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INTRODUCTION
Ophiolites give important information about the 

composition of the fossil oceanic lithosphere and upper 
mantle. They give an insight into the processes of partial 
melting and the location of mantle formation, e.g. mid-
ocean ridge vs back arc basin origin and lithospheric versus 
asthenospheric mantle. Therefore, they are considered to 
be significant for the reconstruction of the paleotectonic 
evolution of orogenic belts.

Ophiolites can be classified to the first order as 
subduction-related and subduction-unrelated types 
(Dilek and Furnes, 2014). Subduction-related ophiolites 
include suprasubduction zone (SSZ) and volcanic arc 
(VA) ophiolites The SSZ type ophiolites formed in 
subduction-initiation (forearc) and backarc basin settings. 
Subduction-unrelated types include continental margin 
(CM), mid-ocean ridge (MOR), and plume-type (P) 
ophiolites (Pearce, 2014).
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The ophiolitic sequences of the southern Apennines are 
remnants of the Jurassic western Tethys realms (Figure 
1 a,b,c). The ophiolite is part of the Liguride Complex 
(Ogniben, 1969), which represents the upper structural 
unit of the southern Apennines. It includes sequences 
characterized by high pressure/low temperature 
metamorphic overprint: the Frido Unit (Vezzani, 1969; 
1970; Lanzafame et al., 1979; Spadea, 1982; Sansone 
and Rizzo, 2012; Sansone et al., 2012 a,b) and sequences 
lacking of an orogenic metamorphism: the North 
Calabrian Unit (Bonardi et al., 1988). 

In this study we present new geochemical analyses of 
the gabbro unit of the ophiolite of the North Calabrian Unit 
(Pollino Massif, Italy, Figure 1a). We show new results 
and give new models for the mantle source generating the 
melts and for the geodynamic setting, as well as for later 
melt modifying processes. We compare the ophiolite of the 
North Calabria Unit with the other ophiolitic complexes 
as Albanide-Hellenide systems and the Internal Ligurides 
(Vara Unit). These new results may be important for the 
geodynamic evolution of the Mediterranean area. 

GEOLOGICAL SETTING
The Southern Apennine Chain is a fold and thrust 

belt as resulted from the convergence between African 
and European plates (upper Oligocene-Quaternary) 
(Patacca and Scandone, 2007 and references therein) 
and the simultaneous rollback of the SE-directed Ionian 
subduction (Gueguen et al., 1998; Cello and Mazzoli, 
1999; Doglioni et al., 1999). In the Southern Apennine, the 
accretionary wedge is related to the Oligocene northward 
subduction of an Alpine Tethys sector as Stampfli et al. 
(2002) or western Thetys sector as Bracciali et al. (2007) 
supposed.

The Calabrian-Lucanian Apennine is a sector of the 
southern Apennines at the Lucania-Calabria border zone 
along the northeast of the Pollino chain (Monaco et al., 
1995). This sector includes allochthonous parts of the 
Liguride Complex (Schiattarella, 1996; Giano et al., 
2014; Giano and Giannandrea, 2014). They are formed 
in the Late Cretaceous-Oligocene times (Knott, 1994) 
after NW-directed subduction of the oceanic and thinned 
continental lithosphere of the Alpine Tethys (Ciarcia et al., 

Figure 1. a) Tethyan Ophiolites of Southern Apennines; b) simplified geological map of the studied area; c) schematic column of the 
sample area (isn’t in scale).
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2012). The Calabrian-Lucanian Apennine was originally 
interposed between a northern continental margin (Turco 
et al., 2012) and the Adria block, of African affinity, to the 
south (Vitale et al., 2013).

The Liguride Complex includes bodies of oceanic and 
continental crust (Vezzani, 1969, Laurita et al., 2014) 
as well as sedimentary sequences (Upper Jurassic to 
Upper Oligocene, Monaco and Tortorici, 1995). More in 
particular, the Liguride Complex constituted, from bottom 
to top by the North Calabrian Unit, the Frido Unit, and 
the Crystalline metamorphic Units (Di Leo et al., 2005). 
The North Calabrian Unit is composed of the Crete Nere 
Formation, the Saraceno Formation and the Albidona 
Formation (Di Leo et al., 2005).

The North Calabrian Unit is a broken formation that, 
tectonically dismembered into several thrust sheets, is 
made up of a succession of pelitic matrix containing blocks 
of ophiolites, pelagic sediments, turbiditic sequences and 
very rare andesites and dacites (Tortorici et al., 2009). This 
unit has been affected by oceanic alteration (Sansone et 
al., 2012 a,b) and is lacking any orogenic metamorphism. 

The Frido Unit consists of low-grade phyllites, 
calcschists, and metalimestones with associated ophiolites 
(Rizzo et al., 2016). Slivers of continental crust (Spadea, 
1982; Knott, 1987, 1994; Monaco et al., 1995; Monaco 
and Tortorici, 1995; Tortorici et al., 2009) occur as a 
thrust fault delimiting the upper portion of this unit from 
a lower portion (Laurita et al., 2014). 

OPHIOLITES OF THE SOUTHERN APENNINES 
Ophiolites of the Southern Apennines (Figure 1) are 

extensively exposed in the northeastern slope of the Pollino 
Ridge (Vezzani, 1969; Bonardi et al., 2009; Monaco and 
Tortorici, 1995; Vitale et al., 2013; Sansone et al., 2011). 
They occur in the high-pressure (HP) metamorphic Frido 
Unit as well as in the low grade North Calabrian Unit.

Ophiolite bodies of the blueschist-facies metamorphic 
Frido Unit consist of serpentinites derived from a 
lherzolitic and subordinately harzburgitic mantle 
(Lanzafame et al., 1979; Spadea, 1982; Beccaluva et 
al., 1982; Sansone et al., 2011; Sansone et al., 2012 a,b; 
Vitale et al., 2013; Dichicco et al., 2015; Dichicco et al., 
2017) minor metagabbros, metabasalts, diabases and their 
respective sedimentary cover (Vezzani, 1970; Spadea, 
1982, 1994).

Ophiolites of the North Calabrian Unit (Timpa delle 
Murge, Timpa di Pietrasasso sequence, (Figure 1 a,b,c), 
on which this work is concentrated do not exhibit 
any subduction related high-pressure metamorphism 
(Lanzafame et al., 1978; Bonardi et al., 1988). They 
are composed of scarce Mg-gabbro cumulates (Spadea, 
1979) and stratigraphically overlained by pillow lavas 
pillow breccias, hyaloclastites, diabases. The sedimentary 

cover consists of siliceous shales, radiolarian cherts, and 
limestones (Lanzafame et al., 1979).

The gabbros of the Frido Unit and the North Calabrian 
Unit are only a small part of the ophiolites from the 
Calabria-Lucania area and occur as bodies not exceeding 
one km3 in volume (Beccaluva et al., 1982). They consist 
mainly of saussuritized plagioclase, olivine and relics 
of clinopyroxene (diopside according to Beccaluva et 
al., 1982; or diallage according to Lanzafame et al., 
1978). The occurrence of brown hornblende suggests 
a recrystallization under amphibolite followed by 
greenschist facies conditions (Beccaluva et al., 1982).

The nearby diabases show intersertale, subophitic 
textures (Lanzafame et al., 1978). Metamorphism of 
the gabbros and diabases is characterized by prehnite-
pumpellyite facies to greenschist facies mineral 
assemblages. The oceanic metamorphic evolution is 
characterized by albite, chlorite, tremolitic hornblende, 
white mica and epidote. Pillows and pillow breccias 
preserve their original structure and minerals. The 
prevalent basaltic rocks have intersertal structure, while 
porphyric rocks are rare (Lanzafame et al., 1978, 1979; 
Bonardi et al., 1988).

OPHIOLITES OF THE ALBANIDE AND HELLENIDE
Ophiolites of the Albanide-Hellenide include mid-ocean 

ridge basalt (MORB) associations in the western Mirdita 
sector and supra-subduction zone (SSZ) complexes, with 
prevalent island arc tholeiitic (IAT) and minor boninitic 
affinities in the eastern part of the belt (i.e. eastern 
Mirdita, Pindos, Vourinos) (Beccaluva et al., 2005). These 
ophiolites formed in an intraoceanic subduction setting 
located near an active mid-ocean spreading ridge (Bebien 
et al., 2000; Insergueix-Filippi et al., 2000).

Some authors also considered a model where the 
Albanide-Hellenide ophiolites formed in a back-arc 
spreading system oblique to a west-dipping subduction 
zone (Hoeck et al., 2002).

OPHIOLITES OF THE INTERNAL LIGURIDES
The Internal ligurides ophiolites is a remnant of the 

oceanic lithosphere of the Jurassic Ligurian Tethys, and 
consists of depleted mantle peridotites (Rampone et al., 
1996, 1997, 2008, 2009; Rampone and Hofmann, 2012) 
intruded by large-scale MOR-type gabbroic sequences 
(Principi et al., 2004; Menna, 2009; Sanfilippo and 
Tribuzio, 2013) and covered by pillow lavas and 
ophiolitic breccias. The structural and compositional 
characteristics are similar to oceanic lithosphere from 
slow and ultra-slow spreading ridges (Lagabrielle 
and Cannat, 1990; Tribuzio et al., 1995, 1999, 2004; 
Sanfilippo and Tribuzio, 2011; Alt et al., 2012; 
Schwarzenbach et al., 2012).
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SAMPLING AND ANALYTICAL METHODS
Seven samples of gabbros of the North-Calabrian 

Unit were collected at Timpa delle Murge. They were 
examined petrographically under optical microscopy and 
scanning electron microscopy coupled with EDX. This 
analysis was performed by using a Philips (XL30 ESEM) 
instruments, operated at 20 KV acceleration voltage and 
15 nA beam current.

Bulk analyses were carried out by XRF and ICP-
MS (Table 1). Major elements were measured at the 
Dipartimento di Biologia, Università della Calabria 
(Arcavacata di Rende, Cosenza, Italy) by XRF on powder 
pellets, using XRF BRUKER S8 TIGER and following the 
matrix correction methods by Franzini et al. (1972, 1975), 
and Leoni and Saitta (1976). Average errors for trace 
elements were less than 5% except for those elements 
lower than 10 ppm (5-10%). The estimated precision and 
accuracy for trace element determinations are better than 
5%, except for those elements having a concentration of 
lower than 10 ppm (10-15%). Total loss on ignition was 
gravimetrically estimated by overnight heating at 950 
°C. The standards used to calibrate XRF analyses were: 
AGVB1, AGVB2, BCRB1, BCRB2, BR, DRBN, GA, 
GSPB1, GSPB2, NIMBG. The concentration of the rare 
earth elements (REE) and other trace elements (Sc, V, Ba, 
Sr, Y, Zr, Cr, Co, Ni, Cu, Ga, Ge, Rb) were obtained at the 
Ancaster Activation Laboratories, Canada, by ICP-MS. 
Average errors for these different elements range from 5 
to 20%.

PETROGRAPHY
The gabbros of the ophiolitic suite are medium to 

coarse grained and of dark to light green color. They are 

generally composed of 40–60 vol% plagioclase and 30-
50 vol% clinopyroxene. Amphiboles (brown amphiboles, 
green amphiboles and actinolite) are minor constituents 
(1-10 vol%). The gabbros have usually a cumulate texture 
and they don’t show any evidence of shape- or lattice- 
preferred orientation. The common occurrence of large 
subhedral clinopyroxenes (Figure 2a) indicates that these 
are the dominant cumulate phase, with plagioclase both as 
cumulus and as intercumulus.

In addition to the primary magmatic paragenesis 
clinopyroxene, plagioclase (pl 1) (Figure 2b), other 
mineralogical phases (green hornblende, actinolite, 
chlorite, epidote, plagioclase (pl 2), quartz and white 
mica and accessory opaque minerals) are formed to 
lower amphibolite or upper greenschist facies (oceanic) 
metamorphic minerals. Undeformed coronitic rims of 
brown hornblende are found around clinopyroxene, 
suggesting a late magmatic crystallization deriving from 
alteration of clinopyroxene due to interaction of gabbros 
with seawater-derived hydrothermal fluids. 

Subhedral prisms of plagioclase (grain size of 0.04-0.07 
mm) often show deformation twins in addition to growth 
twins. This reveals, that the plagioclase experienced the 
activation of intracrystalline deformation under high-
temperature (metamorphic) conditions. The analyses of 
the anorthite content shows An>50. However structural 
and chemical analyses indicate a retrogression to 
oligoclase (An12-20, Table 2) and more often to albite 
(An5-9, Table 2). Crystals of clinopyroxene (grain size 
of 0.03-0.07 mm) are subhedral to euhedral, pleochroic 
from pale-brown-green, and are zoned (Figure 2c, 
Table 3). Some crystals show exsolution lamellae of 
orthopyroxene or exsolved iron oxides along cleavage 

wt% GI1 GI2 GI3 GI4 GI5 GI6 GI7

SiO2 51.56 51.14 49.13 50.99 49.45 50 49

TiO2 0.243 0.324 0.269 0.218 0.254 0.252 0.26

Al2O3 15.01 19.54 18.48 15.2 17.69 17 18

Fe2O3(T) 4.79 3.77 5.07 5.36 4.75 4.7 5.06

MnO 0.117 0.102 0.127 0.125 0.11 0.1 0.1

MgO 10.24 6.38 8.07 11.58 8.09 8.05 8.06

CaO 9.7 9.63 9.62 8.56 9.66 9.7 9.6

Na2O 3.01 3.51 3.57 3.16 3.4 3.3 3.5

K2O 1.18 1.69 0.74 0.93 0.87 0.85 0.8

P2O5 0.02 0.02 0.0001 0.0001 0.0001 0.0001 0.0001

LOI 3.77 3.81 4.52 4.11 4.42 4.4

Total 99.63 99.92 99.58 100.2 98.68 98.35 98.68

Table 1. Chemical composition of the analyzed gabbros.
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ppm GI1 GI2 GI3 GI4 GI5 GI6 GI7

Sc 40 28 31 36 32 32 32

Be <1 <1 <1 <1 <1 <1 <1

V 146 124 130 128 131 131 129

Ba 56 125 155 39 112 112 120

Sr 116 175 166 164 136 136 140

Y 6 7 6 6 6 6 6

Zr 6 16 9 5 8 8 9

Cr 430 130 110 420 130 130 129

Co 32 20 29 38 31 31 30

Ni 150 50 80 180 90 90 95

Cu 20 50 30 < 10 180 180 160

Zn <30 <30 <30 <30 <30 <30 <30

Ga 9 12 12 9 11 11 10

Ge 1 1 2 1 2 2 2

As <5 <5 <5 <5 <5 <5 <5

Rb 7 11 5 6 5 5 6

Nb <1 <1 <1 <1 <1 <1 <1

Mo <2 <2 <2 <2 <2 <2 <2

Ag <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5

In <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2

Sn <1 6 <1 <1 <1 <1 <1

Sb <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5

Cs 0.7 1.2 <0.5 0.5 <0.5 <0.5 <0.5

La 0.5 0.9 0.6 0.4 0.5 0.5 0.6

Ce 1.1 2.2 1.5 0.9 1.3 1.3 1.4

Pr 0.17 0.33 0.23 0.17 0.22 0.22 0.24

Nd 1.3 1.9 1.6 1.1 1.2 1.2 1.4

Sm 0.5 0.7 0.6 0.4 0.5 0.5 0.6

Eu 0.25 0.47 0.46 0.35 0.38 0.38 0.4

Gd 0.8 0.9 0.9 0.7 0.8 0.8 0.8

Tb 0.2 0.2 0.2 0.1 0.2 0.2 0.2

Dy 1.1 1.3 1.1 0.9 1.1 1 1.1

Ho 0.2 0.3 0.2 0.2 0.2 0.2 0.3

Er 0.7 0.8 0.7 0.6 0.7 0.7 0.8

Tm 0.11 0.12 0.11 0.09 0.11 0.11 0.1

Yb 0.7 0.8 0.7 0.6 0.7 0.7 0.8

Lu 0.1 0.12 0.1 0.1 0.1 0.1 0.15

Hf <0.2 0.3 0.2 <0.2 0.2 0.2 0.3

Ta <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1

W 2 1 1 <1 <1 <1 <1

Tl 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1

Pb <5 <5 <5 <5 <5 <5 <5

Table 1. ... Continued



Periodico di Mineralogia (2018) 87, 5-20 Rizzo G. et al.10

PM

Figure 2. Microphotographs of thin section of the studied gabbros. a) igneous texture and coarse grain size; b) large subhedral 
plagioclase with deformation twins, with minor sericitization along grain boundaries; c) common habit of clinopyroxene with thin 
orthopyroxene exsolution lamellae along cleavage plane; d) interstitial actinolite in zone of alteration; e) minor brown hornblende 
occurs often forming undeformed coronitic rim around clinopyroxene; f) green amphiboles and aggregates of chlorite, representing the 
hydrothermal/metamorphic stage. Cpx=clinopyroxene; Pl=plagioclase; Act=actinolite; Chl=chlorite.
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planes. Pleochroic yellow to brown amphibole (Figure 
2e) occurs subhedral, often forming undeformed coronitic 
rim around clinopyroxene. Clinopyroxene is replaced by 
green, subhedral hornblende, indicative of hydrothermal 
alteration at late magmatic or amphibolite to upper 
greenschist facies conditions. In addition, clinopyroxene 
shows commonly rims of actinolite or chlorite (Figure 
2d, Table 4, Table 5). Colorless to pale green actinolite 
(Figure 2f) occurs as prismatic crystals or fibrous 
aggregates. Chlorite overgrowths clinopyroxene or 
replaces amphibole or forms fan-felt radiated aggregates. 
Epidote crystals have a pale brownish color and subhedral 
habit. White mica forms pseudomorphs to plagioclase 
crystals. Opaque minerals are present as accessory phase, 
they occur as inclusion in clinopyroxene and actinolite 
crystals. Sometimes opaque minerals show rims of Fe-
hydroxide. Polymineralic veins composed of quartz, 
plagioclase, chlorite, and white mica cut the gabbros.

GEOCHEMISTRY
In addition to their modal composition, the total alkalies/

SiO2 ratios (according to Le Bas et al., 1986) classifies 

the samples as gabbros (Table 1, Figure 3). These 
ratios indicate a subalkaline near to alkaline character. 
Nevertheless the K2O concentrations are mostly below 
1.0 wt%. Cr/SiO2 ratios (according to Middlemost, 1975) 
reveal a tholeiitic trend, although two samples show a 
more calk-alkaline trend. All samples have normative 
olivine, hypersthene and diopside in varying percentage. 
The samples do not contain neither normative or modal 
quartz.

The investigated gabbros are characterized by 
varying but high MgO concentrations of 6.38 to 11.60 
wt% with mg#=61-69 [mg#=100Mg/(Mg+Fetot)], Cr 
concentrations mostly between ca. 130 and 430 ppm, and 
Ni between ca. 50 and 200 ppm. Therefore, the gabbros 
represent variable but only weakly fractionated melts of 
basaltic composition. The samples contain remarkable 
low concentrations of a few trace elements: only two 
samples have P2O5 above the detection limit (0.01wt%), 
Nb and Ta, are below detection limit (1.0 and 0.1 ppm), 
as well as Th and Pb. TiO2 concentrations are below 0.25 
wt%. Also K2O is low with 5 of 7 samples lower than 1.0 
wt%. The total amount of rare earth elements (REE) is 

wt% GI2.1 GI3.1 GI3.2 GI2.2

SiO2 70.29 71.18 72.48 72.60

Al2O3 19.41 18.64 18.00 18.19

FeO 0.00 0.00 0.13 0.00

MnO 0.00 0.012 0.00 0.00

CaO 2.06 0.69 0.33 0.52

Na2O 8.29 9.13 9.14 8.67

K2O 0.00 0.10 0.00 0.02

Total 100.05 99.75 100.08 100.00

Si4+ 3.04 3.08 3.12 3.12

Al3+ 0.99 0.95 0.91 0.92

Fe2+ 0.00 0.00 0.001 0.00

Mn2+ 0.00 0.001 0.001 0.00

Ca2+ 0.10 0.03 0.02 0.02

Na 0.69 0.77 0.76 0.72

K 0.00 0.01 0.001 0.00

Total 4.82 4.83 4.81 4.78

Ab 87.93 95.33 98.04 96.65

An 12.07 3.98 1.96 3.20

Or 0.00 0.69 0.00 0.15

Table 2. Chemical composition of plagioclase.
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quite low, too and below 11ppm. In order to evaluate melt 
generating and modifying processes in a qualitative way, 
the compositions of the gabbros have been normalized to 
chondrite (Figure 3) and primitive mantle (PRIMA; Figure 
4) and compared to PRIMA-normalized N-MORB. The 
chondrite-normalized values (Figure 4) and patterns show 
a positive slope from light to heavy rare earth elements as 
pointed out by a Lan/Smn and Lan/Ybn ratio below 0.65 
and 0.6, except sample 2 with 0.8 and 0.76. However, 
Eu shows a significant positive anomaly with Eu/Eu* 
between 1.2 and 2.

The normalization to primitive mantle composition 
(Figure 4) indicates a significant depletion in Nb, P, Zr 
and Ti as well as a significant enrichment in the fluid 
mobile large ion lithophile elements (LILE) Ba, Rb and K 
as well as Sr and Eu.

MELT SOURCE AND GEODYNAMIC IMPLICATIONS
Most Thetyan ophiolites display an evolution from 

MORB-like to island arc tholeiites and boninites, 
calcalkaline and alkaline magmatism (Hawkins, 1977; 
2003; Stern and Bloomer, 1992; Dilek et al., 2007, 2009; 
Principi et al., 2004).

The relatively low PRIMA-normalized values of most 
trace elements and the rare earth pattern with Lan/Ybn 
ratios <1 and low Lan/Smn (<0.7), as well as low K2O< 
1.0 wt% ratios indicate, that the studied gabbros derived 
from a mantle source which was depleted by previous 
melting episodes, i.e. a typical N-MORB situation 
(Schilling et al., 1983). The heavy rare earth elements 
are more than four times enriched, indicating the lack of 
residual garnet in the mantle source and pointing to melt 
generation in the uppermost spinel-bearing mantle, too. 
The positive Eu anomaly point to unfractionated Ca-rich 

wt% GI2.1 GI2.4 GI3.2.1 GI3.2.2 GI3.2.3 GI2.1.1
core core core rim rim core

SiO2 53.28 53.70 53.73 53.67 54.00 54.00
TiO2 0.60 0.54 0.69 0.59 0.58 0.57
Al2O3 2.42 2.43 2.20 2.02 2.00 2.25
Cr2O3 0.23 0.17 0.33 0.10 0.01 0.19
FeO 6.63 6.53 6.63 6.84 6.30 6.33
MnO 0.20 0.36 0.11 0.28 0.19 0.24
MgO 13.25 13.43 13.77 13.95 13.80 13.73
CaO 23.20 22.55 22.35 22.00 22.68 22.29
Na2O 0.21 0.29 0.21 0.21 0.23 0.24
Total 100.02 100.00 100.02 99.66 99.79 99.84
Si 1.96 1.97 1.97 1.98 1.99 1.98
Ti 0.02 0.01 0.02 0.02 0.02 0.02
Al 0.11 0.11 0.10 0.09 0.09 0.10
Cr 0.01 0.00 0.01 0.00 0.00 0.01
Fe3+ 0.03 0.03 0.03 0.02 0.02 0.01
Mg 0.73 0.74 0.75 0.77 0.76 0.75
Ca 0.92 0.89 0.88 0.87 0.89 0.88
Mn 0.01 0.01 0.00 0.01 0.01 0.01
Fe2+ 0.17 0.17 0.17 0.19 0.18 0.19
Na 0.01 0.02 0.01 0.02 0.02 0.02
Total 3.96 3.95 3.95 3.96 3.95 3.95
Mg 39.45 40.43 40.98 41.62 41.08 40.98
SFe 10.81 10.92 10.92 11.35 10.81 10.92
Ca 49.73 48.63 40.08 47.03 48.10 48.08
mg* 66.64 67.28 68.71 67.09 68.65 68.44

Table 3. Chemical composition of clinopyroxenes.
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plagioclase, i.e. Ca2+ substitution in a reducing magma in 
the early fractionation process (Atwood, 2012). The lack 
of quartz-normative samples is probably due to the low 
PH2O conditions of the melt source (Chayes, 1972). This 
point to a MORB generating flat source, too (Chayes, 
1972; Kay, 1980). However, the depletion of the high 
field strength elements (HFSE) Nb, Zr, Ti, and Ta as well 
as P point to a mantle source influenced by subduction 
related processes, such as dehydration or melting of the 
downgoing slab. In addition, the above cited significant 
enrichment of the large ion lithophile elements (LILE) is 
a further evidence of subduction related fluids originated 

from the dehydration of a subducted (oceanic?) slab. This 
resembles an ophiolitic supra subduction Zone (SSZ) 
crust in embryonic arc fore-arc environment (Dilek et 
al., 2005), scenarios where seafloor spreading followed 
subduction. Alternatively, a back arc position is possible.

The up to 70 times PRIMA normalized enrichment of 
K, Rb; Ba and Sr and up to 5 times higher values than 
the N-MORB and very low high field strength elements 
Nb, Ta and Ti concentration (Figure 4) suggest an unusual 
N-MORB character. In addition, enriched (E-MORB) do 
not show this kind of depletion (Schilling et al.,1983). 
Furthermore, the samples are characterized by high LILE/

wt% GI3 GI3 GI3 GI3 GI3 GI3 GI2 GI2 GI2 GI2 GI2

rim core rim core rim rim rim cpx rim cpx rim cpx rim cpx rim cpx

SiO2 54.89 58.08 53.14 52.84 54.90 52.61 44.72 42.12 44.61 44.92 46.02

TiO2 0.20 0.17 0.20 0.28 0.14 0.04 1.54 3.64 2.77 2.31 2.06

Cr2O3 n.d. n.d. n.d. 0.12 n.d. n.d. n.d. n.d 0.03 n.d. 0.01

Al2O3 4.01 1.06 5.12 5.90 3.64 6.19 11.10 11.57 9.74 8.93 8.81

FeO 10.49 10.34 12.92 10.67 10.86 10.77 12.86 14.46 13.16 16.16 14.93

MnO 0.45 0.41 0.31 0.00 0.24 0.28 0.26 0.26 0.24 0.30 0.24

MgO 15.92 16.22 14.27 17.49 15.35 14.55 14.07 11.86 13.60 12.58 12.74

CaO 11.69 11.79 11.55 10.44 12.43 12.73 10.93 10.87 10.90 10.23 10.85

Na2O 0.38 n.d. 0.47 0.25 0.43 0.80 3.16 3.42 3.19 2.92 2.55

K2O n.d. n.d. 0.02 0.01 0.01 0.03 0.28 0.37 0.37 0.48 0.39

Cl n.d. n.d. n.d. n.d. n.d. 0.04 n.d. n.d. n.d. n.d. n.d.

Total 98.03 98.07 98.00 98.00 98.00 98.04 98.92 98.57 98.61 98.83 98.60

Si 7.70 8.14 7.54 7.25 7.78 7.49 6.46 6.22 6.50 6.59 6.72

AlIV 0.30 0.00 0.46 0.75 0.22 0.51 1.54 1.78 1.49 1.40 1.27

AlVI 0.37 0.17 0.39 0.21 0.39 0.53 0.35 0.23 0.18 0.13 0.24

Ti 0.02 0.02 0.02 0.03 0.01 0.00 0.16 0.40 0.30 0.25 0.22

Cr 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Fe3+ 0.27 0.00 0.38 1.23 0.00 0.00 0.24 0.11 0.14 0.28 0.17

Fe2+ 0.96 1.21 1.15 0.00 1.29 1.28 1.20 1.63 1.40 1.56 1.57

Mn 0.05 0.05 0.04 0.00 0.03 0.03 0.03 0.03 0.03 0.03 0.03

Mg 3.33 3.39 3.02 3.58 3.24 3.09 3.03 2.61 2.95 2.75 2.77

Ca 1.76 1.77 1.76 1.54 1.89 1.94 1.69 1.72 1.70 1.60 1.69

Na 0.10 0.00 0.13 0.07 0.12 0.22 0.16 0.21 0.21 0.22 0.19

K 0.00 0.00 0.00 0.00 0.00 0.01 0.05 0.07 0.07 0.09 0.52

Cl 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00

Total 14.86 14.75 14.89 14.67 14.97 15.11 14.91 15.01 14.97 14.9 15.39

Species actinolite actinolite actinolite tremolitic 
hornblende actinolite actinolitic 

hornblende pargasite Ti-rich 
pargasite

Ti-rich 
pargasite

magnesio-
hastingsite pargasite

Table 4. Chemical composition of amphiboles. Amphibole calculation based on 23 oxygens with Fe2+/Fe3+ estimation assuming Σ13 
cations B except for Fe, Mg, Mn amphiboles where Σ15 is applied. Classification after Leake et al. (1997), Leake (2004).
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HFSE ratios like the Ba/Nb ratio (Figure 4a). This reflects 
a significant crustal contamination of the source, whereas 
the low TiO2 concentration display that Ti is available only 
in low concentrations. Jacques et al. (2013) and Wehrmann 
et al. (2014) show by comparing the composition of 
the rocks of the South American magmatic arc that the 
sediments from the Nazca Plate which are subducted at the 
trenches show a clear compositional relationship between 
subducted sediments and arc rocks. The high Ba/Nb ratios 
of the subducted sediments correlate with the high Ba/Nb 
ratios of the arc magmatism. The low Ti concentrations 
are a further evidence for a subduction zone influenced 
magma source (Figure 5b; Verma, 2006). Figure 5 shows 
the different contributions of mantle, island arc and/or 

crustal components on melt composition. In Figure 5a 
the Timpa delle Murge samples reveal the strong crustal 
influence. Figure 5b compares the analyzed gabbros 
with N-MORB and other oceanic crustal compositions. 
The (La/Sm)n ratios and TiO2 concentrations show weak 
similarities to Tonga-Kermadec arc environments (Figure 
5b). Furthermore, the Sr/Ce ratio is a useful indicator of 
subduction derived fluids. According to Wehrmann et al. 
(2014 and references herein). Values over 50 (the analyzed 
samples ranges 70 to 150) indicate a strong contribution 
of subduction derived fluids, comparable to the arc rocks 
of Nicaragua. In contrast the comparable low LREE 
elements are indicator of the small contamination by 
crustal melts. The high Sr concentration shows a possible 

wt% GI3 GI3 GI3 GI2

SiO2 33.29 32.80 34.43 35.40

TiO2 n.d. n.d. n.d. n.d.

Cr2O3 n.d. n.d. n.d. n.d.

Al2O3 18.11 19.05 17.81 16.75

FeO 14.89 13.30 13.66 14.51

MnO n.d. n.d. n.d. n.d.

MgO 22.70 23.84 23.09 22.32

CaO n.d. n.d. n.d. n.d.

Na2O n.d. n.d. n.d. n.d.

K2O n.d. n.d. n.d. n.d.

Total 88.99 88.99 88.99 88.98

Si 6.38 6.24 6.52 6.71

AlIV 1.62 1.76 1.48 1.29

AlVI 2.50 2.55 2.54 2.50

Ti 0.00 0.00 0.00 0.00

Cr 0.00 0.00 0.00 0.00

Fe3+ 0.49 0.44 0.60 0.68

Fe2+ 1.89 1.67 1.57 1.62

Mn 0.00 0.00 0.00 0.00

Mg 6.48 6.76 6.52 6.31

Ca 0.00 0.00 0.00 0.00

Na 0.00 0.00 0.00 0.00

K 0.00 0.00 0.00 0.00

Total 19.36 19.42 19.23 19.11

Species diabantite in cpx diabantite diabantite diabantite

Table 5. Chemical composition of chlorites. Chlorite calculation based on 28 oxygens with Fe2+/Fe3+ and OH calculated assuming full 
site occupancy. 
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additional seawater dehydration of the subducted plate.
In summary, the analyzed and discussed samples of 

the gabbros of the Timpa delle Murge ophiolite show 
evidence of a strong crustal component in an N-MORB – 
like melt. This interference is typical for mantle regions, 
which are influenced by subduction related fluids and 
episodic melting during mid-ocean-ridge processes.

Plausible localizations are oceanic back arc positions 
with embryonic MORB activities or fore arcs. Alternatively, 
recent studies at the Izu-Bonin-Mariana island arc, formed 
in a supra subduction zone environment, show similar 
slab contaminated magmatism in the early stage of the 
island arc formation (Ishizuka et al., 2014).

Similarities with Timpa delle Murge ophiolite, Izu-
Bonin-Mariana and Tonga-Kermadec arc-trench (Dilek 
and Furnes, 2014) are shown in the Albanide-Hellenide 
ophiolites. These are in close association of MORB, IAT, 
boninites and MORB/IAT basalts (Beccaluva et al., 2005). 
This is related to distinctly different magma sources were 
contemporaneously active in a relatively restricted sector 
across an intraoceanic supra-subduction zone (SSZ) 
(Beccaluva et al., 2005).

The Internal Ligurides ophiolites are different from 
Timpa delle Murge. These ophiolites formed by intrusion 
of N-MORB type melts into a heterogeneous mantle 
(Tribuzio et al., 2004) and are similar to residual abyssal 
peridotites (Tribuzio et al., 2004). In particular, these were 

subjected to different processes after the partial melting 
event, furthermore are isotopically depleted relative to 
associated crustal rocks, similar to what is observed for 
the modern oceanic lithosphere (Tribuzio et al., 2004).

CONCLUSIONS
Timpa delle Murge and Albanide-Hellenide ophiolites 

can be classified as subduction- related (Dilek and Furnes, 
2014), Internal Ligurides ophiolites as subduction-
unrelated types (Dilek and Furnes, 2014).  

An oceanic back arc system is generally formed by 
the subduction of an oceanic plate at an oceanic-oceanic 
convergent plate boundary. The geochemical features 
of back arc basin will vary with the development of 
spreading during initial stage back arc formation, and 
the late stage geochemical of mid-ocean ridge basalt 
(MORB) formation. Thus, geochemical signatures show 
MORB evidence with the development of a back arc basin 
and with the signatures being controlled by the interaction 
between the mantle components and the subduction zone 
components. Therefore, the present work indicates that the 
gabbros in the southern Apennines ophiolite have a clear 
back arc basin affinity. In particular, the gabbros in the 
Pollino area are plotted predominantly in the MORB field. 
This may imply that the gabbro in the Pollino area may be 
formed during the initiation of rifting. Recent geological 
and geophysical surveys in the Izu-Bonin-Mariana 

Figure 3. Total alkali versus SiO2 diagram after Le Bas et al. (1986).
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forearc have revealed the occurrence on the seafloor of 
oceanic crust generated in the initial stages of subduction 
and the earliest stage of island arc formation (Ishizuka, 
2014). The earliest magmatism after subduction initiation 
generated forearc basalts, and subsequently, boninitic and 
tholeiitic to calc-alkaline lavas were produced (Ishizuka, 
2014). This volcanic stratigraphy and its time-progressive 
development are analogous to those documented from 

many suprasubduction zone ophiolites (Dilek and Furnes, 
2014; Ishizuka, 2014). 
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