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INTRODUCTION
Since 1999, the small town of Libby, Montana (USA) has 

been involved in one of the most significant asbestos issues 
in the Northern America. A high incidence of asbestosis, 
lung cancer, and mesothelioma cases (McDonald et al., 
1986; 2001) was found in miners and millers who worked in 
a vermiculite mine situated near the town of Libby that was 
operated from 1923 to 1990 for the local building industry. 
Vermiculite, after being mined and concentrated, was 
expanded by rapid heating to form Zonolite, a commercial 
product that was widely used in many consumer products 
such as fireproofing materials, absorbents and industrial 
fillers. The mine is located in the Rainy Creek complex, a 
Cretaceous alkaline-ultramafic igneous body, essentially 
consisting of a biotitite core, surrounded by a ring dyke 
of biotite pyroxenite, which is in turn surrounded by 
a magnetite pyroxenite (Gunter et al., 2003). Biotite in 
the biotite pyroxenite was altered to vermiculite by low-
temperature weathering, and pyroxenes were altered to 

amphiboles by a higher-temperature hydrothermal process 
(Boettcher, 1966). Amphiboles in the altered areas can reach 
concentrations from 50 to 75% and are intimately associated 
with other phases such as talc, titanium oxides, pyrite, 
limonite, calcite, K-feldspar, quartz and albite (Pardee and 
Larsen, 1928). Careful mineralogical investigation (Wylie 
and Verkouteren, 2000; Gunter et al., 2001; 2003; Meeker 
et al., 2003; Sanchez et al., 2008;) showed the occurrence 
of fibrous amphibole in the vermiculitic deposits, with 
compositions ranging from richterite to winchite. As a 
consequence, the environmental survey finally related the 
cases of diseases to the occurrence of asbestiform richterite 
and winchite. Interestingly, both minerals are currently 
unregulated as asbestos. Toxicological studies provide clear 
evidence that the interactions between fibrous material and 
biological environment are strongly dependent on both 
the geometry and the crystal chemistry of mineral fibres 
(Fubini, 1993; 1996; Fubini and Otero Aréan, 1999). In 
particular, the presence and bioavailability of Fe has received 

ABSTRACT

This study reports new structural and spectroscopic data of a sample of fibrous richterite 
from Libby, Montana (USA). The OH-stretching region was investigated by FT-IR. The 
spectrum showed, except for the typical absorption band at 3671 cm-1 assigned to the 
vibration of the O-H dipole bonded to three [6]Mg cations, a well developed band at 3658 
cm-1 attributed to the M(1)+M(3)Fe2+ environment. The M(1)+M(3)Fe2+ occupancy calculated 
using the FT-IR data is in very good  agreement with that obtained combining Mössbauer 
and EMP data. Fe3+ was only assigned at M(2) owing to the absence in FT-IR spectrum 
of absorption bands at Δ=-50 cm-1 from the tremolite reference band. Structural 
investigation was done by X-ray powder-diffraction using the Rietveld method. Cell 
parameters, fractional coordinates for all non-hydrogen atoms, and site scattering for 
M(1), M(2), M(3), M(4) and A were refined. The most relevant difference with respect to 
prismatic winchite is a general reduction of the cell parameters that is ascribed mainly to 
the higher fluorine content of fibrous richterite. Possible site occupancies were obtained 
by combining chemical data and Rietveld refinement results.

Keywords: Fibrous richterite; winchite; Libby; XRPD, Rietveld method; FT-IR.

ARTICLE INFO

Submitted: February 2016 
Accepted: April 2016 

Available on line: June 2016

* Corresponding author: 
alessandro.pacella@uniroma1.it

DOI: 10.2451/2016PM638

How to cite this article:  
Pacella A. and Ballirano P.  (2016) 

 Period. Mineral. 85, 169-177

Chemical and structural characterization of fibrous richterite 
with high environmental and health relevance from Libby, 
Montana (USA)

Alessandro Pacella* and Paolo Ballirano

Dipartimento di Scienze della Terra, Sapienza Università di Roma, Piazzale Aldo Moro, 5 - I-00185 
Roma, Italy



Periodico di Mineralogia (2016) 85, 169-177 Pacella A. and Ballirano P.170

PM

considerable attention from the biomedical community. 
Both the presence and the structural coordination of 
iron were proposed as important factors in the toxicity of 
asbestos (Fubini et al., 2001). Recently, Pacella et al. (2015) 
showed that, for fibrous amphiboles, chemical reactivity 
seems to be related not only to iron content and oxidation 
state on the surface, but also to its nuclearity and surface-
alteration mechanisms. Morphostructural/biological 
activity relations in fibrous minerals are a crucial subject 
still to be clarified, and a detailed chemical and structural 
investigation of the fibres is the fundamental first step. 

In the present work, we report for the first time a full 
structural and spectroscopic characterization of a sample of 
fibrous richterite from Libby, Montana (USA). Cation site 
partition has been obtained from chemical and Mössbauer 
data already reported in Fantauzzi et al. (2012) and new FT-
IR and X-ray powder diffraction data.

ANALYTICAL METHODS
Scanning Electron Microscopy (SEM)

SEM was done using a Philips XL30 equipped with 
an EDAX system for EDS microanalysis. Images were 
obtained from a fragment of the hand specimen mounted 
on a sample stub and carbon coated. Analytical conditions 
were: 15 kV accelerating voltage, 10 mm working distance 
and a tilt angle of 0°. Electron micrographs showing the 
fibrous morphology at different magnifications are shown 
in Figure 1.

Fourier-Transform InfraRed (FT-IR) Spectroscopy
FT-IR data were collected on a Nicolet MAGNA 760 

over the range 4000-400 cm-1: 32 scans at a nominal 

resolution of 4 cm-1 were averaged. The instrument was 
equipped with a KBr beamsplitter and a TGS detector. 
The powdered samples were mixed in a 2:100 ratio with 
200 mg of KBr in order to obtain transparent pellets. 
Measurements were done in air at room temperature. 
The spectrum (Figure 2) was fitted using the PEAKFIT 
program (Jandel Corporation); the background was 
modelled using a linear function and, the peaks were 
modelled using symmetrical Gaussian line-shapes. Table 
1 lists the values of the calculated wavelength, FWHM and 
intensity of each absorption peak.

X-ray Powder Diffraction (XRPD)
XRPD data were collected on a fully automated parallel-

beam Bruker AXS D8 Advance diffractometer, operating 
in transmission mode, equipped with a Position Sensitive 
Detector (PSD) VÅNTEC-1. Fibres were ground under 
ethanol in an agate mortar and the powder mounted in 
a 1 mm diameter borosilicate glass capillary.  Preliminary 
evaluation of the diffraction pattern indicated the 
presence of small amounts of microcline that has been 
included in the refinement. Rietveld refinement was done 
with GSAS crystallographic suite of programs (Larson 
and Von Dreele, 1985) using the EXPGUI graphical user 
interface (Toby, 2001). The background was fitted with a 
32-term Chebyshev polynomial of the first kind to model 
the amorphous contribution arising from the capillary. 
Peak shape was fitted using a TCH pseudo-Voigt function 
(Thompson et al., 1987) modified for asymmetry (Finger et 
al., 1994). Refined parameters were GU (tan2q-dependent), 
GV (tanq-dependent), GW (angle-independent) Gaussian 
parameters, LX (1/cosθ-dependent) Lorentzian parameter, 

Figure 1. SEM images of fibrous richterite from Libby. Dimension bar 20 μm.
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and S/L and H/L asymmetry parameters (constrained to 
be equal in magnitude). Refinement of two independent 
scale-factors for amphibole and microcline allowed 
quantitative analysis of the mixture. Starting structural 
data were those of Gunter et al. (2003) for the amphibole 
and those of Allan and Angel (1997) for microcline. 
Cell parameters were refined for microcline, whereas 
fractional coordinates for all atoms and site scattering for 
M(1), M(2), M(3), M(4) and A were also refined for the 
fibres. Attempts to independently refine the position of 
the A(2) and A(m) sites failed because of the correlation 
with the adjacent A site. This behaviour is consistent with 
that observed by Hawthorne et al. (2008) for richterite, 
whose difference-Fourier map through the A(2/m) 
site calculated after removal of the A cations indicated 
single centre of maximum density at the A(2/m) site. 
Therefore, a single site A(2/m) (special position 0, ½, 0) 
was considered during the refinement. The isotropic-

displacement parameters were kept fixed throughout the 
refinement to the values refined for prismatic winchite 
(Gunter et al., 2003) because of the strong correlations 
with the site occupancies. The geometry of the system was 
partly restrained under the following conditions:  T-O 
x 8=1.630(15) Å, O-O x 12=2.661(25) Å, M(1,2,3)-O x 
6=2.07(5) Å, M(4)-O x 8=2.55(20) Å. The weight associated 
with those observations was progressively reduced to 5 at 
the last stage of the refinement. Attempts to model the 
presence of preferred orientation using the generalized 
spherical-harmonic description of Von Dreele (1997) 
produced a small improvement of the fit as a result of a J 
texture index of 1.052. The number of terms was selected 
following Ballirano (2003). Convergence was reached 
at the agreement factors reported in Table 2; fractional 
coordinates and isotropic-displacement parameters are 
listed in Table 3, cell parameters in Table 4, selected bond 
distances in Table 5, cell parameters and site scattering 
(s.s.) values in Table 6. Experimental, calculated and 
difference plots are shown in Figure 3.

RESULTS AND DISCUSSION
EMP analysis by Fantauzzi et al. (2012) on fibre bundles, 

showed the chemical homogeneity of the fibres (Figure 4), 
with a mean composition corresponding to richterite (Table 
7). In particular, the average crystal-chemical formula 
is very close to that intermediate between winchite and 
richterite [AA0.5

BNaCaCMg4.5M3+
0.5

TSi8O22(OH)2, where 
M3+=Fe3+ and/or Al], in agreement with previous studies 
(Sanchez et al., 2008; Gunter et al., 2003; Meeker et al., 

Figure 2. FT-IR spectrum of the OH stretching region of fibrous richterite from Libby. 

Band Position
(cm-1)

Width
(cm-1)

Intensity
(%)

A 3658 16 9

B 3671 9 30

C 3706 21 54

D 3731 22 7

Table1. Fitted and calculated FT-IR data 
for fibrous richterite from Libby.
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2003). However, the majority of the fibres show prevailing 
richterite and minor winchite components, in contrast 
to the reference data of amphiboles from Libby (Sanchez 
et al., 2008; Gunter et al., 2003; Meeker et al., 2003). It 
is worth noting that the chemical analysis of prismatic 
winchite (Gunter et al., 2003) and fibrous richterite 
(Fantauzzi et al., 2012) are similar except for a significantly 
higher F content in richterite than in winchite (0.82 apfu 
vs 0.37 apfu). The Fe3+/Fetot ratio of richterite, determined 
by Mössbauer spectroscopy, is 65% (Fantauzzi et al., 
2012). Briefly, Fe2+ was assigned to unresolvable band 
combinations of [M(1)+M(3)] and [M(2)+M(4)], and the 
amount of Fe2+ assigned to [M(1)+M(3)] is about 80% 
of the total Fe2+. The presence of Fe2+ at the M(1)+M(3) 
sites is confirmed by the FT-IR spectrum (Figure 2). In 
fact, except for the typical absorption band at 3671 cm-1 
assigned to arrangement MgMgMg-OH, a well-developed 
band is observed at 3658 cm-1 attributed to M(1)+M(3)Fe2+ 
environment according to the results of  Skogby and 

Rossman (1991) and Hawthorne and Della Ventura (2007). 
The M(1)+M(3)Fe2+ occupancy calculated using the FT-IR 
data of Table 1 and following Burns and Strens (1966) is 
in very good  agreement with that obtained by combining 
Mössbauer and EMP data (respectively M(1)+M(3)Fe2+= 0.09 
apfu and 0.12 apfu). Fe3+ was allocated exclusively to M(2) 
owing to the absence of absorption bands at Δ=-50 cm-1 
from the tremolite reference band in the FT-IR spectrum 
(Raudsepp et al., 1987) possibly indicating the presence of 
M(1)+M(3)Fe3+.

    cell parameters of fibrous richterite are consistently 
smaller than those of prismatic winchite (Gunter et al., 
2003) (Table 4). Cell parameters calculated according to 

Table 2. Experimental details of the X-ray diffraction data 
collection and miscellaneous data for the refinement for the 
fibrous richterite from Libby. Statistical descriptors as defined 
by Young (1993).

Instrument Bruker AXS D8 Advance
X-ray tube CuKα at 40 kV and 40 mA

Incident beam optic Multilayer X-ray mirrors
Sample mount Rotating capillary (60 rpm)
Soller slits 2 (2.3° divergence + radial)

Divergence slit 0.8 mm 
Detector Position Sensitive Detector 

(PSD) VÅNTEC-1 opening 
window 6° 2q

2θ range (°) 5-140
Step size (°) 0.02

Counting time (s) 10
Rp (%); Rwp (%); RF

2 (%) 1.75; 2.35; 6.48
Reduced χ2 3.26

Restraints contribution  
to χ2 (% of total χ2)

375 (1.88)

Refined parameters 91
Peak-cut-off (%) 0.2

J 1.052
GU; GV; GW; LX 11(5); 99(5); 4.9(12); 5.47(14)
S/L=H/L 0.0153* 

Richterite; microcline (wt%)96.50(13); 3.50(13)

Note: * Kept fixed throughout the last stages of the refinement.

Table 3. Fractional coordinates and isotropic displacement 
parameters (not refined) for fibrous richterite from Libby.

Site x y z Uiso (Å2)
O(1) 0.1128(6) 0.0860(3) 0.2170(10) 0.013
O(2) 0.1175(7) 0.1705(3) 0.7285(10) 0.014
O(3) 0.1071(8) 0 0.7136(13) 0.014
O(4) 0.3610(8) 0.2487(2) 0.8030(12) 0.015
O(5) 0.3451(8) 0.1313(2) 0.0926(10) 0.015
O(6) 0.3416(8) 0.1183(2) 0.5918(9) 0.014
O(7) 0.3299(9) 0 0.2877(14) 0.016
T(1) 0.2787(4) 0.08501(13) 0.2975(5) 0.011
T(2) 0.2855(4) 0.17101(13) 0.8038(5) 0.011
M(1) 0 0.0895(2) 0.5 0.009
M(2) 0 0.17958(18) 0 0.010
M(3) 0 0 0 0.020
M(4) 0 0.2764(2) 0.5 0.018
A(2/m) 0 0.5 0 0.105
H 0.214* 0* 0.775* 0.030
Note: * Kept fixed throughout the refinement.

Table 4. Cell parameters of fibrous richterite from Libby. For 
comparison purposes, data of prismatic winchite from the same 
locality (G2003) (Gunter et al., 2003) are reported as well as 
the calculated cell parameters following Hawthorne and Oberti 
(2007).

a (Å) b (Å) c (Å) ß(°)

G2003 9.879(2) 18.024(3) 5.288(1) 104.377(3)

calculated 
G2003

9.878(15) 17.997(11) 5.276(5) 104.554(8)

Present 
work

9.8669(2) 17.9713(3) 5.27388(7) 104.3687(11)

calculated 
present 
work

9.884(15) 17.986(11) 5.276(5) 104.54(8)
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Libby G2003 Libby G2003
T(1)-O(1) 1.586(5) 1.606(2) T(2)-O(4) 1.583(5) 1.589(3)
T(1)-O(7) 1.614(3) 1.631(2) T(2)-O(2) 1.606(5) 1.613(3)
T(1)-O(5) 1.625(5) 1.630(2) T(2)-O(6) 1.661(5) 1.679(2)
T(1)-O(6) 1.635(5) 1.627(2) T(2)-O(5) 1.652(5) 1.658(2)

<T(1)-O> 1.615 1.624 <T(2)-O> 1.626 1.635

M(1)-O(3) x 2 2.093(6) 2.091(2) M(2)-O(4) x 2 1.978(6) 1.983(2)
M(1)-O(1) x 2 2.072(5) 2.067(2) M(2)-O(2) x 2 2.060(6) 2.080(2)
M(1)-O(2) x 2 2.054(6) 2.068(2) M(2)-O(1) x 2 2.178(5) 2.171(2)
<M(1)-O>  2.073 2.075 <M(2)-O>  2.072 2.078
calculated* 2.066 2.063 calculated* 2.075 2.081
M(3)-O(3) x 2 2.047(6) 2.058(3) M(4)-O(4) x 2 2.393(6) 2.351(2)
M(3)-O(1) x 4 2.076(5) 2.080(2) M(4)-O(2) x 2 2.393(6) 2.415(3)
<M(3)-O> 2.066 2.073 M(4)-O(6) x 2 2.576(6) 2.564(2)
calculated* 2.064 2.067 M(4)-O(5) x 2  2.842(6) 2.836(2)

<M(4)-O>  2.551 2.542
<A(2/m)-O> 2.933 2.937 calculated* 2.538 2.529

Table 5. Selected bond distances (Å) fibrous richterite from Libby. Reference data 
of Gunter et al. (2003) (G2003) from single-crystal refinement are also reported 
for comparison. * Calculated <M-O> distances following Hawthorne and Oberti 
(2007).

Figure 3. Rietveld plots of fibrous richterite from Libby. 
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Figure 4. Composition of individual fibres of the richterite sample from Libby in the Leake’s classification graph (Leake et al., 1997). 
Modified from Fantauzzi et al. (2012). 

s.s.
from

refinement
Possible site occupancy

s.s.
from site

occupancy
A 9.54(13) 9.19

A site sum 9.54(13) Na0.362; K0.274 9.19

M(4) 29.48(16)

B site sum 29.48(16) Ca1.063; Na0.937 31.57

M(1) 23.02(14) Mg1.920; Fe2+
0.080 25.12

M(2) 29.21(17) Mg1.614; Fe3+
0.301; Fe2+

0.032;
Cr0.025; Ti0.008; Al0.002; Mn0.018

29.28

M(3) 12.05(11) Mg0.950; Fe2+
0.050 12.70

C sites sum 64.28(42) 67.10

A+B+C sites sum 103.30(71) 107.86

* epfu: electrons per formula unit.

Table 6. Site-scattering (s.s) values  (epfu*) for the fibrous richterite for Libby 
experimentally obtained from the structural refinement (left) and calculated from site 
occupancy (right). Possible site occupancy (central) is the result of combining chemical 
and Rietveld refinement data.
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the predictive equations of Hawthorne and Oberti (2007) 
are consistent with this trend. As mentioned above, the 
main chemical difference between fibrous richterite and 
prismatic winchite is related to a significantly higher F 
content of the former, which is expected to prevalently 
contribute to the cell contraction of richterite (see 
predictive equations reported in Table 12 of Hawthorne 
and Oberti, 2007). The <T-O> distance for fibrous 
richterite (1.621 Å) is slightly smaller than that of prismatic 
winchite (1.629 Å) (Table 5). In particular, <T(1)-O> 
(1.615 Å) and <T(2)-O> (1.626 Å) are among the mean 
shortest distances reported for C2/m amphiboles with [4]

Al<0.06 apfu (see Fig. 15 in Hawthorne and Oberti, 2007). 

The presence of tetrahedrally-coordinated Al (0.04 apfu) 
is confirmed by FT-IR investigation, due to the presence of 
the absorption band at 3706 cm-1 (Figure 2) that indicates 
the presence of both T(1)Al and O(3)F (Hawthorne and 
Della Ventura, 2007). The observed <M(1)-O> (2.073 Å) 
<M(2)-O> (2.072 Å) and <M(3)-O> (2.066 Å) distances 
(Table 5) are in good agreement with those calculated 
using the equations of Hawthorne and Oberti (2007) 
(2.066 Å, 2.075 Å and 2.064 Å, respectively). The mean 
discrepancy is ca. 0.004 Å which is at the same level as the 
mean standard error of estimate of the three regression 
formulae (0.0046 Å) used for modelling the [6]M sites 
(Hawthorne and Oberti, 2007). It is worth noting that 

Present work G2003 Present work G2003
Oxides wt% wt% Sites apfu apfu
SiO2 57.53(37) 57.48(38) Si 7.961 7.967

TiO2 0.08(4) 0.10(2) [4]Al 0.039 0.033

Al2O3 0.25(10) 0.32(4) ∑T 8.000 8.000

Cr2O3 0.15(8) -
MgO 21.75(64) 21.43(23) [6]Al 0.002 0.019
CaO 7.16(70) 7.51(17) Ti 0.008 0.010
MnO 0.15(5) 0.32(8) Cr 0.025 -
FeOtot 4.00(104) 4.59(13) Fe3+ 0.301 0.343

Na2O 4.84(45) 4.35(21) Mg 4.488 4.429

K2O 1.55(26) 1.08(5) Fe2+ 0.162 0.189
F 1.88(27) 0.84(12) Mn 0.020 0.010
Cl 0.01(1) - ∑C 5.004 5.000
H2O* 1.26 1.77(5)

Mn - 0.028

Ca 1.063 1.115
100.61 99.76 Na 0.937 0.857

F,Cl=O 0.79 0.35 ∑B 2.000 2.000
Total 99.82 99.41

Na 0.362 0.333
**Fe2O3 2.89 3.29 K 0.274 0.191
**FeO 1.40 1.63 ∑A 0.636 0.524

OH 1.163 1.637
F 0.823 0.368
Cl 0.002 -

∑O(3) 1.988 2.005

Table 7. Average chemical composition obtained by Electron Microprobe (23 
analytical points) and the mean crystal-chemical formula of the fibrous richterite 
from Libby (recalculated from Fantauzzi et al., 2012). Data recalculated from 
Gunter et al. (2003) are reported for comparison purposes (G2003).

Note: *estimated from stoichiometry. **measured by 57Fe Mössbauer spectroscopy.
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the largest discrepancy between refined and calculated 
bond distances involves <M(1)-O> which has a smaller 
calculated value by 0.007 Å. The same behaviour is shown 
by prismatic winchite, which surprisingly shows a mean 
difference (0.007 Å) higher than that observed from 
XRPD data for fibrous richterite. The slight increase in 
<M(4)-O> distance observed for fibrous richterite with 
respect to prismatic winchite correlates with the higher 
M(4)Na content. In both cases, the calculated <M(4)-O> 
distance is 0.013 Å smaller than the refined distance. 
Nevertheless, the difference is at the same level as the 
mean standard error of estimate of the regression formula 
(0.011 Å) for [8]M (Hawthorne and Oberti, 2007). The 
total site scattering s.s. of the non-tetrahedral cation sites 
was calculated from the chemical data integrated with the 
Mössbauer analysis for iron valence. The site occupancy 
was obtained by combining the chemical data with 
the Rietveld-refinement results using the conventional 
assignment to the C group sites following Hawthorne 
(1981). It is worth noting that there is a discrepancy of 
-5% of the s.s. from structure refinement with respect to 
those from site occupancy (Table 6) for A, B and C group 
sites. This is in qualitative agreement with the findings of 
Vignaroli et al. (2014). Nevertheless, in the present case, 
within the C sites, almost all the discrepancy is taken up 
by M(1), differently to M(2) reported by Vignaroli et al. 
(2014). It has been suggested that this behaviour could be 
related to an imperfect absorption correction (Vignaroli 
et al., 2014). The present results support this hypothesis, 
as an increase in the capillary diameter with respect to 
that used in previous investigations (1 mm instead of 
0.7 mm) has produced similar effects but distributed 
in a different way among the various A, B, and C group 
sites. The observed <A-O> distance in fibrous richterite is 
similar to that observed for the prismatic winchite. The 
difference between refined s.s. and those calculated from 
chemical data for the A site reaches ca. 4% relative (Table 
6) and possibly partly reflects the simplified model used 
for the A site (a single site located at 0, ½, 0), which does 
not properly take into account the possible presence of 
electron density at the A(m) and/or A(2) sites.

LIBBY AMPHIBOLES: IMPLICATION 
As a result of the high rates of respiratory diseases 

found in the miners of the now-closed vermiculite mine, 
the fibrous amphiboles occurring in the vermiculite 
deposit near Libby represent an environmental and health 
problem for the local citizens. Furthermore, it is worth 
noting that surface-reactivity investigation for fibrous 
richterite from Libby showed significant production 
of HO• radicals, which makes it potentially even more 
harmful than tremolite asbestos (Fantauzzi et al., 2012). 
However, in Libby, fibrous amphiboles are made of 
fibres forming solid-solution series, with an average 

composition at the boundary between winchite and 
richterite, neither of which is regulated as asbestos. From 
a legal perspective, this finding makes it necessary to 
regulate both of the winchite-richterite series. Mazziotti-
Tagliani et al. (2009) and Andreozzi et al. (2009) reported 
a similar case for amphibole fibres from Biancavilla 
(CT), Sicily, Italy. At this locality, amphibole fibres within 
altered volcanic rocks, mined for commercial purposes, 
were recognized as the cause of the anomalously high 
incidence of malignant mesothelioma in miners and/
or local inhabitants. Fibres in Biancavilla are a solid-
solution series with compositions ranging from fluoro-
edenite [NaCa2Mg5Si7AlO22F2] (dominant) to winchite 
[□NaCaMg4(Al,Fe3+)Si8O22(OH)2], with variable 
tremolite [□Ca2(Mg,Fe2+)5Si8O22(OH)2] component. 
Very recently, fluoro-edenite has been included by IARC 
in the Group 1 Human-Carcinogens list (IARC, 2014, 
in press). These cases highlights the important role that 
mineralogical investigations play in the redefinition of 
non-regulated materials. 
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