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Abstract

A diagnostic study was recently carried out on fragments of wall paintings belonging to the 
decorations of an old Roman residential villa of the Ager Gabinus, in the locality Pratolungo 
(Rome, Italy). The study was organized in two stages. A first stage, in which small fragments 
of these painted specimens were embedded in resin to obtain polished and thin cross-sections 
to study by optical microscopy and a second phase, in which the specimens were analyzed 
by Raman Spectrometry and HyperSpectral Imaging (HSI). The results obtained by classical 
methods (i.e. optical microscopy), were compared with those resulting from non-destructive 
investigation such as, Raman spectroscopy and HSI based techniques. The attention was 
particularly addressed to the use of HSI in the SWIR range (1000-2500 nm), being this 
techniques potentially used directly in situ without any physical sampling/removal of the 
specimen of interest. The collected hyperspectral data (i.e. images) were processed applying 
chemometric methods. The use of HSI as a diagnostic tool in the field of cultural heritage 
is of great interest and it presents high potentialities, being this analysis intrinsically non-
destructive, non-invasive and in principle applicable in any site. Furthermore, the possibility 
to couple hyperspectral data with chemometric techniques allows getting not only qualitative 
but also quantitative information on the nature and the physical-chemical attributes and 
characteristics of the investigated materials. Following this strategy, it is thus possible to 
obtain information comparable with those commonly acquired by optical microscopy, 
allowing also the identification of pigments and the constituent materials directly in situ.

Key words: wall paintings; hyperspectral imaging; Raman spectroscopy; chemometric 
methods; optical microscopy.
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Introduction

HyperSpectral Imaging (HSI), in these last 
years, has been more and more utilized, in the 
field of cultural heritage, to perform materials 
characterization (Cucci et al., 2013; Capobianco 
et al., 2014a). HSI is of particular interest to 
perform studies finalized to evaluate, quantify 
and spatially define alteration processes affecting 
painting materials in old wall decorations. 
These analyses are usually quite challenging 
to carry out mainly for the complexity of the 
phenomena affecting the original utilized 
painting products and the variety of alteration 
mechanisms, as well as interactions among 
them and the environmental conditions. Old 
paintings usually contain pigments, mainly 
mineral phases, and specific binding media 
such as calcium carbonate, protein binders, etc.. 
Painting materials are sensitive to the influence 
of atmospheric pollution, humidity, temperature 
and varying environmental conditions 
associated with climate change. To successfully 
develop procedures and studies able to properly 
quantify these effects on old wall paintings is 
thus fundamental to utilize advanced analytical 
techniques. Raman and Infrared Spectroscopies, 
as well as classical Optical Microscopy based 
devices, can be particularly useful to reach these 
goals, providing a large and detailed information 
about chemical composition and structural 
features of inorganic and organic compounds. 
Furthermore, due to the large quantities and the 
complexity of the data to handle, sophisticated 
statistical and mathematical methods have to be 
applied, often requiring the development and 
set up of specific algorithms, usually based on 
Chemometric Methods.

HSI is based on the collection of images (2D 
data), of a given scene, at different wavelengths 
in a wide spectral region, typically in the range 
VIS–NIR (400-1000 nm) and SWIR (1000-
2500 nm). The acquired data set, constituted by 
spectra referred to each cell image (i.e. pixel), 

generates the image itself. With reference to 
wall paintings, reflectance spectra can be thus 
utilized to perform a non-invasive identification 
of “pictorial materials” (i.e. pigments, dyes, 
preparation layer, products of alteration, etc.) 
constituting them. The collected HSI data set is 
usually processed utilizing multivariate analysis 
(Principal Component Analysis, Multivariate 
Curve Resolution, etc.) in order to obtain 
information regarding presence and distribution 
of the various elements on the painted surface. 
The main aim of this study was thus to perform 
a comparison of the proposed innovative 
HSI based approach with other consolidate 
techniques of analysis for the characterization 
of materials, such as optical microscopy, in 
reflected and transmitted light, and Raman 
spectroscopy. Furthermore, the potential 
benefits of the combined utilization of HSI 
technique and chemometric analysis in order to 
perform investigations directly in situ, without 
any physical sampling/removal of the specimen 
of interest, are highlighted.

Materials and methods

Sample preparation
Seven fragments of painted mortars, 

characterized by different colouring and 
alteration of the surfaces, were collected and 
investigated. Samples were consecutively 
numbered from 1 to 7. Their characteristics are 
synthetically reported in Table 1 and Figure 1. 
Starting from these samples, both polished and 
thin cross-sections have been prepared. Polished 
sections have been utilized to perform Raman 
spectroscopy, optical microscopy and HSI 
based analyses. Thin sections have been utilized 
to perform “only” optical microscopy based 
analyses.

Equipments
A SciAps Raman Advantage 785™ 

spectrometer, with a spectral range 200-2500 
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cm-1 and resolution of 3-5 cm-1 was utilized to 
perform Raman spectroscopy analyses. These 
analyses have been preliminary carried out in 
order to obtain qualitative information on the 
compositions of the fragments, allowing to better 
localize the area for the next micro-sampling, 
finalized to understand both sample surface 
status, as well as painting layers composition 
and characteristics. Optical microscopy analyses 
have been carried out utilizing a Leica DM EP 
microscopy, 3 levels of magnification: 50x, 
100x, 200x have been utilized. Both polished 
and this cross-sections of each selected samples 
were investigated in order i) to characterize 
the sequence of the surface layers present on 
the mortar, of its components, ii) to identify 

any possible artificial treatments and, finally, 
iii) to determine the pigments. Hyperspectral 
analyses have been performed by a Specim 
SISUChema XL™, embedding an ImSpector™ 
N25E (Specim Ltd, Finland) acting in the range 
from 1000 to 2500 nm, with a spectral sampling/
pixel of 6.3 nm, coupled with a MCT camera 
(320 x 240 pixels). Pixel resolution is 14 bits. 
HSI was applied in order to identify and map 
the pigments present on each plaster fragment 
surface, determining, at the same time, their 
state of conservation.

Raman and hyperspectral data processing
Raman and hyperspectral collected data have 

been analysed adopting Chemometric Methods 

Table 1. Main characteristics of the seven plaster samples.

Sample identification 
code

Sample estimated 
surface area (cm2)

Description

GV01 40 The sample surface presents a yellow colour partially covered 
by a deposit (Figure 1a)

GV02 32 The sample is characterized by a smooth white layer on the 
surface, partly covered by a deposit (Figure 1b)

GV03 24
The sample is characterized by a yellow layer on the surface. 

Traces of decoration, partly covered by a surface deposit, 
(Figure 1c) can also be identified

GV04 6 The sample is characterized by a reddish surface layer, partly 
covered by a surface deposit (Figure 1d)

GV05 30 Traces of red decoration on the surface and a smooth white 
layer on the remaining sample (Figure 1e) characterize it

GV06 8 A yellow surface layer, partly covered by a surface deposit, 
(Figure 1f) is the main element characterizing this sample

GV07 12 The sample is characterized by a yellow surface layer partly 
covered by a surface deposit (Figure 1g)
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(Geladi et al., 2007). To reach this goal, the 
Toolbox software (Version 7.8 Eigenvector 
Research, Inc.), running inside Matlab (Version 
7.11.1, The Mathworks, Inc.), has been used. 
Data have been preliminary analysed by 
Principal Component Analysis (PCA), then 
a Partial Least Square Discriminant Analysis 
(PLS-DA) was applied.

PCA is a useful method capable of providing 

an overview of complex multivariate data 
(Bro and Smilde, 2014). PCA can be used 
for revealing relations between variables and 
relations between samples (e.g. clustering), 
detecting outliers, finding and quantifying 
patterns, generating new hypotheses as well as 
many other things. It was used to decompose the 
“processed” spectral data into several Principal 
Components (PCs) (linear combinations of the 
original spectral data), embedding the spectral 
variations of each collected spectral data set. 
According to this approach, a reduced set of 
factors is produced. Such a set can be used for 
discrimination, since it provides an accurate 
description of the entire dataset. The first few 
PCs are generally used to analyses the common 
features among samples and their grouping: in 
fact, samples characterized by similar spectral 
signatures tend to aggregate in the score plot of 
the first two or three components. Spectra could 
be thus characterized either by the reflectance at 
each wavelength in the wavelength space, or by 
their score on each PC in the PC space. Samples 
characterized by similar spectra, which belong 
to the same class of products, are grouped in the 
same region of the score plot related to the first 
two or three PCs, whereas samples characterized 
by different spectral features will be clustered in 
other parts of this space.

PLS-DA is a linear classification method 
combining the properties of partial least 
squares regression with the discrimination 
power of a classification technique (Ballabio 
and Consonni, 2013). PLS-DA is based on the 
PLS regression algorithm (PLS1 when dealing 
with one dependent Y variable and PLS2 in 
the presence of several dependent Y variables), 
which searches for latent variables with a 
maximum covariance with the Y-variables. The 
main advantage of PLS-DA is that the relevant 
sources of data variability are modelled by 
the so-called Latent Variables (LVs), which 
are a linear combinations of the original 
variables, and, consequently, it allows graphical 

Figure 1. Investigated samples.



Periodico di Mineralogia (2015), 84, 3A (Special Issue), 407-418 411Hyperspectral imaging-based approach…

visualization and understanding of the different 
data patterns and relations by LV scores and 
loadings. Loadings are the coefficients of 
variables in the linear combinations which 
determine the LVs and therefore they can be 
interpreted as the influence of each variable on 
each LV, while scores represent the coordinates 
of samples in the LV projection hyperspace.

Results

Raman spectroscopy
Fifty five measurements were performed 

on different regions of each fragment. As 
previously outlined, this approach was followed 
in order to identify the most significant areas to 
utilise for micro-sampling.

Raman spectroscopy evidenced the presence of 
three families of spectra (Figure 2). They show 
peaks around 1086, 339 and 276 cm-1, which can 
be attributed to the presence of calcium carbonate. 
Peaks at 338 and 246 cm-1 are due to vermilion. 
Peaks at 403 cm-1, 285 and 219 cm-1 are generated 
by the presence of iron oxides, compatible with the 
presence to ochre pigment; finally the peak at 1008 

cm-1 is due to the presence of gypsum (Bevilacqua 
et al., 2010).

Smoothing, Normalize and Mean Centering 
pre-processing were applied before PCA 
modelling. The variance captured in six 
components is 89.76%. The score plot shows 
three separate groups (Figure 3a). Group 
A is associated with the presence of ochre 
and calcite, group B with calcite and group 
C with calcite and vermilion. In the second 
graph (Figure 3b) the representative points of 
the investigated region, referred to a specific 
sample, are outlined. The analysis of this plot 
shows as iron oxides are present also in sample 
GV04, while the presence of vermilion is also 
detected in GV03 GV05 samples. The presence 
of calcium carbonate in all samples (Group B) is 
in accordance with the usual composition of the 
mortars used for Roman wall paintings.

Optical microscopy
The analyses carried out by optical microscopy 

allowed for determining the characteristics 
of the different layers (i.e. different materials/
products). In the sample GV01 (Figure 4a), 

Figure 2. Mean spectra of groups of different composition (A, B and C) as resulting from Raman spectroscopy 
applied to different regions of plaster fragments. 
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Figure 3. PC1-PC2 score plot of the collected Raman data, referred to the three groups identified by the principal 
component analysis (a) and referred to the distribution of the measurements carried out on each sample, from 
GV1 to GV7 (b). Group A can be considered representative of sample area where the presence of ochre and 
calcite is detected, group B with only the presence of calcite, and group C with calcite and vermilion.

Figure 4. Microphotographs of samples polished cross-sections: (a) sample GV01; (b) sample GV02; (c) sample 
GV04; and (d) sample GV05. (a), (c) and (d) magnification 100x; (b) magnification 50x.
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starting from the surface, a yellow opaque almost 
continuous layer, characterized by a thickness of 
about 0.8 μm, was found (Figure 4a - A1). Such 
a layer is composed of a light yellow binder 
and abundant whitish-translucent sharp edges 
elements (Figure 4a - A1). Analyses showed as 
it was applied without break in continuity. Its 
surface is quite regular and well-binded with 
the underlying layer. The white preparation 
layer (i.e. mortar) is constituted by a whitish-
translucent sharp edges elements medium-fine 
aggregates (Figure 4a - A2).

Sample GV02 (Figure 4b) is characterized 
by a white finishing layer, with a continuous 
thickness of about 0.6 μm, it results constituted 
by a whitish binder and a fine sharp edges 
whitish-translucent aggregate (Figure 4b - B1). 
The red covering layer, in sample GV04 (Figure 
4c), is characterized by an almost continuous 
thickness of about 40 μm (Figure 4c - C1)  and 
under the red opaque layer, an another red layer 
with a thickness from 150 to 350 μm (Figure 4c 
- C2) can be detected.

Sample GV05 is  characterized by a 

continuous red color of ana average thickness of 
about 25 μm (Figure 4d - D1) and under the red 
layer there is an  orange layer with a thickness 
from 200 to 400 μm (Figure 4d - D2). 

Sample GV06 shows the same characteristics 
already described for sample GV02.

A flattening is applied on the surfaces of all 
samples. The whitish mortar preparation is the 
same for all the samples and it is composed 
by a whitish binder and a whitish-translucent 
individuals characterized by sharp edges ranging 
between silty to medium-fine arenaceous 
aggregates. Its thickness is about 5 mm. This 
cover results composed of a light-colored binder 
and abundant gray and opaque elements with 
sharp edges, it is applied in two layers: the first 
composed of aggregates of an average size of 
about 38 μm and the second, about 1.2 μm thick, 
and it is smoothed utilizing very fine aggregates. 
The surface results quite regular and well-tied 
with the underlying layer.

The whitish mortar preparation, with a 
continuous average thickness of about 6 mm, 
is constituted by a whitish binder and whitish-

Figure 5. Microphotographs of sample thin sections: (a) sample GV01 (magnification 500x) and (b) sample 
GV05 (magnification 100x). Sample GV01 - A1 = lime altered by sulphation, A2 = binder, lime and yellowish/
ochre pigment A3 = pigmented opaque amorphous binder and A4 = lime-binder and fine and sparse sharp edges 
blackish and yellowish pigments. Sample GV05 - B1 = pigmented opaque amorphous binder and fine sharp 
edges carbonate particles and B2 = lime-binder and fine and sparse sharp edges blackish and yellow pigments.
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translucent aggregates characterized by sharp 
edges and, as for samples GV02 (Figure 4b - B2), 
GV04 (Figure 4c - C3), GV05 (Figure 4d - D3), 
with a size class distribution ranging between 
silty to medium-fine sandstone aggregates. The 
surface is quite regular and well tied with the 
underlying layer.

The analyses of the thin sections of the samples 
characterized by a yellow surface showed the 
presence of a yellowish/ochre homogeneous 
layer surface (Figure 5a), with a thickness of 
about 40 μm, composed of a pigmented opaque 
amorphous binder and from abundant and fine 
sharp edges carbonate individuals (Figure 5a 
- A2). Then, a layer with an almost continuous 
thickness of about 40 μm (Figure 5a - A3), 
composed of a binder and lime with abundant 
yellowish/ochre pigment, is identified ((Figure 
5a - A3). On the surface of the thin section, an 
irregular lime layer, altered by sulphation, can 
be observed (Figure 5a - A1). Underneath this 
altered surface, a layer, of about 300 μm thick, 
composed of a lime-binder and fine and sparse 
sharp edges blackish individuals can be identified 
(Figure 5a - A4). In the thin sections of the 
samples characterized by red colour, the presence 
of a homogeneous dark-red layer (Figure 5b - B1) 
can be easily detected. Layer shows a thickness 
of about 30 μm, consisting of a pigmented 
opaque amorphous binder and fine sharp edges 
carbonate particles. Then a continuous layer, 
with a thickness of about 400 μm, and consisting 
of a lime-binder and abundant ochre pigments, 
is also present (Figure 5b - B2).The surfaces 
of all examined samples are characterized by 
the presence of irregular layers probably due to 
sulphation (Figure 5b - B3).

Hyperspectral imaging
The hyperspectral analyses, carried out in 

the SWIR range, confirmed the presence of 
calcium carbonate in all samples,  as outlined by  
the presence of absorptions between 2100 and 
2400 nm (Gaffey, 1986). The main differences 

between the various groups are concentrated in 
the wavelength field ranging between 1000 and 
1200 nm.

The hypothesized material on the surface of 
the analyzed samples is mainly composed of 
gypsum, with a fork absorptions identified in 
the interval 1400-1600 nm, and calcite, with 
absorptions in 2100-2400 nm range (Bevilacqua 
et al., 2010). The average values of the spectra 
collected in different regions of the samples 
according to their surface characteristics are 
reported in Figure 6. Based on the previously 
discussed Raman analysis, performed to identify 
physical-chemical attributes of specific mortar 
surfaces (i.e. painting layers), several Region 
of Interest (ROI) were selected on all samples, 
and the corresponding spectra acquired, in order 
to create an HSI-based model to be used for 
recognition and classification of sample surface 
attributes.

Standard Normal Variate (SNV) and Mean 
Centering pre-processing were applied before 
PCA modelling. The variance captured in six 
components is 97.65%. The score plot of PC1 
and PC2 (Figure 7) show 6 distinct groups that 
can be attributed to the presence of the various 
pigments mixed with calcium carbonate, also in 
the class called “deposit” the presence of two 
separate clouds of pixels can be attributed to 
the different composition of the surface deposit 
detected in the samples.

The same pre-processing approach was 
then applied to build PLS-DA model. A 
Cross Validation adopting the “venetian blind 
method”, with 10 splits and 5 samples for 
split, was applied. Percent variance captured 
by regression model with 8 latent variable is 
99.84%. The detail of PLA-DA are reported 
in Table 2. Samples classification adopting the 
developed  PLS-DA model allowed to map 
the “deposit” (i.e. alteration material present 
on the surface of each sample) and to identify 
pigments underneath the surface deposit that 
cannot be removed (Capobianco et al., 2014b). 
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Figure 6. Mean spectra of pixels belonging to different selected Region of Interest (ROI) on samples GV01, 
GV02 and GV05.

Figure 7. PC1-PC2 score of the collected hyperspectral data.
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In particular, in the sample GV01 traces of 
vermilion mixed with calcite can be revealed in 
the decorative line (Figure 8a). 

PLS-DA classification applied to GV01 and 
GV07 samples, showed as they are similar 
(Figures 8a and 8g). The white finishing layer, 
visible in all examined samples, is made of 
calcium white. Only in sample GV04 (Figure 
8d) red ochre without vermilion is present. 
Vermilion was detected on sample GV01, 
GV03 (Figure 8c), GV05 (Figure 8e). Yellow 
ochre mixed with calcite is also detected on 
sample GV01, GV03, GV06 (Figure 8f) and 
GV07.

Conclusions

In the present paper, a full characterization 
of the materials in ancient Roman painting 
samples, was performed. Such a goal was 
reached comparing the results achievable by 
well-established investigation techniques (i.e. 
optical reflected/ transmitted light microscopy 
and Raman spectroscopy) applied on thin 
and polished cross-sections with innovative 
non-destructive methods HyperSpectral 
Imaging (HIS) based. The combination of 
information derived from the three analytical 
approaches allowed to fully characterize the 

Table 2. Detail of PLS-DA model.

Modeled Class Yellow ochre Deposit Calcium 
carbonate

Red ochre
+ Calcium 
carbonate

Cinnabar
+ Calcium 
carbonate

Sensitivity
(in calibration) 0.975 0.977 1.000 0.995 1.000

Specificity
(in calibration) 0.975 0.992 1.000 0.991 0.993

Sensitivity
(in cross 

validation)
0.975 0.977 1.000 0.995 1.000

Specificity
(in cross 

validation)
0.974 0.992 1.000 0.991 0.993

Classification 
Error (in 

calibration)
0.0251067 0.0155063 0.000207194 0.00719728 0.00354869

Classification 
Error (in cross 

validation)
0.0250596 0.0155333 0.000227913 0.0073179 0.00368591
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Figure 8. Result of Partial Least Square Discriminant Analysis (PLS-DA) classification for all the 
analysed samples. (a) sample GV01, (b) sample GV02, (c) sample GV03, (d)  sample GV04, (e)  sample 
GV05, (f) sample GV06 and (g)  sample GV07.
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samples. The use of HSI, in the SWIR range 
(1000-2500 nm) gave a full topological 
assessment (i.e. mapping) of the different 
products present on painted mortar surfaces. 
HIS based mapping confirmed the results 
obtained by Raman spectroscopy and optical 
microscopy analysis. The use of chemometric 
based processing logics on the collected 
hyperspectral data was fundamental to identify 
the various pigment-binder mixtures present in 
the analysed samples. The proposed approach 
results particularly suitable to be applied, 
not only at laboratory scale, but also in situ, 
allowing to obtain the mapping of wide painted 
surfaces with their characteristics such as 
lacunae, alterations, typology of pigments and 
binders. etc.
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