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INTRODUCTION 
The Variscan metamorphic basement of northern 

Sardinia is mainly composed by igneous- and 
sedimentary-derived migmatites (Cruciani et al., 2014a,b; 
Fancello et al., 2018). The age of migmatization in 
Sardinia is still poorly constrained. The first attempt to 
date the migmatization event in northeastern Sardinia 
was by Ferrara et al. (1978) who analysed by the Rb/
Sr method a banded migmatite interpreted to have been 
derived from metamorphic differentiation. Six bands of 
this migmatite, treated as a whole-rock sample, fitted a 
Rb/Sr isochron of 344±7 Ma. These authors suggested 
that at this time, which corresponds to the metamorphic 
climax, the banded migmatite became a closed system. In 
the Migmatite Complex, Cruciani et al. (2008) described 

an amphibole-bearing migmatite cropping out along the 
north-eastern coast of Sardinia which was derived from 
a mid-Ordovician granitoid (biotite+plagioclase+quartz-
bearing protolith) that underwent migmatization during 
the Variscan orogeny. Partial melting P-T conditions, 
estimated by P-T pseudosection approach, are 700-750 °C 
and ~13 kbar (Massonne et al., 2013). These authors also 
estimated P-T conditions of about 10.5 kbar and 700 °C 
for the crystallization of amphibole in the leucosome melt, 
and 9 kbar and 680 °C for the complete crystallization of 
this melt.

In this paper a geochronological study was performed 
on the leucosome and mesosome portions of a selected 
amphibole-bearing migmatite sample by means of 
U-Pb zircon dating and Ar-Ar on amphibole and biotite 
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geochronology. The radiometric data obtained are discussed 
in the context of the metamorphic evolution of the Variscan 
belt in Sardinia and compared with radiometric data of 
migmatites from other European Variscan terranes. The 
aims of the paper are: (i) to increase the geochronological 
dataset referring to the migmatization event in Variscan 
Sardinia and (ii) to shed some light on the widespread 
migmatization event occurred during the Variscan cycle.

GEOLOGICAL SETTING AND FIELD OCCURRENCE 
The Sardinian metamorphic basement belongs to the 

southern European Variscan belt. This basement, which 
underwent polyphase tectono-metamorphic evolution, 
is divided into three main tectono-metamorphic zones 
(Figure 1a): the External Zone in southwestern Sardinia, 
the Nappe Zone, including the External and Internal 
Nappe Zones, in the central part of the island, and the 

Figure 1. (a) Tectono-metamorphic zones of the Variscan chain of Sardinia (modified after Carmignani et al., 2001); (b) Geological 
sketch map of the migmatite outcrop of Punta Sirenella, northeastern Sardinia (modified after Cruciani et al., 2008). Abbreviations: 
Qtz: quartz; Am: amphibole; Sil: sillimanite; Wmca: white mica.
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Axial Zone in northeastern Sardinia (Carmignani et 
al., 2001, and references therein). The Axial Zone also 
extends to southern Corsica (Rossi et al., 2009; Massonne 
et al., 2018). The metamorphic grade increases from sub-
greenschist facies in the External Zone (Cruciani et al., 
2016; Franceschelli et al., 2017) to amphibolite facies in 
the Axial Zone (Franceschelli et al., 1982; 1990; Connolly 
et al., 1994). The Axial Zone includes the Low to Medium 
Grade Metamorphic Complex (L-MGMC), mostly 
showing amphibolite facies assemblages, and the High 
Grade Metamorphic Complex (HGMC) or Migmatite 
Complex, whose metamorphism attains the sillimanite + 
K-feldspar isograd in the migmatites with both igneous 
and sedimentary protoliths (Cruciani et al., 2001). These 
two complexes are separated by the Posada-Asinara 
Line (PAL), a regional scale tectonic line interpreted as 
a major Variscan shear zone (Helbing and Tiepolo, 2005; 
Padovano et al., 2012). The migmatites also include 
hectometric metabasite lenses with eclogite (Cruciani et 
al., 2010, 2011, 2015a; Franceschelli et al., 2005a) and 
granulite facies relics and calc-silicate rocks. 

Ordovician acidic calcalkaline products are distributed 
within the tectonic units from the foreland to the inner 
zone of the chain (Oggiano et al., 2010; Gaggero et al., 
2012; Columbu et al., 2015; Musumeci et al., 2015). 
Variscan metamorphics are intruded by granitoids of the 
Corsica-Sardinia batholith (Casini et al., 2012, 2014, 2015 
and references therein) and are unconformably covered 
by Late Carboniferous-Early Permian sedimentary 
deposits (Barca et al., 1995). An overall description of the 
Variscan metamorphism and deformations can be found 
in Franceschelli et al. (2005b), Rossi et al. (2009) and 
Cruciani et al. (2015b).

Amphibole bearing- migmatite: field occurrence
The studied sample belongs to the Migmatite Complex, 

a few kilometers northeast of Olbia, along the coast 
between Punta Sirenella and Punta Bados (Figure 1b). 
The amphibole-bearing migmatites (Figure 2 a,b) outcrop 
as a 100 m-long, 50-70 m large lens-shaped body, located 
between migmatized orthogneisses to the south and Al-
silicate-bearing migmatites to the north (Figure 1). These 
amphibole-bearing migmatites are featured by the presence 
of millimeter to centimeter-sized euhedral amphibole 
crystals in leucosomes (Figure 2b) and by a discontinuous 
alternation of tonalitic and granodioritic leucosomes 
and mesosomes. The amphibole-bearing migmatites are 
characterized by the presence of a pervasive foliation (S2), 
with a N145° strike and 80° dip, transposing leucosomes 
and quartz-feldspatic “rods” in the XY plane (Cruciani et 
al., 2008). The evidence of a previous deformation is given 
by the presence of a gneiss-like layering (D1) predating 
the most pervasive folding phase D2. In the XY plane an 

oriented biotite lineation with a N139 strike and a SE 15° 
dip is recognizable. Decimeter-sized sheath folds parallel 
to the biotite lineation were also observed.

SUMMARY OF LEUCOSOME AND MESOSOME PETROGRAPHY
The petrographic features of the amphibole-bearing 

migmatites from Punta Sirenella were described by 
Cruciani et al. (2008, 2014a) and by Massonne et al. 
(2013) to which the reader is referred for a detailed 
petrographic description. Two samples (mesosome MES5 
and leucosome LEU5) were selected for geochronological 
investigation. Sample LEU5 (Figure 2c) is made up of 
plagioclase (45 vol%), quartz (35 vol%), K-feldspar (<2 
vol%), amphibole (10 vol%), biotite (7 vol%) and garnet 
(1 vol%) whereas sample MES5 (Figure 2d) consists 
of plagioclase (40 vol%), quartz (32 vol%), K-feldspar 
(<2 vol%), amphibole (5 vol%), biotite (20 vol%) and 
garnet (1 vol%). Accessory apatite, zircon, titanite, Fe-
oxides, epidote and monazite were found in both samples. 
Amphibole is surrounded by a matrix of quartz, plagioclase 
and subordinate biotite. Amphibole of the leucosome 
contains several rounded inclusions of plagioclase, quartz 
and subordinate garnet. Garnet inclusions in amphibole 
occur as very small fractured and corroded grains 
surrounded by thin coronas of plagioclase. In the quartzo-
feldspathic matrix of the mesosome sample, biotite marks 
the foliation.

MINERAL CHEMISTRY
Selected trace elements and Rare Earth Element (REE) 

abundances in zircons, distinguished between core and 
rim, of several zircon grains from leucosome sample 
LEU5 are given in Table 1. 

On the basis of cathodoluminescence (CL) imaging 
(Figure 3) three zircon populations can be distinguished 
in the leucosomes and mesosomes of the amphibole-
bearing migmatites of Punta Sirenella. They are, in order 
of increasing abundance: (i) elongated prismatic crystals 
up to a maximum of 250-300 μm long characterized by 
concentric, oscillatory zoning typical of magmatic growth 
(Figures 3 a,b); (ii) elongated to rounded-shaped zircons, 
between 100 and 150 μm in size, with relics of darker 
inner cores overgrown and/or truncated by bright external 
rims of some dozens microns in thickness (Figures 3 
c,d). Sometimes concentric zoning is preserved in the 
core and sporadically bright domains are also observed 
in the inner portions of these zircons; (iii) 50 μm-sized 
anhedral to rounded zircon grains, with a very slight 
non-concentric zonation (not shown in Figure 3). All 
zircons display fractionated chondrite-normalized REE 
patterns with HREE enrichment, positive anomalies for 
Ce and negative anomalies for Eu (Figure 4). SREE in 
zircon core is higher (364-759 ppm) as compared to rim  
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(299-367 ppm). Th/U ratios are in the 0.2-0.5 range with 
lower Th/U ratio in the rims as compared to the cores. 

Some selected analyses of amphibole and biotite of the 
two selected MES5 and LEU5 samples are reported in 
Table 2. 

Amphibole from leucosome and mesosome is a 
potassian ferropargasite according to the classification 
of Leake et al. (1997) with XMg= Mg/(Mg + Fe2+) ~0.4-
0.5 and Ti in the 0.10-0.15 a.p.f.u. range. K2O is between 
1.7 and 1.9 wt.% and A(Na) +A(K) ranges from 0.55 to 
0.80 a.p.f.u. The amphibole shows a slight compositional 
zoning with SiO2- and MgO-rich, and K2O-poor crystal 
rims. There is no significant difference in composition 
between leucosome and mesosome amphibole.

Biotite from LEU5 matrix has XMg ~0.44-0.49, whereas 

that from MES5 matrix has XMg~0.43-0.46. Biotite 
growing at the expense of amphibole and garnet has 
XMg=0.50 in both samples.

U-PB ZIRCON DATING 
Results of U-Pb zircon geochronology are given in 

Table S1 of Supplementary information and shown in 
Figures 5, 6.

In MES5 forty-five zircon grains were analyzed and 
15 analyses yielded concordant U-Pb dates that span in 
the range between 472 and 310 Ma (Figure 5a; Table 
S1). The oldest value (472 Ma) was obtained from the 
oscillatory zoning domain of a 100 μm-sized rounded 
crystal, whereas the three youngest ages (444, 433 and 
310 Ma) were measured in correspondence of thin rims 

Figure 2. Field photographs (a,b) and photomicrographs (c,d) of the amphibole-bearing migmatites of NE Sardinia. (a) Layered aspect 
of the amphibole-bearing migmatites; at the right hand side of the picture, the brownish rocks on the background are Al-silicate bearing 
migmatites in contact with the amphibole-bearing migmatites. (b) leucosome with amphibole crystals visible by the naked eye (upper 
left corner of the picture) and folded, amphibole-bearing leucosomes in the migmatite (lower part of the picture); the greysh, foliated 
rock hosting the leucosome is mesosome. (c) Leucosome microstructure with millimetric amphibole porphyroblast in a matrix made up 
of quartz, plagioclase and subordinate biotite. (d) Amphibole and oriented biotite in the mesosome sample.
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Zr_core Zr_core Zr_core Zr_rim Zr_rim Zr_rim
Y 1385 1039 948 545 689 511
Nb 2.40 1.94 1.39 1.88 1.41 1.58
La 0.025 0.031 0.040 0.016 0.015 0.030
Ce 1.71 1.04 0.80 0.56 0.41 0.43
Pr 0.201 0.174 0.080 0.016 0.054 0.032
Nd 2.51 2.35 1.69 0.53 0.88 0.39
Sm 5.24 5.44 4.24 1.57 2.79 1.21
Eu 0.56 0.41 0.19 0.08 0.18 0.05
Gd 32.4 25.0 19.6 7.6 15.4 6.7
Tb 10.8 8.4 7.2 3.1 5.0 3.0
Dy 134 109 91 48 62 44
Ho 51 39 32 18 22 17
Tm 48 34 30 19 22 20
Yb 396 299 271 180 199 197
Lu 76 58 51 39 38 39
Hf 5229 3496 4867 4034 4432 4641
Ta 0.34 0.14 0.20 0.15 0.20 0.40
Th 89 62 54 27 36 22
U 167 121 110 76 83 83

Table 1. Y, Nb, Hf, Ta, Th, U and REE composition of zircon core and rim from leucosome sample LEU5 of amphibole-bearing 
migmatite. 

Figure 3. Selected CL images of zircons from the mesosome sample (a,b) and of the leucosome (c,d) of the amphibole-bearing migmatite 
of NE Sardinia. Grains (a), (b) show a concentric zoning of igneous origin; grains (c) and (d) show inherited core and overgrown rim.
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from elongated zircons that preserve a relict core. The 
remaining 11 out of 15 concordant U-Pb data cluster 
between 465 and 457 Ma (Darriwilian) with a weighted 
average of concordant data of 461.3±3.3 Ma (Figure 6a; 
MSWD=0.41 and probability of concordance=0.95).

In LEU5 sixty-four analyses were performed and 35 
concordant U-Pb dates were obtained spanning between 
485 and 290 Ma (Table S1). The two oldest ages (485 and 
480 Ma) were obtained from the oscillatory zoning domain 
of two different ~100 μm-sized zircon crystals, whereas 
the two youngest ages of 297 and 290 Ma were measured 
in thin rims overgrowing a relict core. In the probability 
density plots for the U-Pb concordant ages shown in 
Figure 5b two main clusters can be recognized: an old 
zircon population (17 analyses mostly corresponding to 
zircon core domains or domains with oscillatory zoning) 
clustering at 460 Ma (Figure 6b, weighted average age 
of 462.5±2.4 Ma) and a younger population (10 analyses, 
mostly limited to rim domains) spanning in the 344-290 
range with five samples being comprised in the 328-320 
Ma range. The small cluster close to 325 Ma in Figure 
5b resulted in a weighted average age of 324.2±4.0 Ma 
(MSWD 0.96; Figure 6c). Between the two clusters, six 
analyses yielded intermediate ages comprised between 
447 and 352 Ma. 

These results allow to identify the following two age 
clusters: i) Middle Ordovician (Darriwilian) protolith 
age at 462.5±2.4 Ma and ii) Middle Carboniferous 
(Serpukhovian) age of ca. 325 Ma, here interpreted as the 
age of migmatization. The youngest domains of zircons 
recovered from the studied samples are mostly related 

Figure 4. REE patterns normalized to chondrite values (McDonough and Sun, 1995) of zircon core (blue symbols) and rim (green) from 
leucosome sample. Additional analyses not reported in Table 2 are also shown.

MES5 LEU5 Ampcore Amprim Bt

SiO2 61.31 69.50 40.70 47.10 34.93

TiO2 0.81 0.18 0.89 0.45 2.48

Al2O3 16.02 15.75 14.26 8.95 15.67

Cr2O3 - - 0.03 0.00 0.02

Fe2O3t 6.93 2.71 - - -

FeOt - - 17.51 16.90 20.85

MnO 0.12 0.02 0.27 0.32 0.20

MgO 3.38 1.45 8.28 10.90 10.78

CaO 4.32 4.77 11.70 11.10 -

Na2O 2.53 3.73 1.10 1.02 0.12

K2O 2.65 0.62 1.80 0.63 9.60

BaO - - 0.03 0.01 0.34

P2O5 0.17 0.04 - - -

LOI 1.72 0.84 - - -

Total 99.96 99.61 96.57 97.38 94.99

Table 2. XRF bulk-rock chemistry of leucosome (LEU5) 
and mesosome (MES5) samples that were selected for 
geochronological investigation. Representative amphibole 
and biotite chemical composition from the amphibole-bearing 
migmatite samples is also shown.
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to thin rim zircon domains overgrowing relict cores. The 
oldest ages of 485 to 472 Ma could represent inherited 
zircon grains or, according to the magmatic growth 
zoning observed in the zircon grain, the very beginning 
of igneous protolith crystallization. The ages ranging 
460-328 Ma that are intermediate between the two main 
clusters in the leucosome could be eventually related to 
mixing of old zircon cores with young rims or to partial 
zircon resetting during metamorphism. 

AR-AR GEOCHRONOLOGY ON AMPHIBOLE AND BIOTITE 
Amphibole - The complete analytical dataset obtained 

from a 4.6 mg amphibole separate analysed with 40Ar-39Ar 
laser step-heating technique is reported in Table 3, whereas 
the diagram of age (in Ma) vs cumulative 39Ar released 
(in %) is shown in Figure 7a. Seventeen consecutive steps 
from intermediate- to high-temperature region yielded 
an age profile characterized by a concordant segment 
representing ~75% of the 39Ark released, yielding an 
error weighted mean age of 317.4±2 Ma (MSWD 1.54). 

We believe that this age is strictly related to the migmatite 
cooling at T <500-560 °C, roughly corresponding to the 
amphibole closure temperature in the 40Ar-39Ar isotope 
system (450-525 °C, Spear et al., 1993, pag. 719). 

Biotite - The analytical data obtained from five biotite 

Figure 5. Probability density plots for the U-Pb concordant 
ages obtained for mesosome (a) and leucosome (b) of the 
amphibole-bearing migmatites. Dark grey values were used for 
the calculation shown in Figure 6.

Figure 6. Weighted average 206Pb/U238 age for: (a) MES5 zircons; 
(b) old zircon population (>380 Ma) in LEU5; (c) younger zircon 
population (<380 Ma) in LEU5.



Periodico di Mineralogia (2019) 88, 203-219 Cruciani G. et al.210

PM

N
o.

36
A

r(
at

m
)

±2
σ

37
A

r(
C

a)
±2

σ
38

A
r(

C
l)

±2
σ

39
A

r(
K

)
±2

σ
40

A
r(

To
t)

±2
σ

A
ge

±2
σ

40
A

r*
39

A
rK

C
a/

K
±2

σ

A
m

ph
ib

ol
e

89
A

4.
77

E-
03

1.
37

E-
04

1.
32

E-
02

2.
00

E-
03

4.
33

E-
04

1.
14

E-
04

4.
11

E-
03

1.
52

E-
04

1.
68

E+
00

1.
25

E-
03

58
1

77
16

.0
0.

1
6.

1
1.

1
89

B
7.

00
E-

04
7.

22
E-

05
1.

54
E-

02
1.

94
E-

03
1.

51
E-

04
7.

69
E-

05
9.

04
E-

03
1.

57
E-

04
5.

34
E-

01
1.

34
E-

03
34

3
21

61
.3

0.
3

3.
21

0.
52

89
C

1.
93

E-
04

4.
62

E-
05

1.
61

E-
02

2.
23

E-
03

1.
66

E-
04

4.
40

E-
05

1.
45

E-
02

1.
15

E-
04

4.
95

E-
01

8.
21

E-
04

29
1.

3
8.

7
88

.5
0.

4
2.

10
0.

36
89

E
3.

43
E-

04
4.

97
E-

05
1.

64
E-

01
9.

29
E-

03
2.

52
E-

03
1.

04
E-

04
4.

18
E-

02
2.

44
E-

04
1.

45
E+

00
1.

59
E-

03
30

8.
1

3.
5

93
.0

1.
2

7.
39

0.
85

89
F

3.
14

E-
04

1.
03

E-
04

1.
46

E+
00

7.
88

E-
02

2.
93

E-
02

4.
62

E-
04

3.
11

E-
01

1.
51

E-
03

1.
03

E+
01

7.
73

E-
03

31
4.

7
1.

7
99

.1
8.

8
8.

9
1.

0
89

H
1.

55
E-

04
1.

68
E-

04
2.

68
E+

00
1.

45
E-

01
5.

97
E-

02
8.

02
E-

04
6.

14
E-

01
2.

76
E-

03
2.

05
E+

01
1.

70
E-

02
31

8.
7

1.
5

99
.7

17
.3

8.
24

0.
94

89
I

4.
78

E-
07

1.
63

E-
04

2.
49

E+
00

1.
34

E-
01

5.
84

E-
02

8.
53

E-
04

6.
04

E-
01

3.
71

E-
03

2.
01

E+
01

8.
92

E-
02

31
7.

5
2.

3
10

0.
0

17
.1

7.
76

0.
88

89
J

7.
27

E-
05

1.
76

E-
04

2.
74

E+
00

1.
48

E-
01

6.
57

E-
02

9.
85

E-
04

6.
84

E-
01

3.
27

E-
03

2.
26

E+
01

2.
21

E-
02

31
6.

0
1.

6
99

.9
19

.3
7.

55
0.

86
89

L
7.

93
E-

05
1.

52
E-

04
2.

00
E+

00
1.

08
E-

01
4.

87
E-

02
6.

59
E-

04
5.

05
E-

01
4.

02
E-

03
1.

68
E+

01
6.

41
E-

02
31

7.
5

2.
7

99
.8

14
.3

7.
46

0.
85

89
M

2.
82

E-
05

9.
29

E-
05

1.
03

E+
00

5.
61

E-
02

2.
47

E-
02

3.
60

E-
04

2.
57

E-
01

1.
13

E-
03

8.
55

E+
00

9.
06

E-
03

31
7.

2
1.

6
99

.9
7.

3
7.

58
0.

86
89

N
2.

13
E-

05
5.

14
E-

05
3.

39
E-

01
1.

87
E-

02
7.

33
E-

03
2.

22
E-

04
8.

02
E-

02
5.

91
E-

04
2.

61
E+

00
3.

56
E-

03
31

1.
3

2.
7

99
.7

2.
3

7.
98

0.
91

89
Q

2.
01

E-
05

4.
30

E-
05

3.
23

E-
01

1.
81

E-
02

7.
01

E-
03

1.
74

E-
04

7.
56

E-
02

3.
55

E-
04

2.
56

E+
00

2.
04

E-
03

32
2.

1
2.

0
99

.7
2.

1
8.

05
0.

92
89

R
5.

08
E-

06
6.

34
E-

05
2.

37
E-

01
1.

33
E-

02
5.

11
E-

03
1.

61
E-

04
5.

72
E-

02
3.

72
E-

04
1.

93
E+

00
1.

15
E-

03
32

2.
0

3.
4

99
.9

1.
6

7.
81

0.
90

89
S

1.
35

E-
06

5.
26

E-
05

2.
07

E-
01

1.
16

E-
02

4.
75

E-
03

9.
66

E-
05

5.
03

E-
02

3.
44

E-
04

1.
68

E+
00

1.
68

E-
03

31
8.

7
3.

4
99

.9
1.

4
7.

74
0.

89
89

U
6.

20
E-

07
3.

88
E-

05
4.

36
E-

01
2.

40
E-

02
9.

41
E-

03
2.

56
E-

04
9.

88
E-

02
4.

47
E-

04
3.

28
E+

00
2.

42
E-

03
31

6.
8

1.
7

10
0.

0
2.

8
8.

33
0.

95
89

V
7.

22
E-

06
6.

60
E-

05
5.

67
E-

01
3.

10
E-

02
1.

05
E-

02
1.

90
E-

04
1.

12
E-

01
6.

49
E-

04
3.

72
E+

00
1.

82
E-

03
31

7.
4

2.
3

99
.9

3.
2

9.
6

1.
1

89
W

5.
79

E-
05

4.
16

E-
05

1.
34

E-
01

7.
71

E-
03

1.
97

E-
03

8.
85

E-
05

2.
12

E-
02

2.
24

E-
04

7.
13

E-
01

1.
45

E-
03

31
3.

7
6.

0
97

.6
0.

6
11

.9
1.

4
B

io
tit

e
88

B
3.

71
E-

03
9.

98
E-

05
2.

02
E-

02
2.

18
E-

03
1.

65
E-

03
1.

34
E-

04
7.

36
E-

02
4.

08
E-

04
1.

49
E+

00
1.

89
E-

03
54

.6
4.

1
26

.2
7

2.
8

0.
52

0.
08

88
C

9.
18

E-
04

6.
32

E-
05

1.
17

E-
04

1.
64

E-
03

8.
13

E-
04

8.
96

E-
05

4.
46

E-
02

3.
18

E-
04

7.
92

E-
01

8.
65

E-
04

11
8.

1
4.

2
65

.7
4

1.
7

0.
00

5
0.

06
9

88
E

1.
12

E-
03

5.
58

E-
05

4.
96

E-
04

1.
67

E-
03

2.
73

E-
03

1.
83

E-
04

1.
82

E-
01

7.
68

E-
04

4.
85

E+
00

3.
86

E-
03

24
2.

6
1.

3
93

.1
6

6.
8

0.
00

5
0.

01
7

88
F

8.
94

E-
04

7.
48

E-
05

9.
24

E-
04

1.
81

E-
03

5.
10

E-
03

3.
61

E-
04

3.
95

E-
01

1.
71

E-
03

1.
20

E+
01

1.
07

E-
02

28
7.

5
1.

3
97

.7
7

14
.8

0.
00

4
0.

00
9

88
G

5.
46

E-
04

4.
27

E-
05

1.
34

E-
03

1.
69

E-
03

4.
11

E-
03

2.
84

E-
04

3.
18

E-
01

1.
43

E-
03

9.
96

E+
00

4.
65

E-
03

29
6.

2
1.

3
98

.3
5

11
.9

0.
00

8
0.

01
0

88
H

2.
67

E-
04

5.
19

E-
05

9.
47

E-
04

1.
75

E-
03

2.
71

E-
03

1.
84

E-
04

2.
04

E-
01

9.
24

E-
04

6.
47

E+
00

7.
07

E-
03

30
1.

1
1.

5
98

.7
5

7.
7

0.
00

9
0.

01
6

88
I

2.
94

E-
04

4.
77

E-
05

8.
37

E-
04

1.
69

E-
03

3.
20

E-
03

2.
59

E-
04

2.
49

E-
01

1.
11

E-
03

7.
94

E+
00

3.
84

E-
03

30
2.

6
1.

3
98

.8
7

9.
4

0.
00

6
0.

01
3

88
J

4.
57

E-
04

3.
11

E-
05

1.
07

E-
04

1.
81

E-
03

3.
51

E-
03

2.
43

E-
04

2.
62

E-
01

1.
12

E-
03

8.
27

E+
00

5.
65

E-
03

29
8.

7
1.

2
98

.3
3

9.
8

0.
00

1
0.

01
3

88
K

2.
91

E-
04

5.
08

E-
05

4.
74

E-
04

1.
80

E-
03

1.
73

E-
03

1.
89

E-
04

1.
35

E-
01

7.
93

E-
04

4.
24

E+
00

3.
22

E-
03

29
6.

8
1.

9
97

.9
4

5.
1

0.
00

7
0.

02
5

88
L

3.
85

E-
04

2.
59

E-
05

8.
44

E-
04

1.
79

E-
03

2.
52

E-
03

2.
15

E-
04

2.
03

E-
01

1.
10

E-
03

6.
40

E+
00

3.
80

E-
03

29
7.

9
1.

5
98

.1
9

7.
6

0.
00

8
0.

01
7

88
M

4.
59

E-
04

1.
45

E-
04

7.
96

E-
04

1.
69

E-
03

2.
31

E-
03

1.
82

E-
04

1.
79

E-
01

1.
01

E-
03

5.
54

E+
00

1.
06

E-
02

29
1.

1
2.

7
97

.5
2

6.
7

0.
00

8
0.

01
8

88
O

2.
86

E-
04

6.
49

E-
05

2.
70

E-
04

1.
70

E-
03

1.
67

E-
03

1.
45

E-
04

1.
33

E-
01

7.
25

E-
04

4.
08

E+
00

3.
21

E-
03

28
9.

4
2.

0
97

.8
9

5.
0

0.
00

4
0.

02
4

88
P

1.
66

E-
04

5.
07

E-
05

6.
68

E-
04

1.
72

E-
03

1.
11

E-
03

1.
32

E-
04

9.
06

E-
02

5.
03

E-
04

2.
83

E+
00

2.
40

E-
03

29
5.

4
2.

1
98

.2
4

3.
4

0.
01

4
0.

03
6

88
Q

1.
93

E-
05

4.
59

E-
05

3.
34

E-
04

1.
79

E-
03

2.
01

E-
04

6.
28

E-
05

2.
22

E-
02

2.
30

E-
04

6.
96

E-
01

9.
50

E-
04

29
9.

2
6.

1
99

.1
5

0.
8

0.
03

0.
15

88
R

2.
49

E-
04

4.
50

E-
05

4.
38

E-
05

1.
85

E-
03

2.
06

E-
03

1.
50

E-
04

1.
72

E-
01

9.
30

E-
04

5.
39

E+
00

3.
86

E-
03

29
7.

0
1.

6
98

.6
0

6.
5

0.
00

0
0.

02
0

Ta
bl

e 
3.

 R
es

ul
ts

 o
f l

as
er

 st
ep

-h
ea

tin
g 

40
A

r/39
A

r d
at

in
g 

fo
r a

 4
.6

m
g 

am
ph

ib
ol

e 
se

pa
ra

te
 a

nd
 fi

ve
 b

io
tit

e 
fla

ke
s f

ro
m

 th
e 

am
ph

ib
ol

e-
be

ar
in

g 
m

ig
m

at
ite

s o
f P

un
ta

 S
ire

ne
lla

.



211

PM

U-Pb zircon and Ar-Ar amphibole ages in Sardinian migmatite

crystals that were analysed with 40Ar-39Ar laser step-
heating technique are listed in Table 3, whereas the age 
(in Ma) vs cumulative 39Ar released (in %) diagram is 
shown in Figure 7b. Fifteen steps yielded ages comprised 
between 54.6-302.6 Ma with 12 ages clustering in the 
287.5-302.6 Ma age interval. The resulting age spectrum 
for biotite corresponds to a total gas age of ~283 Ma. 

The biotite Ar-Ar age obtained in this work can be 
compared with those obtained from the same mineral 
by Di Vincenzo et al. (2004), who obtained a wide Ar-
Ar biotite age interval from 240 Ma to 305-310 Ma for 
samples from the Migmatite Complex. Di Vincenzo et 
al. (2004) also observed that the biotite ages seem to be 
very sensitive to secondary alteration processes and that 
younger ages mainly come from areas where biotite is 
chloritized or characterized by pronounced parting along 
the basal cleavage. Based on these observations, we 
hypothesize that the biotite age spectrum (total gas age of 

283 Ma), is hump-shaped most probably for the sporadic 
occurrence of minor interlayered chlorite. 

DISCUSSION
Migmatite protolith age

In the amphibole-bearing migmatite from Punta 
Sirenella the obtained zircon ages allowed to identify two 
main age clusters at ~461 Ma and ~325 Ma, this latter 
mostly related to thin rim zircon domains.

The protolith age of 461 Ma obtained for the mesosome 
sample is coincident or very similar to those available 
from similar felsic rocks already studied in literature of 
the Sardinia-Corsica Variscan basement: Punta Sirenella 
migmatite: 461 Ma with whole rock Rb/Sr method, 452 
Ma with zircon Kober technique, Cruciani et al. (2008); 
Golfo Aranci orthogneiss: 470-465 Ma, with in-situ 
U/Pb zircon geochronology, Giacomini et al. (2006); 
orthogneiss of NE Sardinia: 456±14 Ma, Helbing and 
Tiepolo (2005); Capo Ferro orthogneiss: 457±3 and 
430±2 Ma U/Pb zircon geochronology, Padovano et al. 
(2014); Zicavo and Porto Vecchio orthogneisses, Corsica: 
458±32 Ma and 465+19/-16 Ma, respectively , U-Pb 
method, Rossi et al. (2009); Lodè orthogneiss: 456±14 
Ma, in situ U-Pb zircon age by Helbing and Tiepolo 
(2005). Comparable ages were also obtained from their 
mafic counterparts. For example, SHRIMP U-Pb dating 
of zircon of the Punta de li Tulchi retrogressed eclogites 
yielded a weighted mean protolith age of 453±14 Ma 
(Palmeri et al., 2004). A protolith age of 460±5 Ma was 
also obtained by Giacomini et al. (2005) from magmatic 
zircons in the Golfo Aranci eclogites, whereas an age of 
457±2 Ma was obtained by Cortesogno et al. (2004) for 
a zircon population of eclogite from Migmatite Complex. 
Our new geochronological data on zircons, together with 
the above mentioned ones available in literature, indicate 
a widespread magmatic activity in the Middle Ordovician 
in the northern Gondwana margin. 

Age of Variscan anatexis
The results obtained for the amphibole and biotite 

separates by the Ar/Ar method define the following ages: 
i) a Upper Carboniferous (Pennsylvanian) weighted mean 
age of 317.4±2 Ma (Bashkirian) for amphibole and (ii) 
a Lower Permian (Cisuralian) total gas age of 283 Ma 
(boundary Artinskian/Kungurian) for biotite. The age of 
layered migmatites in northern Sardinia (350-345 Ma, 
Ferrara et al., 1978; Giacomini et al., 2006) indicates 
that the beginning of anatexis under amphibolite facies 
conditions precedes the onset of emplacement of the 
granodioritic-monzogranite plutons (U2 magmatic 
sequence; 320-330 Ma; Rossi and Cocherie, 1991; Ferré 
and Leake, 2001) by at least 20 million years. 

The younger zircon ages of the amphibole bearing 

Figure 7. Age release spectrum of (a) amphibole concentrate 
and (b) biotite from the mesosome of the amphibole-bearing 
migmatite.



Periodico di Mineralogia (2019) 88, 203-219 Cruciani G. et al.212

PM

migmatites obtained in this study cluster at ca. 325 Ma 
(Figures 5b, 6c) very similar to the U-Pb monazite age 
of 325±1.3 Ma for migmatitic orthogneiss of Capo Ferro 
area reported by Padovano et al. (2014) and interpreted 
by these authors as the age of migmatization, syntectonic 
to the shear deformation related to the East Variscan 
Shear Zone (Corsini and Roland, 2009; Elter et al., 2010; 
Padovano et al., 2012). A similar age (326±4 Ma) for 
migmatization was obtained by Giacomini et al. (2006) 
for diatexite from Golfo Aranci area (NE Sardinia). 
Palmeri et al. (2004) interpreted the zircon age of 327±7 
Ma from the Punta de li Tulchi eclogite (NE Sardinia) as 
the Variscan overprint of eclogites. 

The amphibole and biotite ages presented in this paper 
provide information on the moment of their isotopic 
closure as regards the Ar-Ar isotopic system and allow to 
better constrain the timing of anatexis and cooling of the 
amphibole-bearing migmatites from Punta Sirenella. For 
these rocks, Massonne et al. (2013) supposed a scenario 
where a igneous protolith of intermediate composition 
was metamorphosed at high pressure. At the final 
prograde stage of metamorphism, the amphibole-bearing 
migmatite attains P-T conditions of ~13 kbar and 700 
°C. After this stage pressure decrease and slight cooling 
brought leucosomes to P-T conditions suitable for the 
growth and subsequent partial resorption of centimetric 
amphibole crystals. The resorption of amphibole crystals 
occurred likely at about 9 kbar and 680 °C, i.e. when the 
leucosome melt crossed the solidus P-T conditions (see 
Figure 10b in Massonne et al., 2013, p. 1502) just before 
the completion of the melt crystallization. The Bashkirian 
Ar-Ar age yielded by amphibole (317.4±2 Ma) is similar 
to the age of 320-300 Ma obtained by Di Vincenzo et al. 
(2004) for the syn-D2 white mica in metasedimentary 
migmatite samples collected from the sillimanite+ 
K-feldspar zone in the Migmatite Complex of NE Sardinia. 
The oldest ages were found in the inner portions of the 
white mica flakes, the youngest in the rims. The 320-315 
Ma time lapse, in its turn, is interpreted by Di Vincenzo 
et al. (2004) as the end of the chemical re-equilibration 
(including neo-crystallization) of white mica at upper-
crustal levels during the D2 phase. In this scenario, the 
similar 40Ar-39Ar age of 317.4±2 Ma we obtained on 
amphibole may be interpreted as the age of re-equilibration 
and cooling of this mineral. The value of 317.4±2 Ma 
closely recalls the U-Pb monazite age of 315±1.3 Ma 
obtained by Padovano et al. (2014) for the Capo Ferro 
orthogneiss, the 316 ± 5 Ma age yielded by the mylonites 
from Fautea-Solenzara (Corsica, Giacomini et al., 2008) 
and the 321.2+8.3 Ma age obtained by Oggiano et al. 
(2007) from the Cala Muro granite, Santa Maria Island. 
The first age, 315±1.3 Ma, was interpreted as dating the 
last thermal overprint of the orthogneiss, generated by the 

intrusion of the Capo Ferro syntectonic granites at 318 ± 3 
Ma and 317±2 Ma (Padovano et al., 2014).

Considering that the 283 Ma biotite (Figure 7b) should 
be interpreted as a minimum Ar-Ar age due to the 
occurrence of interlayered chlorite, our data support the 
idea that migmatization started around 345 Ma and lasted 
for about 20 Ma, at least until ca. 325 Ma. 

A useful framework for the new data discussed in 
the present paper is provided by the model proposed 
by Scodina et al. (2019, and references therein) who 
discussed the changing positions of amphibolites, 
eclogites and migmatites of NE Sardinia located in the 
northern Gondwana margin during the subduction of 
Gondwana below the peri-Gondwanan terranes previously 
accreted to Laurussia. The amphibolites, belonging to the 
lowermost hot part of the upper plate, initially located at 
35 km depth (0.8-0.9 GPa) in the first phase of subduction 
(Upper Devonian), were brought during Tournaisian to a 
greater depth of 50-55 km (1.4 GPa). Eclogites in the cold 
subducting ocean crust at first arrived at a depth of about 
70 km (2.0-2.2 GPa), before the detachment of the ocean 
crust, and then were broken, attached to the downgoing 
continental plate and exhumed in the subduction channel. 
Finally, after “a significant thrusting of Gondwana 
under Laurussia, around 345 Ma”, the amphibolites, the 
migmatites, belonging to the uppermost part of the lower 
plate, and the slices of eclogites attached to the lower 
plate “were brought together and tectonically mixed 
within the exhumation channel during lower and middle 
Carboniferous times, probably starting in the Visean.”

The striking coincidence between mineral ages from 
metamorphic rocks and emplacement ages of the Variscan 
granitoids has been explained in the past into the following 
two ways (Ferrara et al., 1978): (i) the heat supplied by the 
granitic intrusions could have caused a partial reopening 
of the mineral systems or, alternatively, (ii) the intrusions 
would have induced the uplift of the metamorphic 
sequences with the consequent temperature decrease 
and the closure of the mineral systems. The absence of 
thermometamorphic minerals (i.e. andalusite, cordierite) 
and textures in the migmatite, together with the occurrence 
of Permian volcanites lying directly on the metamorphic 
sequences of L-MGMC and granitoids in northern Sardinia 
(Ferrara et al., 1978) such as the Anglona region, seems 
to suggest that among the two aforementioned hypotheses 
the second one is the most probable. However, it cannot 
be excluded that migmatization and magmatism are both 
effects of a regional-scale thermal anomaly located in the 
deep portion of a thinned crust.

Sardinian migmatites in the framework of the Variscan belt
A careful examination of the geochronological data 

available in the literature (Table S2 of Supplementary 
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information) reveals that 76% of ages are comprised in 
the 335-320 Ma interval, 12% in the 345-335 Ma and 12 
% in the 320-310 Ma time interval. This clustering of 76 
% of ages between 335 Ma and 320 Ma in a very restricted 
time lapse of only 15 million years reveals that actually 
the migmatization process took place simultaneously 
over an extremely wide area through the Variscan chain 
from Central Iberian Zone up to the Bohemian Massif, 
passing through Pyrenean region, South Armorican 
Massif, French Massif Central, Montagne Noire, Maures-
Tanneron Massif, Corsica, Sardinia, Alpine External 
Massifs and Vosges (see references for each region in 
Table S2). Noteworthy are the unusual distances of 
800 km between the Central Iberian Zone (Toledo) and 
the South Armorican Massif (Nantes) and of 1,200 km 
between the South Armorican Massif and the Bohemian 
Massif (Prague). The almost simultaneous migmatite 
production in only 15 million years (335-320 Ma) in 
several microplates with different tectono-metamorphic 
histories, from Central Iberian Zone to the Bohemian 
Massif in a 2,000 km long, 500-600 km large continental 
area arises the question to find a unique heat source active 
at a continental scale.

Two main hypotheses have been proposed in literature 
concerning the heat sources and the mechanisms through 
which migmatites and huge volumes of granitoid 
intrusions were generated within the Variscan Belt: 1) 
heat produced by radioactive elements, abundant in 
a thickened crust (Gerdes et al., 2000; Vanderhaeghe 
and Teyssier, 2001); 2) heat supplied by upwelling 
asthenospheric mantle undergoing decompression melting 
caused, during the late Variscan extensional tectonics, by 
lithospheric thinning, delamination of lithospheric mantle, 
slab breakoff and detachment or roll back of the Benioff 
plane (von Blankenburg and Davies, 1995; Anderson, 
2005; Faure et al., 2009; Finger et al., 2009; Stampfli 
et al., 2013; Laurent et al., 2017). As regards the first 
hypothesis, Gerdes et al. (2000) for the South Bohemian 
Batholith and Vanderhaeghe and Teyssier (2001) for the 
Canadian Cordillera estimated that mainly the radiogenic 
heat produced by a thickened crust, after a few tens of 
million years, may cause a temperature increase able 
to generate huge volumes of granitic melts without a 
significant contribution of heat from the mantle. This 
model was proposed by Bea et al. (2003) and Pereira et al. 
(2008) in order to define the origin of the granitoid bodies 
emplaced in the Central Iberian Zone during the time 
interval 320-290 Ma, 30 million years after the beginning 
of anatexis at 352 Ma (Montero et al., 2004). Bea et al. 
(2003) and Pereira et al. (2008) disregard the possible 
role of a mantle source and ascribe the generation of the 
Variscan anatectic granitoids in the Central Iberian Zone 
to the radiogenic crustal heat source. Considering now 

the second hypothesis of an upwelling asthenosphere, 
two possible major heat sources may be hypothesized to 
account for the genesis of migmatites mainly in a short 
time frame of 15my over a distance of about 2,000 km: 
(i) subduction of a mid-ocean ridge or (ii) breakoff and 
detachment of a subducted oceanic slab (von Blankenburg 
and Davies, 1995) and delamination of the lithospheric 
mantle along the Moho discontinuity (Anderson, 2005; 
Finger et al., 2009). Both processes cause an extensive 
decompression melting in the lithospheric mantle. The 
first proposal of mid-ocean ridge subduction was put 
forward by Bussy et al. (2000). Afterwards, Stampfli et 
al. (2013), describing the evolution of the Paleotethys, 
state that “the mid-ocean ridge subduction took place 
between 340 and 320 Ma.” The same authors, speaking 
about the complex history of the Paleotethys in the 350-
310 Ma time lapse (their Figure 6 and p. 13), conclude 
that “these numerous and repeated lithospheric events 
where the asthenosphere/lithosphere boundary is rapidly 
changing could explain the large number of migmatite 
formation and granite intrusion at that time.” According 
to von Raumer et al. (2014, Figure 3) southward dipping 
Rhenohercynian mid-ocean ridge and northward dipping 
Paleotethys mid-ocean ridge were subducted at 350-
330 Ma underneath the collage of the Galatian terranes 
(Helvetic, Moldanubian, Saxothuringian blocks) and the 
Hanseatic terranes (Mid-German Rise), embryo of the 
future Variscan Belt. After the main collisional phase, the 
occurrence, beneath the Variscan Belt, of two buried mid-
ocean ridges likely still active throughout the entire length 
of an evolving Variscan Belt could be a potential and 
reliable heat source able to trigger the almost simultaneous 
genesis of migmatites everywhere in the Variscan Europe. 

As regards the second option, breakoff and detachment 
of a subducted slab and delamination of the lithospheric 
mantle, Kalt et al. (1999) hypothesize that downward 
detachment of thickened lithosphere in the mantle and 
upwelling asthenosphere provided heat for crustal melting 
and generation of migmatites in the Bohemian Massif. 

Faure et al. (2009) attribute a Visean crustal melting 
event from the Armorican Massif to Vosges and the 
coeval magmatism in Massif Central and Vosges to 
the heat supplied by rising asthenosphere as a result of 
delamination of the lithospheric mantle along the Moho 
discontinuity. 

Finally, according to Laurent et al. (2017) the Variscan 
magmatism active for 35-40 million years in the French 
Massif Central, “characterized by coeval melting of 
both crustal and mantle sources” reveals the existence 
of “a lithospheric-scale thermal anomaly”, created by “a 
progressive southward delamination of the lithospheric 
mantle”. 

To the same trigger, “lithospheric mantle delamination”, 
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and to thermal softening of the thickened crust, causing 
gravitational collapse and extensional tectonics in the 
waning stages of the Variscan Orogeny, Rey et al. (1997) 
ascribe, among other consequences: 1) the production 
of large volumes of granitic magmas through “extensive 
melting and pervasive flow of the middle and lower crust”; 
2) “widespread low-P-high-T metamorphic conditions”; 
3) “mantle-derived mafic intrusion in the lower crust”. 

As regards Sardinia, Gaggero et al. (2017) state that 
a genetic correlation of the 332±12 Ma old Cobingius 
andesite from SE Sardinia with the 340 Ma old Mg-K 
suite of Corsica “cannot be excluded” and that the Mg-K 
suite is the “result of mantle melting and subsequent 
mixing with lower crustal material”. Similarly, according 
to Paquette et al. (2003), the high K-Mg granitoids of 
Corsica, emplaced at 338±2 Ma, “display petrographic 
and geochemical hybrid characteristics…compatible 
with a significant involvement of…partial melts extracted 
from the shallow upper mantle. Furthermore Gaggero et 
al. (2017, Figure 3) reveal an almost continuous silicic 
magmatism, mainly consisting of rhyolitic ignimbrites, 
during a very long time lapse from the age of 321.2±8.3 
Ma yielded by Cala Muro granite, Santa Maria island, 
~40 km north of the Posada-Asinara Line (Oggiano et al., 
2007) to the U-Pb zircon age of 275.6±3.4 Ma obtained 
by M. Maino, 2012 (personal communication to Edel et 
al., 2014) for the Gallura ignimbrite, Trinità d’Agultu, N 
Sardinia. 

The whole scenario indicates the presence beneath 
Sardinia of a lithospheric scale heat source that could be 
represented by both buried mid-ocean ridges or upwelling 
molten asthenosphere for at least 45 Ma, resulting from 
the breakoff and downward detachment of a subducting 
slab or delamination of the lithospheric mantle. This 
scenario agrees with that proposed for the whole Variscan 
Belt by Rey et al. (1997) in their general study on the 
relationship between Scandinavian Caledonides and 
Variscan Belt. These authors recognize a time interval 
of 50 million years between 340 Ma and 290 Ma for the 
genesis and emplacement of huge granite volumes and 
identify the time lapse 330-310 Ma for the low-P-high-T 
metamorphism, two features that strongly characterize the 
Variscan Orogeny.

CONCLUSIONS
The U-Pb zircon and Ar-Ar amphibole and biotite 

geochronological data suggest the following scenario 
for the migmatite formation. The igneous protolith of the 
amphibole-bearing migmatite was emplaced at 461.3±3.3 
Ma and subsequently underwent high-grade metamorphic 
conditions and partial melting during the late LP/HT post-
collisional phase of the Variscan Orogeny. The zircon 
core domains, in mesosome and leucosome, preserve 

Darriwilian to Sandbian ages whereas the zircon rim 
domains of leucosome point to an age, here interpreted as 
indicating the final stage of partial melting, at ~325 Ma. 
The zircon U-Pb ages do not give any indication of the 
beginning of partial melting. The 40Ar-39Ar amphibole 
age of 317.4±2 Ma, corresponding to the age of re-
equilibration and cooling of the amphibole, is related to 
the time when migmatites were below the P-T conditions 
of partial melting, i.e. in sub-solidus conditions. 
According to these observations, partial melting in the 
Variscan chain of Sardinia probably lasted from 344 Ma 
to ca. 320-330 Ma. A comparison with the ages yielded by 
migmatites along the whole Variscan Belt indicates that, 
like in Sardinia, partial melting began around 345 Ma and 
was ubiquitous and synchronous in the 335-320 Ma time 
interval from Central Iberia to the Bohemian Massif.

SUPPLEMENTARY INFORMATION 
Table S1, S2 are available for downloading at the 

Journal site.

APPENDIX
Zircons from MES5 and LEU5 were separated by 

crushing, heavy liquids processing and hand picking. 
Selected zircon grains, free of fractures and inclusions, 
were mounted in epoxy resin, polished and characterized 
for their internal textures by CL imaging. Selected 
trace elements (Y, Nb, Hf, Ta) and REE abundances in 
zircons were acquired at Cagliari University by using a 
Quadrupole ICP-MS Perkin Elmer Elan DRC-e coupled 
with a 213 nm Nd:YAG laser probe by New Wave 
Research. Measurements were made with 46-50 mJ laser 
energy, spot sizes of 40-100 mm, a pulse energy of 0.2 
mJ, 50-60 s ablation, 60 s background, and 30 s washout 
delay. Data reduction was made with Glitter using 29Si 
as internal standard in concentrations determined by 
electron microprobe. U-Pb geochronology was performed 
by LA-ICPMS at the CNR-Istituto di Geoscienze e 
Georisorse-UOS, Pavia by using a 193-nm ArF excimer 
laser microprobe (Geolas200Q-Microlas) coupled with 
a Thermo Finnigan Element I ICPMS. The analytical 
method is reported in Tiepolo (2003). Instrumental and 
laser-induced U/Pb fractionations were corrected using 
zircon GJ-1 (Jackson et al., 2004) whereas reference zircon 
91500 (Wiedenbeck et al., 1995) and 02123 (Ketchum et 
al., 2001) were analyzed together with unknown samples 
for quality control at each analytical run. Spot size was 
25 µm for leucosome and mesosome, but measurements 
with 10 µm spot size were also performed for leucosome 
zircons. All analytical runs were carried out with laser 
fluency set to 8.8 J/cm2. Data reduction was carried out 
using the ‘‘Glitter’’ software package (van Achterbergh et 
al., 2001). Concordia ages were determined, and relative 
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probability plots were constructed using the Isoplot/
EX 3.0 software (Ludwig, 2000), with uncertainties 
given at 2σ level. Biotite and amphibole separation and 
Ar-Ar analyses were fulfilled at Istituto di Geoscienze 
e Georisorse, CNR Pisa. Biotite and amphibole were 
separated by conventional methods. Amphibole grains 
were leached at ambient temperature in ultrasonic bath for 
10’ in HNO3 (1N) and 5’ HF (7%). The separated grains 
were irradiated with a neutron flux for 60 hours in the 
central canal of the nuclear reactor TRIGA of L.E.N.A., 
at the University of Pavia. The neutron flux was measured 
with the “Fish Canyon Tuff Sanidine” international 
standard (age of 28.03 Ma, Jourdan and Renne, 2007). 
Both minerals were analyzed with step-heating technique 
by continuous defocused laser beam generated by a laser 
Nd-heating: YAG laser (maximum power: 18 W). More 
details on the 40Ar-39Ar methodology are reported in Di 
Vincenzo and Skála (2009) and Di Vincenzo et al. (2010). 
Table 3 shows the complete analytical data, corrected after 
irradiation decay, instrumental mass fractionation effects, 
isotopes produced from interference reactions during 
irradiation and blanks. Argon isotope concentrations 
are in V. All the errors are given at 2σ level. Ages were 
calculated using the constants recommended by I.U.G.S. 
(Steiger and Jäger, 1977). The error provided for total and 
weighted average ages relative to concordant tract does 
not include the uncertainties associated with the constants 
of the 40K decay and age of the monitor.
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