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INTRODUCTION
Four minerals constitute the kaolin group, 

namely; kaolinite [Al2Si2O5(OH)4], halloysite 
[Al4Si4O10(OH)8.8H2O], nacrite [Al2Si2O5(OH)4] and 
dickite [Al2Si2O3(OH)4] (Kearey, 2001; Obaje et al., 
2013). The most common of these minerals is kaolinite, 
which can form over a wide range of temperatures, due 
to weathering, diagenesis, or hydrothermal deposition 
and alteration (Schroeder and Hayes, 1968). Kaolinite 
is a two-layer clay (phyllosilicate mineral) which has a 
sheet of silica tetrahedral combined through octagonal 
hydroxyls which are shared with an alumina octahedral 

sheet (Murray, 1999). The alumina octahedral sheet and 
the silica tetrahedral sheet share a common plane of 
oxygen atoms and repeating layers of the mineral are 
hydrogen bonded together (Miranda-Trevino and Coles, 
2003). The functional groups consist of the outer and 
the inner hydroxyl groups (Frost, 1998). The theoretical 
formula of kaolin is 46.54% SiO2, 39.50% Al2O3 and 
13.96% H2O (Deer et al., 1992). 

Kaolin genesis has a direct bearing on its industrial 
applications (Ekosse, 2000). Physical and physico-
chemical properties of kaolins are closely related to their 
mineralogical and geochemical compositions (Cravero 
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et al., 1997). Moreover, kaolin impurities affect its 
industrial applications. The physical, physico-chemical, 
mineralogical and geochemical parameters of kaolins 
aid in its diagnostic assessment for economic benefits. 
These parameters do not only assist in the determination 
of potential industrial applications of a kaolin deposit; 
but they also determine which beneficiation process is 
required to improve its value. A correlation exists between 
specific physical and physico-chemical parameters of 
a kaolin deposit and its mineralogy and geochemistry. 
Clay fraction and iron content could aid in determining 
kaolin application (Negroni, 2015; Dehaine et al., 2019). 
Iron contained in iron-bearing minerals such as goethite 
and hematite present in kaolin reduces its whiteness 
(Bertolino et al., 2010). Scott et al. (1996) showed that the 
amount of clay size fraction in a kaolin deposit is not the 
best factor for determining the kaolin’s unfired strength 
(important in the ceramic industry). The excellent firing 
properties and relatively high melting point of kaolin (Aja 
and Randy, 2013) advantage it as a suitable mineral for 
varied industrial applications (Choudhary et al., 2012). 

Kaolins are used in several industries, including 
the construction, pharmaceutical, cosmetic industries 
amongst others (Heckroodt, 1991; Siddiqui et al., 2005; 
Matike et al., 2011; Obaje et al., 2013; Tassongwa et al., 
2014). In the pharmaceutical industry, kaolin is used as 
excipient or active ingredient due to its excellent physical, 
chemical and surface physicochemical properties (Awad 
et al., 2017). Four types of bricks can be made from kaolin 
in the construction industry; these include common bricks, 
vertically perforated bricks, roofing tiles, masonry bricks, 
and hollow products (Dondi et al., 1992). In cosmetic 
industry, kaolin is used as a filler since it provides the 
necessary specific structure and also acts as a riser (Aja and 
Randy, 2013). Kaolin is also used as a filler and coating 
pigment in the paper industry (Jepson, 1984). Ceramics 
applications of kaolins include the production of sanitary 
ware, tableware, fine china, electrical porcelain, wall tiles 
and floor tiles. Whereas, in the paint and polymer industry, 
the fine particle size, aspect ratio and white colour of 
kaolins make them useful as extenders (Jepson, 1984).

In 2015, the world mine production of kaolins was 
estimated at approximately 36 billion metric tons 
(Flanagan, 2018). Though kaolin occurrences are common 
and known on all continents of the world except Antarctica, 
only ten countries produced up to 25 billion metric tons 
of kaolins. These countries were the United States of 
America, Brazil, China, Czech Republic, Germany, India, 
Kyrgyzstan, Turkey, Ukraine and the United Kingdom 
(Flanagan, 2018). Two of the best known and highly 
utilised kaolin deposits are those from the Amazon region 
in Brazil (Capim River kaolin) (Murray, 1999; Costa and 
Souza, 2009), and the high grade sedimentary kaolin 

deposits in Georgia, USA (Georgia kaolin) (Pruett, 2016; 
Lang et al., 1965).

In Africa, more than 292 kaolin deposits and occurrences 
have been reported, with Cameroon having 27 deposits 
(Ekosse, 2010). Being a lower middle-income country 
with a population of 23.3 million people, Cameroon could 
invest in its kaolin occurrences to promote its economy. In 
the Douala Sub-Basin, kaolins have been identified (Diko 
and Ekosse, 2012; Ngon Ngon et al., 2012; Logmo et 
al., 2013). The mineralogy, stable isotopes geochemistry 
and U-Pb ages of zircons in Bomkoul, Dibamba, Ediki, 
Logbaba, Missole and Yatchika kaolins in the Douala 
Sub-Basin have been documented (Bukalo et al., 2017, 
2018 a,b, 2019). In this paper, the authors present the 
geochemistry and paleoenvironments of formation of the 
clays; and where applicable, utilize referred published 
data to infer on possible industrial applications. 

MATERIALS AND METHODS 
Study Area

The studied kaolin occurrences are located in the Douala 
Sub-Basin, which extends on the South coast of Cameroon, 
covering a total surface area of 19,000 km2 (Mbesse et al., 
2012). It is subdivided into seven Formations (Logmo et 
al., 2013). The studied kaolin deposits are the Bomkoul, 
Dibamba, Ediki, Logbaba, Missole and Yatchika deposits 
(Figure 1), which belong to four Cretaceous-Tertiary 
Formations; namely, the Mundeck, Logbaba, Nkapa and 
Souellaba Formations. The Early Cretaceous Mundeck 
Formation made up of sandstones. The Late Cretaceous 
Logbaba Formation, made up of sandstones and clays with 
intercalations of sands and rare occurrence of limestones. 
The Paleocene to Middle Eocene Nkapa Formation 
composed of marls, shales and calcareous sandstones; 
and the Upper Eocene to Oligocene Souellaba Formation, 
composed of sandstones and marls, shales, clayey sands, 
sands and gravels (Effoudou-Priso et al., 2014). A general 
description of the studied kaolins is presented in Bukalo 
et al. (2019).

Materials 
As described in Bukalo et al. (2018a), the sampling 

method used was judgemental, i.e. the choice of samples 
was based on (i) the availability of Cretaceous-Tertiary 
kaolins in the Douala Sub-Basin, (ii) availability of an 
outcrop and its size, and (iii) presence of profiles and 
lithological variations in the outcrop. Table 1 shows the 
location, sample codes, geographical coordinates, age and 
Formation of studied kaolins. 

Methods 
The bulk and <2 µm fractions of the kaolins were 

analysed for their mineralogy by X-ray diffractometry 
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(XRD) using a Rigaku Ultima IV diffractometer working 
with 40 kV and 30 mA, with a cobalt source (λ=1.789 Å) 
and an alpha filter (Co Kα). Samples were scanned from 
3o 2θ to 40o 2θ at a rate of 2o per minute. Mineral phase 
identification was carried using X’Pert Highscore Plus 
Software; and quantification of relative phase amounts 
(weight %) were estimated using the Rietveld method 
(Bukalo et al., 2018a). Diffractograms of this analysis are 
presented in Bukalo et al. (2018a). 

The texture of the kaolins was determined according 
to the hydrometer method, as described by van Reeuwijk 
(2002). The colour of bulk kaolin samples was determined 
by using the Munsell® Soil Colour Charts (2000). Each 
sample was placed on a white paper and was visually 
compared with soil colours in the Munsell Soil Colour 
Charts to obtain its hue, value and chroma characteristics 
(Matike et al., 2011). The colour of the sample was then 
deduced from its characteristics. 

The method that was used for the determination of the 
moisture content, was the one described by van Reeuwijk 
(2002). Five grams of each bulk kaolin sample was 
weighed in a 2.11 g tin. The samples were heated in an 
oven for 24 hours at 105 oC. After removing the samples 
from the oven, they were placed in a desiccator in order 

to prevent accumulation of moisture. Each sample was 
weighed again to note the weight difference. The moisture 
content (MC) was calculated using Equation (1) (van 
Reeuwijk, 2002).

(1)

Where, MC is the moisture content, m1 is the mass of 
tin (g), m2 is the mass of wet kaolin + tin (g), and m3 is the 
mass of dry kaolin + tin (g)

After determining their moisture content, the bulk 
and <2 µm samples were placed in a muffle furnace and 
heated at 1000 oC for two hours. After two hours, the 
samples were removed from the furnace and were placed 
in desiccators. When cooled, samples were weighed, and 
LOI was calculated using Equation (2) (van Reeuwijk, 
2002).

(2)

Where, LOI is the loss on ignition, mC is the mass of tin 
(g), mA is the mass of the kaolin sample after heating for 

Figure 1. Geologic map of the Douala Sub-Basin (modified from SNH, 2005).
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24 hours at 105 oC+tin (g), and mB is the mass of kaolin 
sample heating for two hours at 1000 oC+tin (g).

The pH of bulk kaolin samples was determined by using 
the method described in The Non-Affiliated Soil Analysis 
Work Committee (1990). Prior to measurements, a 
Crison BasiC 20 pH meter was calibrated with buffers of 
pH=7 and pH=4. Ten grams of dry sample (<2 mm) was 
weighed and placed in a beaker. Fifty milliliters of 1 M 
potassium chloride (KCl) solution (74.5 g KCl dissolved 
in 1 L of distilled water) was added in the beaker. The 
mixture was stirred rapidly for 5 seconds, using a glass 
rod then allowed to stand. After 50 minutes, the mixture 

was stirred again, then allowed to stand for 10 minutes. 
Then the pH was measured with the calibrated pH meter, 
with the electrodes placed in the supernatant.  

Prior to the electrical conductivity (EC) measurement, a 
Crison BasiC 30 conductivity meter was calibrated using 
a standard of EC=1413 µS/cm at a temperature of 25 oC. 
The EC was determined by weighing 10 g of each bulk 
sample and placing it in a beaker. Distilled water was 
then added to the sample and the mixture was vigorously 
stirred using a glass rod. The EC was then measured by 
using the calibrated conductivity meter, with the electrode 
placed in the supernatant. 

Major oxides concentrations of bulk and <2 µm kaolin 
samples were determined using X-ray fluorescence 
spectrometry. The analysis was carried out on pressed 
pellets using a Rigaku ZSX Primus II XRF spectrometer. 
Prior to analysis, bulk kaolin samples were air dried 
and organic matter was removed from the samples (van 
Reeuwijk, 2002). Then the samples were dispersed using 
a mixture of 40 g of sodium hexametaphosphate (NaPO3)6 
and 10 g of soda (Na2CO3) according to (van Reeuwijk, 
2002). Clay size fractions (<2 µm) were obtained by 
sedimentation and using a centrifuge, following the 
method described by (Jackson, 1979; van Reeuwijk, 
2002). Pellets were then produced by using a hydraulic 
press and a die set (die body, base, plunger, and two 
polished metal disks), made up of tungsten alloy. Then 
the pressed pellets were placed in an oven at 105 oC for 
one hour. After removal from the oven, the pellets were 
allowed to cool; then XRF analysis was carried out.

RESULTS
Mineralogical Characteristics

Table 2 summarises the minerals quantification in 
bulk and <2 µm fraction of the kaolins. In bulk samples, 
quartz and kaolinite are the most dominant mineral 
phases, with means of 45.25 and 33.90 wt%, respectively; 
whereas anatase, rutile, goethite and hematite occur in 
trace amounts, with means of 1.25, 0.58, 1.64 and 0.75 
wt%, respectively. In the <2 µm fraction of the kaolins, 
kaolinite is the most dominant mineral phases, with a 
mean of 72.15 wt% (Bukalo et al., 2018a).

Physical Characteristics
The Cretaceous-Tertiary kaolin samples of the Douala 

Sub-Basin have textures that vary from clay to sandy 
loam, with most samples containing sand (Table 3 and 
Figure 2). 

Pure kaolin usually has a whitish colour; but most often 
impurities (iron and titanium) contained in kaolins will 
cause the clay to have a different tint. Different minerals 
present in kaolins could also influence their colour. The 
presence of orthoclase and/or iron-bearing minerals in 

Location Sample code Geographical 
Coordinates Age Formation

Bomkoul BKL 01 N04o05’49.1”
E09o48’16.7” Tertiary Matanda

BKL 02

BKL 03

Dibamba DBB N04o00’30.4”
E09o51’48.3” Tertiary Nkapa

DBB CN 01

DBB CN 02

Ediki EDK 01 N04o33’25.4”
E09o27’59.9” Cretaceous Mundeck

EDK 02

EDK 03

Logbaba LBB 01 N04o01’42.9”
E09o45’25.7” Cretaceous Logbaba

LBB 02

LBB 03

Missole MSL I 01 N03o58’27.9”
E09o56’03.7” Tertiary Nkapa

MSL I 02

MSL II 01

MSL II 02

Yatchika YTK 01 N03o58’28.8”
E09o48’16.8” Cretaceous Logbaba

YTK 02A

YTK 02B

YTK 03

Table 1. Location, sample codes, geographical coordinates, age 
and Formation of studied kaolins 
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kaolins will result in a pink, brown, orange or reddish 
colour. The colour of Cretaceous-Tertiary kaolins of the 
Douala Sub-Basin, using the hue, value and chroma of 
samples, is shown in Table 3. The colour of these kaolins 
varies greatly in hue, value and chroma; hence, different 
colours are determined. The most dominant colour is light 
reddish brown, i.e. three of the samples; and the least 
colours are brownish yellow, dark grey, grey, pink and 
reddish yellow, each represented by one sample each.

The moisture content of the bulk samples varies between 
0.00 wt% (DBB CN 02) to 7.00 wt% (YTK 01). YTK 
samples have a moisture content ≥2.00 wt%. Except EDK 
01, EDK 03 and LBB 01, which have a moisture content 

of 1.40 wt%, the remaining samples have a moisture 
content ≤0.80 wt% (Table 3).

Physico-chemical Characteristics
The pH(KCl) and electrical conductivity (EC) are plotted 

in Figure 4. Cretaceous-Tertiary kaolins are all acidic, 
varying between 1.87 (MSL I 02) and 3.81 (LBB 01), with 
an average of 3.29. Missole I samples have the lowest pH 
values; whereas Logbaba samples have the highest pH 
values (Table 3).

The EC of Cretaceous-Tertiary kaolins varies from 98 
µm/cm (LBB 03) to 8710 µS/cm (MSL I 02). Missole I 
samples have very high EC compared to other samples, 

Bulk samples <2 µm fraction samples

Ka Il Sm Qz Mx An Ru Go He Ka Il Sm Qz Mx An Ru Go He

BKL 01 56 4 3 36 - 1 1 0 - 88 4 4 - - 3 1 - -

BKL 02 58 3 6 31 - 2 0 - - 89 4 4 - - 3 1 - -

BKL 03 2 1 13 54 - 1 1 2 - 82 4 10 1 - 2 1 - -

DBB 54 3 6 37 - 1 - 0 - 91 3 3 - - 3 1 - -

DBB CN 01 14 6 5 73 - 1 - - - 92 2 2 - - 3 1 - -

DBB CN 02 8 3 4 85 - 0 - - - 89 2 5 - - 3 1 - -

EDK 01 16 12 36 32 - 2 2 - - 41 14 40 2 - 1 1 - -

EDK 02 25 4 10 32 28 0 0 1 - 63 10 23 1 - 0 2 - -

EDK 03 13 10 38 21 15 2 2 - - 8 22 42 6 16 3 4 - -

LBB 01 50 3 2 43 - 2 0 - - 90 3 3 - - 3 1 - -

LBB 02 54 1 8 33 - 2 - 2 - 90 4 2 - - 3 1 - -

LBB 03 41 2 4 52 - 1 - 1 - 91 2 3 - - 3 1 - -

MSL I 01 12 1 7 79 - 0 - 1 - 59 3 17 20 - 1 1 - -

MSL I 02 5 3 3 88 - 1 - - - 31 1 10 57 - 0 1 0 -

MSL II 01 52 3 4 38 - 2 1 - - 87 5 3 0 - 4 1 - -

MSL II 02 56 5 6 32 - 2 - - - 86 6 3 0 - 4 1 - -

YTK 01 42 5 9 41 - 1 0 3 0 83 - 4 1 - 2 1 8 1

YTK 02A 16 5 31 41 - 1 0 5 0 12 - 20 16 - 1 - 49 2

YTK 02B 46 6 16 31 - 1 0 0 0 84 2 10 - - 1 1 - 2

YTK 03 58 5 3 26 - 2 0 3 3 87 4 4 0 - 2 1 - 1

Mean 33.9 4.25 10.7 45.25 21.5 1.25 0.58 1.64 0.75 72.15 5.28 10.60 9.45 16.00 2.25 1.21 19.00 1.50

n 20 20 20 20 2 20 12 11 4 20 18 20 11 1 20 19 3 4

*Ka: Kaolinite, Il: Illite, Sm: Smectite, Qz: Quartz, Mx: Microcline, An: Anatase, Ru: Rutile, Go: Goethite, Hm: Hematite.
-: Not detected; n: count of samples with detected minerals from which the mean was calculated.

Table 2. Quantification in wt% of mineral phases* identified in bulk and <2 µm fraction samples.
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7860 and 8710 µm/cm for MSl I 01 and MSL I 02, 
respectively. Excluding these two samples, the mean of 
EC for all other samples is 35.73 µS/cm (Table 3). 

Geochemistry
The concentrations of oxides in bulk and <2 µm fraction 

samples are presented in Table 4. The most dominant oxides 
are SiO2 and Al2O3, as reflected by the dominance of quartz 
(SiO2) and kaolinite [Al2Si2O5 (OH)4] in their mineralogy. 
The mineralogy of the kaolins strongly correlates with 
their geochemistry. The CaO and Na2O had very low 
concentrations in bulk and <2 µm fraction samples. These 
oxides are relatively higher in samples rich in smectite, 
such as some Bomkoul and Ediki samples. Ediki samples 
present the highest K2O concentrations (mean of 7.95 wt%) 
due to the presence of illite in these samples. Other samples 
reveal K2O concentrations <2 wt%.  

Titania and Fe2O3 are usually considered as impurities 
in kaolins. The low titania contents are observed in all 

samples reflect the low rutile and anatase concentrations 
in the mineralogy. The mineralogy also showed higher Fe-
rich minerals (goethite and hematite) than Ti-rich minerals 
(anatase and rutile), as confirmed by the geochemistry. 
As a general trend, Fe2O3 is higher in clay fractions than 
in bulk samples. Bulk samples present lower P2O5 and 
SO3 concentrations than <2 µm fractions. This trend 
could be due to the use of sodium hexametaphosphate as 
dispersing agent to obtain clay fractions. However, MSL 
I samples contained abnormally high SO3 concentration 
(>3.00 wt%), though no sulphate mineral was detected by 
x-ray diffractometry.

DISCUSSION
Physical and Physico-chemical Properties as Indicators of 
Environments of Formation of Kaolins

Cretaceous-Tertiary kaolins of the Douala Sub-Basin 
are mainly dominated by sand (60.20%), followed by clay 
(29.00%) and silt (10.80%), averagely. The dominance of 

Clay (%) Silt (%) Sand (%) Texture Moisture
content (%) pH(KCl) EC (µS.cm-1) Hue/Value/Chroma Colour

BKL 01 46 8 46 Sandy Clay 0.40 3.59 51.3 5YR/6/4 Light Reddish Brown

BKL 02 55 6 39 Clay 0.80 3.52 40.7 5YR/6/4 Light Reddish Brown

BKL 03 25 7 68 Sandy clay loam 0.80 3.46 32.2 10YR/6/6 Brownish yellow

DBB 28 2 70 Sandy clay loam 0.60 3.26 76.7 5YR/8/2 Pinkish white

DBB CN 01 14 2 84 Sandy loam 0.20 3.33 80.6 5YR/8/2 Pinkish white

DBB CN 02 10 16 74 Sandy loam 0.00 3.75 26.5 10YR/8/6 Yellow

EDK 01 27 15 58 Sandy clay loam 1.40 3.12 21.5 GLEY 1/2/5G Pale green

EDK 02 24 19 57 Sandy clay loam 0.20 3.2 29 GLEY 1/8/5GY Light greenish grey

EDK 03 33 23 44 Clay loam 1.40 3.06 23.9 GLEY 1/7/5G Pale green

LBB 01 36 8 56 Sandy clay 1.40 3.81 11 2.5Y/7/1 Light grey

LBB 02 36 6 58 Sandy clay 0.40 3.74 16 2.5Y/8/1 White

LBB 03 36 6 58 Sandy clay 0.20 3.75 9.8 2.5Y/7/1 Light grey

MSL I 01 9 13 78 Sandy loam 0.40 1.81 7860 5Y/5/1 Grey

MSL I 02 7 15 78 Loamy sand 0.20 1.87 8710 5Y/4/1 Dark grey

MSL II 01 53 13 34 Clay 0.20 3.45 70.7 GLEY 1/8/N White

MSL II 02 37 5 58 Sandy clay 0.20 3.5 24.2 GLEY 1/8/10Y Light greenish grey

YTK 01 22 8 70 Sandy clay loam 7.00 3.35 45.5 10YR/7/8 Yellow

YTK 02A 19 23 58 Sandy Loam 3.80 3.35 26.7 7.5YR/6/6 Reddish Yellow

YTK 02B 10 14 76 Sandy loam 2.40 3.33 22 5YR/7/3 Pink

YTK 03 53 7 40 Clay 2.00 3.47 34.8 5YR/6/4 Light reddish brown

Table 3. Physical and physico-chemical properties of the kaolin samples.
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sands in these kaolins is due to the nature of sediments 
found in the Sub-Basin. These sediments are mainly 
arkosic sandstones, suggesting an acidic source, from 
which feldspars are believed to have weathered to form 
kaolins. The lower percentage of silt over clay shows that 
there is on-going reworking of sediments taking place in 

the Sub-Basin (Bukalo et al., 2018a).
The whitish colour of some of the studied kaolins 

is indicative of secondary alteration, formed after the 
recycling of first cycle sediments. As reported in Bukalo 
et al. (2018a), the morphology of these white kaolins 
is made up of books of kaolinite grains. This type of 

Figure 2. Ternary diagram showing kaolins’ textures (Modified from Schroeneberg et al., 2012).

Figure 3. Chemical index of weathering (CIW) versus chemical index of alteration (CIA) of bulk samples.
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morphology is characteristic of kaolinite flakes which 
have been transported and deposited in piles (Keller, 
1978). The association of this morphology and the white 
colour has also been observed in the Georgia kaolins, 
which are second cycle kaolins (Schroeder et al., 2004). 
However, Missole I kaolin is grey. The grey Missole I 
kaolin has an SO3 content of approximately 3.00 wt%, 
unlike all other kaolins which have an SO3 content less 
than 0.2 wt%. Therefore, the colour of the Missole I kaolin 
is probably linked to its SO3 content. This is comparable 
to the study by Schroeder et al. (2004), which indicates 
that grey Georgia kaolins had the highest SO3 content 
(1.31 wt%) relative to cream and white Georgia kaolins, 
with SO3 content of 0.00 wt% and 0.01 wt%, respectively. 
The grey Missole I kaolins have the lowest pH among 
all the samples. Manju et al. (2001) argued that oxidised 
weathering conditions can enhance the dissolution of the 
FeS2 present in grey kaolins, creating an environment 
with very low pH, and consequently high EC. This is 
supported by the negative correlation between pH and EC 
(-0.92), and high positive correlation between SO3 and EC 
(1.00). Such very acidic environment favours reworking 
of microcrystalline quartz and authigenic kaolinite 
(Manju et al., 2001). Therefore, the grey Missole I kaolin 
were deposited or formed in a reducing environment; then 
the environment became oxidising, resulting in the very 
low pH observed in Missole I kaolin. The oxidation of the 
Missole I kaolin probably led to the formation of the light 
grey and subsequently white Missole II kaolin by oxidative 
alteration (Schroeder et al., 2004; Pruett, 2016). This 
confirms that Missole II kaolins is a product of secondary 
alteration, i.e. formed from post-depositional alteration 

of Missole I kaolins. The light grey and white Logbaba 
kaolin might have formed in the same conditions, though 
their colour might be as result of anatase contamination 
due to its high TiO2 concentrations. 

The low pH of the kaolins, indicating high acidity 
(pH<4), is also an indicator of continuous weathering 
and intense hydrolysis processes kaolinite (Manju et 
al., 2001). The yellowish, reddish and brownish colours 
portrayed in Bomkoul, Dibamba and Yatchika kaolins 
are indicative of an oxygen-rich environment (oxic), 
favouring the alteration of feldspar and the presence of 
iron-rich minerals such as goethite. The greenish colour of 
Ediki samples is as a result of the presence of microcline 
and illite in these kaolins (Bukalo et al., 2018a).

Geochemical Properties as Indicators of Environments of Formation 
of Kaolins
Paleoweathering and sedimentary provenance

Information on paleoweathering of sedimentary rocks 
can be obtained from geochemical indices such as the 
chemical index of alteration (CIA), chemical index of 
weathering (CIW) and index of compositional variability 
(ICV) (Nesbitt and Young, 1982; Cox et al., 1995; Fiantis 
et al., 2010). Ninety percent of bulk kaolins exhibit 
extreme silicate weathering (CIA>80%) against 10% 
(Ediki kaolins) that exhibit moderate silicate weathering 
(Figure 3). Clay fractions have lower CIA and CIW values 
than bulk samples. In the clay fractions, 95% of samples 
exhibit extreme silicate weathering against 5% (EDK 03) 
that exhibits moderate silicate weathering (Figure 4). 

The ICV values of bulk samples range from 0.05 (DBB 
CN 01) to 0.61 (EDK 03); whereas in <2 µm samples 

Figure 4. Chemical index of weathering (CIW) versus chemical index of alteration (CIA) of < 2 µm samples.
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ranged from 0.07 (DBB and DBB CN 01) to 0.65 (EDK 
03). There is no evident disparity of ICV between bulk 
and clay size fraction (Figure 5). Hence, major oxides 
geochemistry of clay minerals could be a best indicator 
for their compositional variability, thereby giving insights 
on their provenance, as well as environmental conditions 
prevailing during diagenesis (Cox et al., 1995). The lowest 
ICV values (<0.22) are observed in Dibamba, Logbaba and 
Missole II samples. Low ICV values correspond to high 
degree of maturity of the samples. Therefore, they might 
have been deposited in tectonical quiescent or cratonic 
environments, which is a characteristic of second cycle 
deposits; unlike immature sediments which tend to be 
found in tectonically active settings and are characteristic 
of first-cycle deposits (Cox et al., 1995). Though other 
samples do not have very low ICV values, their values 
however, fall in the range for clay minerals (0.03-0.78), 
which confirms the mineralogy varying from dominant 
clay minerals to minor feldspars (Nagarajan et al., 2015); 
and this case, the clay minerals being dominant.

The relationship between climate and the degree 
of weathering shows that higher rainfall corresponds 
to increased weathering and higher CIA values in the 
resulting sediments (Ahmad et al., 2014). A similar positive 
relationship exists between the intensity of weathering 
and CIW due to the immobility of Al and higher mobility 
of Na, K, and Ca (Akinyemi et al., 2014). However, as 
weathering progresses, ICV decreases due to conversion 
of feldspars from their source rocks to Al-bearing clays, 
such as kaolins. The TiO2-Al2O3 binary plots of both bulk 
and <2 µm samples (Figure 6) suggest that the source 
rocks of these kaolins vary between rhyolite/granite and 

rhyolite/granite + basalt, with Missole I samples being the 
closest to the rhyolite/granite + basalt line.

Environments of formation or deposition
The plot of log(K2O/Al2O3)/log(MgO/Al2O3) has been 

used by Mousa et al. (2014) to discriminate between 
marine and non-marine environments or formation or 
deposition. For the studied kaolins, the plot of log(K2O/
Al2O3)/log(MgO/Al2O3) showed that the kaolins are 
dominantly of marine origin, except the Logbaba samples, 
which show a non-marine/deltaic environment (Figure 7). 
The Logababa samples are found in the Upper Cretaceous 
Logbaba Formation, which is believed to have sediments 
of lacustrine origin (Chavom et al., 2014).

Potential Applications of Cretaceous-Tertiary Kaolins of the Douala 
Sub-Basin

World known and exploited kaolins are the Cornwall 
(England), Capim River (Brazil), Georgia (USA) and 
Cape York Peninsula (Australia) kaolins. One of the 
common characteristics among these kaolin deposits is 
their location in Cretaceous-Tertiary sedimentary basins, 
next to granitic rocks (Harvey and Murray, 1997). These 
kaolins are exploited for various industrial applications 
including paper coating, paper filler, ceramics, soap, 
pharmaceutics and cosmetics. Therefore, the geochemical 
and physico-chemical characteristics of the Cretaceous-
Tertiary kaolins were compared to standards (Prasad et 
al., 1991) set for paper coating, paper filler, ceramics, 
pharmaceutics and cosmetics (Figures 8-11).

The presence of impurities in kaolin usually hinders its 
potential uses in industries. Such impurities include the 

Figure 5. ICV of bulk and <2 µm samples.
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presence of Fe2O3 and TiO2. The relatively high Fe2O3 
averages in Cretaceous-Tertiary kaolins of the Douala 
Sub-Basin are caused by intense oxidation of iron-bearing 
silicate minerals (Ariffin et al., 2008). High titania in 
kaolins also reduces their quality for specific industrial 
applications. In Cretaceous-Tertiary kaolins of the Douala 
Sub-Basin, iron oxides are highly correlated with goethite 
and hematite; whereas titanium dioxide positively 
correlates with anatase. Though these impurities are 
present in the studied kaolins, it is to be noted that some of 
their characteristics could be useful for specific industries 
(pottery and bricks making). 

The ranges of major oxides and LOI do not correspond to 
the standards in Prasad et al. (1991), except the recommended 
values for CaO in kaolins to be used in pharmaceutics and 
cosmetics. However, Dibamba, Logbaba and Missole 

II kaolins’ clay fractions fall in the ranges set for major 
oxides to be used for paper coating, paper filler, ceramics, 
pharmaceutics and cosmetics. Therefore, in order for these 
kaolins to be used for any of these applications, particle 
size separation must be carried out to obtain the <2 µm 
fraction. When compared to major oxides concentrations of 
clays used for traditional and industrial pottery in Eastern 
Cape (Jumban et al., 2013), it is observed that Dibamba and 
Missole I kaolins have similar geochemical compositions 
as the clays used for traditional and industrial pottery in 
Eastern Cape (Figure 12). 

Pruett (2016) derived a classification of kaolin ores 
mined for kaolin used in industrial applications based on 
selected oxides. Cretaceous-Tertiary kaolins of the Douala 
Sub-Basin mainly fall in the sandy kaolin and kaolinitic 
sandstone fields (Figure 13). Such kaolins, which plot in 

Figure 6. TiO2-Al2O3 binary plot of A) bulk samples and B) <2 µm samples (Fields are from Ekosse, 2001).
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the fields of nearly pure kaolin to kaolinitic sandstone, or 
primary kaolin having up to about 90% quartz particles 
are used for pigments and additives (Pruett, 2016). Figure 
14 shows the plot of the clay fractions of studies kaolins. 
This plot shows that after particle size reduction, the all 
the kaolins can be used as pigments and additives except 
Missole I and Ediki kaolins.

The low moisture content indicates that the samples are 
very dry. This characteristic makes the kaolins suitable for 
use as paint fillers and for soap production, which should 
not exceed 2% (Ariffin et al., 2008; Aja and Randy, 2013). 
Kaolins are used to cure natural and synthetic rubber, and 
as a skin cleanser in the cosmetics industry. The pH of 
kaolins plays an important role in the rubber and cosmetics 
industries. Both industries require a pH between 4.5 
and 5.5 (Ekosse, 2000; Matike et al., 2011). Therefore, 
the low pH values of Cretaceous-Tertiary kaolins of the 
Douala Sub-Basin, make the kaolins unsuitable for the 
rubber and cosmetics industries. Moreover, pH and EC 
of kaolins are used to detect impurities and salts. High 
EC values of Missole I kaolin correspond to the presence 
of SO3 in these kaolins. Sulphur causes cracks and pores 
during firing at elevated temperatures and it is usually 
required that SO3 content of in kaolins used for ceramics 
be reduced to <0.5% (Ekmekci et al., 2001). Unlike 
other deposits that have low EC values and SO3 content, 
Missole I kaolin cannot be used for ceramics.

The fine particle size of kaolins enables them to be 
used for polymer reinforcement in the plastic industry; 
the finer the particle size, the greater the reinforcement 

(Ekosse, 2000). Hence, the studied Cretaceous-Tertiary 
kaolins of the Douala Sub-Basin can only be used in the 
plastic industry if particle size reduction is carried out. 
The white colour of kaolins is one of the most important 
characteristics of kaolins to be considered in the paper 
industry, especially for paper coating. Calcined kaolin can 
replace up to 60% titanium dioxide (which is usually used 
in the paper industry because of its exceptionally high 
brightness and opacity) with little or no loss in brightness 
and opacity (Al-Ani and Sarapää, 2008). The white 
colour of kaolins also makes them excellent ingredients 
in ceramics, and sanitary wares. Reddish and brownish 
kaolins are associated to the presence of iron minerals and 
oxides. These colours are preferable in the manufacturing 
of bricks.

CONCLUSION
The physical, physico-chemical and geochemical 

characteristics of Cretaceous-Tertiary kaolins of the 
Douala Sub-Basin were presented. The physical and 
physico-chemical characteristics of studied kaolins show 
that the kaolins have an acidic parent rock from which 
feldspars and/or micas altered to form the kaolins. There 
is reworking and continuous weathering of the kaolins 
leading to low pH and whitening of some of the kaolins. 
The geochemical composition of the kaolins suggest that 
source rocks of these kaolins vary between rhyolite/granite 
and rhyolite/granite + basalt, which are mostly enriched in 
kaolinite. The geochemistry also suggests that the kaolins 
mainly formed in a marine environment. The moisture 

Figure 7. Plot of log (K2O/Al2O3)/log (MgO/Al2O3) of bulk kaolins showing a marine environment of formation. 
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content of the kaolins makes the kaolins suitable as paint 
fillers and in soap production. The investigated kaolins 
could be used in the pharmaceutical, construction, pottery 
and cosmetics industries, provided suitable particle size 
reduction and beneficiation could be achieved to improve 
their overall quality. 
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Figure 12. Means oxides concentrations of Cretaceous-Tertiary kaolins of the Douala Sub-Basin compared with values of clays used 
for pottery in Eastern Cape Province, South Africa (PSJ and ECS). 

Figure 13. Ternary diagrams used for the classification of industrial kaolins showing the fields in which studied kaolins fall (developed 
from Pruett, 2016).
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