn boosted the winning percentage. In classical 
chess theory, it is typically suggested to move a 
wide range of pieces to develop and strengthen the 
chess position, which is what the distributed agents 
confirmed.

4.2. Emergent Collective Goals
One formalism for the study of collective intelligence 

is the notion of the cognitive light cone—the spatio-
temporal radius of the largest state that an agent can 
actively work towards (Levin 2019). Here, pieces 
are limited by their radius of vision. However, when 
pieces are able to communicate with one another, they 
are able to expand their spatial cognition and receive 
information about pieces across the board when 
applicable. An example of this is knowing the location of 
the opposing king. If a piece were to attempt to target an 
opposing king in their radius of vision, the probability 
of the king stepping into the radius of vision (e.g. R4) is 
not high, making the policy ineffective, with few pieces 
being able to know the location of the opposing king 
at a given time. When pieces are able to communicate 
to other pieces about the location of the opposing 
king, pieces are able to create consistent pressure 
throughout the match and checkmate the opposing 
king. This expansion of cognition is significant, in that 



50

Chess as a Model of Collective Intelligence:
Analyzing a Distributed Form of Chess with Piece-wise Agency

a piece does not require its own large radius of vision 
like R7 to successfully apply pressure. A smaller radius 
of vision is sufficient for a piece’s needs, because the 
collective communication provides a larger effective 
sensory radius—like that seen in group sensing in 
weakly-electric fish who can effectively “see” through 
each other’s senses (Pedraja & Sawtell 2024).

Each piece-player has its immediate goal to survive 
by working to capture valuable opposing pieces. From 
pawn to queen, every piece player moves and positions 
themselves in such a way that satisfies its metabolic 
instincts. However, transcending the level of the 
individual, the functional purpose of the collective 
is ultimately to checkmate the opposing king. This is 
an emergent outcome, not specifically encoded in the 
algorithm. Despite having desires and constraints 
that occasionally hamper play, the individuals’ 
primary motivations (e.g. capturing opposing pieces) 
align with the collective’s overarching goal. These 
motivations converge into one effort, thereby boosting 
the resiliency of the collective and allowing them to 
reach their goal in the face of internal adversity.

One fascinating question, bearing on discussions 
of whether intelligence is intrinsic or observer-
dependent (Bongard & Levin 2023), is: what does an 
external observer, who knows nothing about the inner 
construction of each player, think of the games that 
our swarm plays? Would a chess-savvy observer see 
game-level goals being pursued—emergent long-term 
strategies in the eye of the beholder that do not exist 
in the ground truth of the algorithms being pursued by 
the agents (Heider & Simmel 1944; Scholl & Tremoulet 
2000)? We recently showed a similar phenomenon in 
sorting algorithms (Zhang, Goldstein, & Levin 2024), 
which were exhibiting several behavioral problem-
solving traits that had not been baked in to their 
algorithm directly (Zhang, Goldstein, & Levin 2024). 
In our dataset, what could be observed were: pawns 
marching forward despite not having the knowledge 
of queen promotion, especially the center pawns, the 
queen and pieces in the center of the board were active 
at the very beginning of a chess game, and pieces went 
on the attack (offensive), venturing to the opposite 
side of the board. They did not play passively.

Central to the function of collectives are the balances 
of cooperation and competition among their members 
(Gawne, McKenna, & Levin 2020; Strassmann & 
Queller 2010). The distributed pieces in the Chessworld 

might have two types of conflict, intra-pieces 
conflict, and inter-pieces conflict. Intra-piece conflict 
encapsulates the conflict of self-interests between the 
pieces. More notably, factors like nutritional needs, 
patience, and protection (all ingrained in each piece) 
may cause conflict among pieces (only emergent in 
gameplay) in the decision to move or avoid moving. 
Inter-pieces conflict expresses the individual piece’s 
disunity with the group’s goals. A piece’s desire 
might not be in accordance with the team’s goals. For 
example, a piece might be used as a sacrifice, or be 
prevented from moving due to the strategic position 
on the board. These inter-pieces conflicts appear in 
gameplay depending on the game dynamics.

4.3. How Does Bottom-up Chess Play 
Compare to Human Players? An Informal 
Analysis

One of the authors (GC) is a former chess player 
(max. Elo rating = 2270) with 15 years of chess coaching 
experience from absolute beginners to international 
masters, and a prolific researcher in chess expertise 
(Bilalić, McLeod, & Gobet 2007; Campitelli & Gobet 
2008; Campitelli, Gobet, & Bilalić 2014). GC has played 
several games against the distributed piece player 
and observed its behavior. He made the following 
observations. The distributed piece engine plays like a 
clever 6-year-old child who has just learned the rules 
of the game. The engine is excellent at detecting when 
it can capture an opponent’s piece, which is common 
in novice players with some experience in chess 
playing, but not so common in children who have just 
learned the rules of the game. Individual differences 
are typically observed, with more intelligent children 
detecting they can capture pieces faster than other 
children (Campitelli et al. 2007). Another characteristic 
of the distributed piece engine is that of following the 
concept of development. In chess, is a strategic concept 
by which a player moves several pieces at the beginning 
of the game; rather than moving the same piece several 
times (Capablanca 1921). Development is one of the 
first strategic concepts taught to novices (Rozman 
2023), with intelligent children learning this concept 
faster than other children. Another characteristic of 
the engine that resembles. The development applied 
by the distributed chess engine is not optimal (i.e., it 
does not move the pieces to the best positions) but, 
again, it reflects a smart kid who, instead of moving 
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the same piece several times discovers that it is better 
to develop several pieces.

An important characteristic of the distributed 
chess engine is its difficulty to check mate the 
opponent. It is capable of capturing opponent pieces, 
but its behavior denotes it does not have the concept 
of check, let alone that of check mate. Therefore, it 
either stalemates the opponent or check mates the 
opponent by chance. Again, this is a very common 
occurrence in children’s games in which one of the 
players is much better than the opponent and captures 
all their pieces (except the King) but they struggle to 
checkmate the opponent.

The version of the distributed engine that contains 
a “threatening drive”, which improved performance 
relative to the original engine as shown in Figure 8 
[Appended at end], shows a very different “human 
style”. The “threatening drive” version does not do 
piece development well because it is very keen on 
attacking, moving a piece to attack an opponent’s 
piece and in the next move it moves the same piece 
again to capture the opponent’s piece. This version 
does not look clever any longer as it sometimes moves 
the Queen to attack a pawn and captures the pawn, 
allowing the opponent to capture the queen. Rather, 
it is a very aggressive player. On the other hand, 
this version is a much better player at endgames in 
which all the pieces of the opponent are captured 
and the engine has to checkmate the opponent. The 
“threatening drive” version behaves as a child who has 
just learned how to check and checks the opponent 
all the time. Given that it checks the opponent, this 
version is more likely to check mate the opponent 
that the version without the threatening drive. 
Summing up, the previous version is a better and 
more conservative player in the opening stage, and 
the current version is an aggressive player during the 
whole game, and better player in the endgame, given 
that it is more likely to check mate the opponent.

4.4. Limitations of the Study
There are several aspects of the current system 

and dataset which will be developed and explored in 
subsequent work. These include additional analysis 
of the games to uncover novel emergent features of 
strategy, allowing more individual identity to the 
different types of pieces (specialization), and a deeper 
investigation of the role of scheduling in this process. 

In current digital architectures, it is very difficult to 
truly implement simultaneous actions by a swarm—
while possible in the (macroscopically) continuous 
3D world, standard architectures must break down 
the moves into atomic operations, preventing truly 
independent activity. The role of these dynamics in the 
outcomes must be studied more deeply and examined 
in parallel architectures. Likewise, the implementation 
of negotiation among the pieces could enrich game-
theoretic perspectives and evolutionary dynamics.

Additional future work will be focused around finding 
ways that improve play further while maintaining the 
minimal nature of the agents. For example, we recently 
suggested the role of stress sharing as another kind of 
cognitive glue (Shreesha & Levin 2024); this and other 
biological dynamics will be explored. Finally, it will 
be important to extend this approach to other classic 
games (checkers, Go, etc.) beyond our analysis of chess, 
to see where it is successful and what game conditions 
are or are not ideal for a distributed approach.

Conclusions

It is tempting to draw categorical distinctions 
between swarms and “true unified beings” like human 
beings and other brainy organisms. However, all of 
us are made of parts and all intelligences are, in a 
sense, collective intelligences. Even human beings 
are made of components which must work together 
to result in a degree of unified performance (Sole, 
Moses, & Forrest 2019; Pinero & Sole 2019; Seoane 
2019; Martinez-Corral et al. 2019; Manicka & Levin 
2019)—collective dynamics which exhibit occasional 
breakdowns, resulting in cognitive dissociation or 
morphogenetic dissociation disorder known as cancer 
(Braude 1995; Levin 2019; Levin 2021). Thus, there are 
no truly unified, monolithic, monadic chess players, 
and our individual neurons likely do not know about 
the strategies of chess any more than our in silico 
virtual players do. However, neurobiological studies 
of novices and chess grandmasters have revealed 
differences—specifically, increased whole-brain 
functional connectivity patterns (Song et al. 2022; 
Liang et al. 2022; Amidzic et al. 2001). Thus, using 
information theory to understand the relationship 
between parts and whole (Kolchinsky et al. 2014; 
Sporns 2011; Bullmore & Sporns 2009; Tononi, 
Edelman, & Sporns 1998; Tononi, Sporns, & Edelman 
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1994; Albantakis et al. 2017; Hoel et al. 2016; Hoel, 
Albantakis, & Tononi 2013) in minimal model systems 
and strongly constrained virtual worlds are likely 
to enable rich comparison between artificial life and 
natural biological beings. It is also interesting however 
that while in our simulation, both the individual agents 
and the collective intelligence both live in the same 
world (Chessworld), biological collective intelligences 
project themselves into new worlds, as evolution 
pivots the tools needed to navigate physiological and 
gene expression spaces into anatomical morphospace, 
3D behavioral space, linguistic space, and many others 
(Fields & Levin 2022; Levin 2023).

We believe it is essential to develop a science 
not only of emergent complexity (Adami 2002; 
Prokopenko, Boschietti, & Ryan 2009), but of emergent 
cognition: to be able to predict the appearance of, and 
characterize the problem-solving competency and 
effective goals of, novel unconventional agents such as 
swarms of robots or minimal active matter (Blackiston 
et al. 2023; Strong, Holderbaum, & Hayashi 2024; 
Adamatzky, Chiolerio, & Szacilowski, 2020; Cejkova et 
al. 2017; Hanczyc 2014), of large-scale financial and 

political structures constructed in societies, and in the 
collective intelligence of our own brains, composed of 
large numbers of competent cells which nevertheless 
give rise to problem-solving, forward-thinking beings 
(Chater 2018; Seth 2013) (Tononi, Edelman, & Sporns 
1998; Friston 2013; Ramstead et al. 2022) with 
many unanswered questions about our nature, our 
capabilities, and ways in which those supervene on the 
biochemistry and physiology of our components.
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Table 2. Action genes and behavioral parameters their loci determine 

Policy # Name Description Value Range 

1 Capture 
Increments the move score by the value of 
this locus only if a piece can capture another 
piece.  

-100-100 

2 Favorable 
capture 

Increments the move score by the value of 
this locus only if a piece can capture an 
opposing piece of higher or equal value.  

-100-100 

3 Unfavorable 
Capture 

Updates the move score by the value of this 
locus only if a piece can capture an opposing 
piece of lower value.  

-100-100 

4 Dangerous 
Move 

Updates the move score by the value of this 
locus if the move places a piece in danger. 
The score is updated multiple times for 
every opposing piece in radius that would be 
attacking it.  

-100-100 

5 Defended 
Move 

Increments the move score by the value of 
this locus if a same-side piece will defend 
the moved piece. The score is updated 
multiple times for every same-side piece 
that would be defending. 

-100-100 

6 Approach 
Opposing King 

If the opposing king is in the radius of any 
distributed piece and the move brings the 
piece closer to the opposing king, it 
increments the move score with the value of 
this locus.  

-100-100 

7 
Move Closer to 

Same Side 
King 

If the same-side king is in danger (an 
opposing piece is within its radius) and the 
move brings the piece closer to the same-
side king, the value of this locus increments 
the move score. 

-100-100 

8 

Approach 
Highest 
Valued 

Opposing 
Piece 

If the move brings the piece closer to the 
opposing highest-valued piece, the value of 
this locus increments the move score. 

-100-100 
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Figure 4: Effect of range of vision on play quality. (A) Winning percentage by players using each radius of vision (N=50). R0 and R1 winning 
percentages were significantly lower than R2 (B) Initial frequency distribution of radius values (N=200) across the population before 
evolution for Radius of Vision (Policy 1 in Table 1) between R2 and R7. (C) Final frequency distribution of radius values (N=200) across the 
population before evolution for Radius of Vision (Policy 1 in Table 1) between R2 and R7.

Figure 5 (next page): Long Range Communication among pieces increases winning percentage. (A) Comparison between the control 
group, and the group with long range communication (N=50). The control group not including long range communication had a winning 
percentage of 20%±4% while the group including long range communication had a winning percentage of 24%±6%. T-test resulted in a 
0.066 significance value. (B) Initial frequency distribution of parameter values (N=200) across the population before evolution for the 
gene that controls whether a piece moves closer to the opposing king (Policy 6 in Table 2). Parameter values were randomized, resulting 
in bars of similar size (C) Final frequency distribution of parameter values (N=200) across the population after the evolution for the gene 
that controls whether a piece moves closer to the opposing king (Policy 6 in Table 2). 29%±14% of parameter values in the final population 
were concentrated between 20 and 40, while 18%±13% of values were concentrated between 0 and 20. (D) Initial frequency distribution 
respectively of parameter values (N=200) across the population for the gene controlling whether a piece moves closer to the defending 
king if an opposing piece is in the defending king’s radius of vision (see Policy 7 in Table 2). (E) Final frequency distribution respectively of 
parameter values (N=200) across the population for the gene controlling whether a piece moves closer to the defending king if an opposing 
piece is in the defending king’s radius of vision (Policy 7 in Table 2). (F) Initial frequency of parameter values (N=200) respectively for the 
gene controlling whether a piece moves closer to the highest-valued piece (Policy 8 in Table 2). (G) Final frequency of parameter values 
(N=200) respectively for the gene controlling whether a piece moves closer to the highest-valued piece (see Policy 8 in Table 2).
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Figure  6: Courage is more favorable than caution in certain scenarios . (A) Pieces that are more cautious (denoted as ‘Does Not Detect 
Defending Pieces’) have a higher winning percentage than those that have more courage (denoted as ‘Detects Defending Pieces’) (N=50). 
(B) Initial frequency distribution of parameter values (N=200) across the population before evolution for the gene that controls how 
motivated a piece is to escape imminent danger (see Policy 2 in Table 1). (C) Final frequency distribution of parameter values (N=200) 
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across the population after the evolution for the gene that controls how motivated a piece is to escape imminent danger (see Policy 2 in 
Table 1). (D) Initial frequency distribution respectively of parameter values (N=200) across the population for the gene influencing the 
decision-making for a piece when the piece is defended by another same-side piece (see Policy 5 in Table 1). (E) Final frequency distribution 
respectively of parameter values (N=200) across the population for the gene influencing the decision-making for a piece when the piece 
is defended by another same-side piece (see Policy 5 in Table 1). (F) Initial frequency of parameter values (N=200) respectively for the 
gene controlling the voluntary decision of a piece to put itself in danger (see Policy 4 in Table 2). (G) Final frequency of parameter values 
(N=200) respectively for the gene controlling the voluntary decision of a piece to put itself in danger (see Policy 4 in Table 2). (H) Initial 
frequency of parameter values (N=200) respectively for the gene influencing the decision-making for a piece when the piece’s next move 
would be defended by another same-side piece (see Policy 5 in Table 2). (I) Final frequency of parameter values (N=200) respectively for 
the gene influencing the decision-making for a piece when the piece’s next move would be defended by another same-side piece (see Policy 
5 in Table 2). (J) The black pieces are played by the distributed pieces. In this position, the black light squared bishop is under attack by the 
white queen and is inclined to move out of danger. The black bishop accepts the risk of moving to the square at the end of the green arrow 
because a same-side piece-player (black pawn) is defending that square, despite the white queen and white bishop guarding that square.

Figure 7: Quality of performance is best optimized when using strict turn order to determine activity of the agents. (A) Different ordering 
strategies of moves when no captures are available (N=50). (B) Initial frequency distribution of multiplier values (N=200) for the gene 
controlling how motivated a piece is based on their hunger (Policy 3 in Table 1). (C) Final frequency distribution of multiplier values 
(N=200) for the gene controlling how motivated a piece is based on their hunger (Policy 3 in Table 1). (D) Initial frequency distribution of 
multiplier values (N=200) for the gene that controls how motivated a piece is based on their turn (Policy 4 in Table 1). (E) Final frequency 
distribution of multiplier values (N=200) for the gene that controls how motivated a piece is based on their turn (Policy 4 in Table 1).
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