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The Paleozoic Jandaq ophiolite is situated in the western part of the Central-East Iranian
microcontinent and is a remnant of the Paleo-Tethys oceanic crust. This ophiolite
consists of mantle peridotites and serpentinized mantle peridotites, metagabbro, basic
and ultrabasic metamorphosed dykes and lavas, metapyroxenite, amphibolite, rodingite
and listwaenite which are covered by the Late Paleozoic schist and marble. The open
spaces of joints and cracks of gabbroic dykes and stocks are filled by hydrothermal
minerals such as calcite, prehnite, garnet (grossular-andradite), epidote, clinopyroxene
(diopside), chlorite, albite and sericite. The calcite and garnet are the latest minerals
in this association. The most predominant mineral is calcite with coarse-grained
morphology. The main textures are granoblastic and poikiloblastic.

The very low abundances of Al, Ti, Na, Cr and rare earth elements (REEs) in
clinopyroxenes support their metamorphic origin. The high modal abundance of calcite,
the presence of clinopyroxene, garnet, prehnite and epidote as the Ca-bearing minerals, as
well as the positive anomaly of Eu in the chondrite-normalized REE patterns of minerals
possibly point to the seawater- derived penetrating fluids ingression through the oceanic
crust-covering sediments and the uppermost portion of oceanic crust into the gabbros.
The involved fluids in the Jandaq area have leached the calcite-bearing sediments (e.g.,
limestone) and calcic plagioclase-rich lithologies (e.g., basic pillow lavas and sheeted
dykes) before reaching to the gabbros, caused to the CO,, calcium and Eu enrichment of
fluids. Accordingly, the hydrothermal veins in the Jandaq ophiolite are possibly formed
by high temperature circulation of seawater-originated fluids throughout the uppermost
oceanic crust.

Keywords: Gabbro; Hydrothermal vein; Seawater; Paleozoic; Jandaq ophiolite.

INTRODUCTION metasomatism (e.g., Ferry and Dipple, 1991; Bach et al.,

Mass transfer between the seawater and the underlying 2012). The fluid percolates down in fissures and cracks

oceanic lithosphere is considered as a first-order of the oceanic crust is seawater (McCollom and Shock,

mechanism of chemical exchange (e.g., Alt, 1995; 1998; Bach et al., 2012). Seawater circulation within the

Staudigel et al., 1996). Metasomatic transport can be upper portion of the oceanic lithosphere is a process that

driven by fluid flow and by diffusion in the boundary modifies the composition of oceanic crust and seawater
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(Bach et al., 2012; Harris et al., 2015).

Metasomatism due to interaction of circulating
hydrothermal fluids with rocks from the oceanic
lithosphere is an important process for control of crust-
ocean chemical compositions, where the oceanic crust
undergoes extensive chemical exchange with seawater
fromridgetotrench (Bachetal.,2012). Although the overall
exchange fluxes are great, the first-order metasomatic
changes of crustal rocks are usually <10% relative change
in major element concentrations (e.g., Python et al.,
2007a; Bach et al., 2012). The metasomatic mass transfers
of major elements are developed only where high fluid
fluxes and high temperature fluids prevail in the basaltic
oceanic crust. Fluid pathways and temperatures affect the
chemical composition of the fluids and their potential for
element transport. The composition of seawater-derived
crustal fluids quickly changes with increasing volumes of
rock under high temperatures (Bach et al., 2012). One of
the most important changes is the loss of Mg and sulfate,
while Ca and silica concentrations increase in the mid
and lower crustal rocks (i.e., sheeted dikes and gabbros)
(e.g., Alt, 1995; Gillis, 1995; Dick et al., 2000; Python et
al., 2007a; Bach et al., 2012). This process indicates that
the hydrothermal alteration can be considered as a cation
exchange process. The rates of chemical exchange are
strongly dependent on temperature. Alkalis elements, B
and C are removed from circulating fluids at temperatures
<150 °C, but they are leached from the interacting rocks at
higher temperatures (Staudigel et al., 1996; Jarrard, 2003).
CO, is added to the oceanic crust, while carbonates are
limited to the uppermost part of this crust (e.g., Staudigel
et al., 1996).

The main factors controlling the mineral assemblages
in fluid-rock interactions are temperature, pressure,
the primary rock composition, as well as the chemical
composition and mass flux of the fluid entering the
rock (Bach et al., 2012). Petrological and geochemical
researches reveal that hydrothermal fluids related to
seawater ingression can reach and affect the base of
sheeted dykes, gabbroic section and uppermost mantle
(e.g., Berger et al., 2005; Python et al., 2007 a,b; Akizawa
etal., 2011; Arai and Akizawa, 2014; Torabi et al., 2017).
In the mantle-crust transition zone, the hydrothermal
fluids lose the alkali elements by precipitation of minerals
like amphibole, epidote, albite in hydrothermal veins.
These fluids are selectively enriched in elements like Ca
and Eu, due to their interaction with the gabbros from the
lower crust (e.g., Python et al., 2007 a,b). The extent and
the intensity of the hydrothermal metamorphism decrease
downward. The published data about hydrothermal
metamorphism by percolating seawater in the oceanic
crust extended the depth of seawater circulation and
metamorphism to the uppermost mantle (e.g., Python et

al., 2007a, 2011; Akizawa et al., 2011; Akizawa and Arai,
2014; Arai and Akizawa, 2014; Torabi et al., 2017).

The main structural units of Iran and surrounding areas
comprise of separated continental blocks. The formation
and evolution of these blocks were controlled by the
opening and closure of the Paleo-Tethys and Neo-Tethys
oceans (e.g., Aistov et al., 1984; Bagheri, 2007; Shafaii
Moghadam and Stern, 2014). The remnants of the Paleo-
Tethys Ocean are preserved in southwestern Eurasia
in Iran, Turkey, Caucasus, Turkmenistan, Afghanistan
and Tibet (e.g., Lippard et al., 1986; Berra et al., 2017).
Paleozoic (Davoudzadeh and Lensch, 1986; Davoudzadeh,
1997; Bagheri and Stampfli, 2008) successions related
to the Paleo-Tethys Ocean occur in the south of the
Great Kavir Fault, western part of Central-East Iranian
Microcontinent (CEIM) (Figure 1). The CEIM is located
between the Arabian and Eurasian plates and surrounded
by major faults and Mesozoic (Upper Cretaceous to
Lower Eocene) ophiolites that are remnants of the Neo-
Tethys Ocean (Aistov et al., 1984; Davoudzadeh, 1997,
Shafaii Moghadam and Stern, 2014; Figure 1). This
microcontinent consists of four major blocks from east to
the west; Lut, Tabas (Kerman), Posht-e-Badam, and Yazd
(Naein) blocks (e.g., Takin, 1972; Alavi, 1991), which
are separated by major faults and distinct horst (e.g., Lut
block) and graben (e.g., Kerman-Tabas region) structures
(e.g., Alavi, 1991; Almasian, 1997; Reichert, 2007). The
CEIM blocks drifted from Gondwana and accreted to
Eurasia as the result of northward subduction and closure
of Paleo-Tethys in Permo-Triassic time (e.g., Berberian
and King, 1981; Stampfli, 2000; Shafaii Moghadam and
Stern, 2014; Rossetti et al., 2015; Shafaii Moghadam et
al., 2020).

The Paleozoic ophiolites present good exposures in the
north of Iran, consist of Mashhad and Rasht (Rossetti et
al.,2017) and in the western part of the CEIM, comprising
the Anarak, Jandaq, Bayazeh and Posht-e-Badam
ophiolites (Nosouhian et al., 2014; 2019; Figure 1). They
have suffered the sub-solidus evolutions, hydrothermal
alteration and regional metamorphism (Nosouhian et
al., 2019). Metagabbros are from the main constituents.
Metagabbros in the Jandaq ophiolite have many joints
and cracks filled by hydrothermal minerals. This
research is the first study on the hydrothermal alteration
of metagabbros in the Paleozoic ophiolites of Central
Iran. Both hydrothermal veins and host metagabbros are
studied. Results of this study reveal that hydrothermal
fluids related to seawater ingression into the oceanic crust
can reach and affect the gabbro section after penetration
through basalts and sheeted dykes during spreading of the
oceanic crust.
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Figure 1. The main ophiolites of Iran (Torabi et al., 2011; slightly modified). KH= Khoy; KR= Kermanshah; NY= Neyriz; BZ= Band
Ziarat; NA= Naein; BF= Baft; ES= Esphandagheh; FM= Fanuj-Maskutan; IR= Iranshahr; TK= TchehelKureh; MS= Mashhad; SB=
Sabzevar; RS= Rasht; SM= Samail; ASH= Ashin; AN= Anarak; JA= Jandaq; BY= Bayazeh; PB= Posht-e-Badam.

GEOLOGICAL SETTING

Based on the evolution of the CEIM including the
study area, the Anarak, Jandaq, Bayazeh and Posht-e-
Badam ophiolites are likely related to the initial opening
and subduction of the Paleo-Tethys Ocean (Bagheri and
Stampfli, 2008; Torabi et al., 2011; Nosouhian, 2016;
2019; Figure 1). These ophiolites suggest a progression
from oceanic crust formation above a subduction zone in
Devonian time to accretionary convergence in Permian
time (Bagheri, 2007). These Paleozoic ophiolites of Iran
were emplaced when N-directed subduction resulted in
collision of Gondwana fragment with Eurasia in Permo-
Triassic time (e.g., Bagheri, 2007 and reference in it).
After closure, the molasse sediments of Jurassic covered
most of them (Bagheri and Stampfli, 2008). The Jandaq
ophiolite and other Iranian Paleozoic ophiolites are

mainly associated with flysch, turbidites and high pressure
metamorphic rocks (Bagheri, 2007; Shafaii Moghadam
and Stern, 2014; Torabi, 2011; Torabi and Arai, 2013).
Based on the stratigraphic and palacobiogeographic
affinities, the succession at Jandaq significantly differs
in terms of lithology from the Central Iran successions
(Berra et al., 2017), mostly because it records a proximal
siliciclastic input related to a nearby active margin,
associated with Carboniferous metamorphism (Bagheri
and Stampfli, 2008), pre-dating the deposition of the
Pennsylvanian conglomerates (Shafaii Moghadam and
Stern, 2014). Accordingly, the Jandaq succession has
no similarity with the coeval succession of Central Iran
and the Alborz, whereas it shows some similarities with
the Paleozoic successions of Fariman and Aghdarband
(Shafaii Moghadam and Stern, 2014). Previous studies
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suggested a post-Triassic 135° anti-clockwise rotation of
the Central Iran transferring a large fragment of the Paleo-
Tethys suture from the present-day Afghanistan-Iran
border to Central Iran (e.g., Davoudzadeh, 1997). But, the
palacomagnetic data of the Nakhlak Triassic succession
by Muttoni et al. (2009), Late Triassic palacomagnetic
data of Besse et al. (1998), fauna studies by Balini et al.
(2009), and regional facies analysis of Upper Silurian-
Lower Carboniferous successions by Wendt et al. (2005),
do not support this idea. However, the occurrence of
Paleozoic ophiolites in the western part of the CEIM
propounds many questions about the evolution and the
number of Paleo-Tethys sutures between Eurasian and
Iran (Zanchi et al., 2009). The presence of Paleozoic
ophiolites along the main faults of central and northern
Iran possibly point to a multi-suture closure of the Paleo-
Tethys Ocean in Late Paleozoic to Early Mesozoic times
(e.g., Torabi et al., 2011). The final collision between the
Gondwana and Eurasia occurred in Triassic time with the
Eocimmerian collision (Bagheri and Stampfli, 2008). The
Jandaq area presents all the elements of an orogen such
as dismembered ophiolites and deformed siliciclastic,
calcareous and volcanic rocks (Bagheri and Stampfli,
2008).

The lithological and chemical characteristics of
ophiolitic complexes can provide useful information
about the tectonic setting of their formation. Ophiolites
can originate in mid-ocean ridge (MOR) and supra-
subduction zone (SSZ) tectonic settings (e.g., Van

Hinsbergen et al.,, 2015 and references therein). The
Iranian Paleozoic ophiolites show both SSZ- and MORB-
type mineralogical and geochemical signatures. The most
of the Paleozoic ophiolites of Iran are formed in back-
arc basins (Bagheri, 2007; Shafaii Moghadam and Stern,
2014). The geological history of the CEIM confirm a
SSZ (back-arc) setting for the ophiolitic mélange with
Paleozoic age in the Yazd block including the Anarak,
Jandaq, Bayazeh and Posht-e-Badam ophiolites (Bagheri,
2007; Bagheri and Stampfli, 2008).

The Paleozoic Jandaq ophiolite consists of mantle
peridotites and serpentinized mantle peridotites,
metagabbro, basic and ultrabasic metamorphosed dikes
and lavas, metapyroxenite, amphibolite, rodingite
and listwaenite. Mantle peridotites are composed of
metalherzolite and metaharzburgite (Torabi et al.,
2011). This ophiolite has been covered by the Paleozoic
metamorphic rocks such as schist and marble (Figure
2). Middle Jurassic granite and mylonitic granite
intrusions cross-cut the Jandaq ophiolite and the covering
metamorphic rocks (Figure 2). Sandstone, siltstone
and conglomerate of the Upper Jurassic Chahpalang
formation, together with the Cretaceous limestones, cover
the Jandaq ophiolite, associated metamorphic rocks and
granitic intrusions (Figure 2). *Ar-*°Ar isotopic analyses
on hornblende from amphibolites of the Jandaq ophiolite
(156.56+33.15 Ma) and on muscovite in micaschist
(163.86+1.76 Ma) possibly point to the Middle Jurassic
metamorphism and the Middle Cimmerian orogeny (e.g.,
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Figure 2. Simplified geological map of the Jandaq area in the western part of the Central-East Iranian Microcontinent (Yazd block) and

position of the study area (modified after Aistov et al., 1984).
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Figure 3. Field photos of the Jandaq area; (A,B) General view of the Jandaq ophiolite. (C,D,E) Metagabbros and the studied hydrothermal

veins.

Bagheri, 2007; Nosouhian et al., 2016).

The metagabbros of the Jandaq ophiolite present hard
exposures in the field, and are more resistant to erosion
relative to the surrounding metaperidotites (Figure 3 A,B).
These metagabbros are mainly exposed as massive, black
to dark grey and coarse-grained rocks (Figure 3C). The
Joints and cracks appear as dyke-like structures within
the metagabbros (Figure 3 C,D,E). The hydrothermal

veins filled these former cracks. The studied veins have
sharp contacts with the surrounding metagabbros (Figure
3 C,D,E). The samples of these hydrothermal veins are
coarse-grained in the hand specimen. The studied veins
are homogeneous in color, white in general, but show
green spots in outcrops. The white parts are essentially
composed of calcite and diopside, whereas the green spots
are mainly composed of garnet minerals.
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The studied hydrothermal veins are found only in
the gabbro section of the Jandaq ophiolite (Figure 3). It
is possibly indicates that the former cracks eventually
are filled by crystallization products of the fluids that
circulated the host gabbros and overlying rock units. The
width and length of these hydrothermal veins reach up to
35 centimeters and 5 meters, respectively (Figure 3 D,E).

ANALYTICAL METHODS

Chemical composition of minerals in the Jandaq
ophiolite metagabbros and hydrothermal veins were
measured at the School of Natural System, College
of Science and Engineering, Kanazawa University
(Kanazawa, Japan) using a wavelength dispersive electron
probe microanalyzer (EPMA) (JEOL JXA-8800R).
Analyses was performed under an accelerating voltage
of 20 kV, a probe current of 20 nA, and a focused beam
diameter of 3um. The ZAF program was used for data
correction. The Fe*" and Fe?" contents of minerals were
calculated by assuming mineral stoichiometry (Droop,
1987). Chemical composition of natural minerals and
synthetic materials were used as standards. The Mg# and
Fe?"# of minerals calculated as Mg/(Mg+Fe?") and Fe?*/
(Mg+Fe?") of atomic ratios, respectively. Representative
chemical analyses of minerals and their calculated
structural formula are listed in Tables 1 to 8.

The trace element compositions of minerals from
the Jandaq metagabbros and hydrothermal veins were
determined by laser ablation system (193 nm ArF
excimer: Geolas Q-Plus, MicroLas) coupled to an Agilent
7500s ICP-MS system at the Kanazawa University, Japan
(Morishita et al., 2005). The diameter of the analyzed
points was 110 pm at 10 Hz with energy density of 8 J/
cm? per pulse. Chemical analyses of minerals carried
out by LA-ICP-MS are presented in Table 9. Mineral
abbreviations in the tables and photomicrographs are
from Whitney and Evans (2010). The abbreviations of
labradorite, andesine and oligoclase are Lab, Ande and
Olig in tables, respectively.

RESULTS
Petrography

The Jandaq metagabbros are composed of plagioclase
and amphibole as the major minerals with modal values
of 45-50 vol% and 30-35 vol%, respectively (Figure
4 A,B). Epidote, chlorite, ilmenite, magnetite, calcite,
titanite, biotite, muscovite and sericite are the minor
minerals. These metagabbros mainly present granoblastic,
nematoblastic and poikiloblastic textures (Figure 4 A,B).
The alterations of plagioclases lead to the formation of
actinolite, albite, calcite, epidote and chlorite (Figure 4B).
Also, the sub-sea floor metamorphism has changed some
of the primary calcic plagioclases into the secondary

sodic ones. Some of the amphiboles are partly altered to
the chlorite, titanite and magnetite (Figure 4 A,B).

The joints and cracks of the studied metagabbros are
filled by mainly coarse-grained white minerals (Figure
3, 4). Mineral association of the contact zone between
the hydrothermal veins and the metagabbros consists of
plagioclase, amphibole and clinopyroxene as the major
minerals and prehnite, epidote, garnet, sericite, calcite
and magnetite as the minor minerals. Plagioclase is
partly changed to the prehnite and chlorite. The modal
value of clinopyroxene in the contact zone is more
than its abundance in the core of veins. Granoblastic,
poikiloblastic, nematoblastic and porphyroblastic are the
main textures in this zone (Figure 4 C,D). Amphibole
occurs in both metagabbro and contact zone. Petrographic
studies show that three types of amphiboles are present
in these rocks: (1) granular amphiboles which occur as
the isolated grains in the metagabbros. These brown
to greenish brown amphiboles are associated with
the plagioclase and Fe-Ti oxides (Figure 4 A,B); (2)
amphibole rims on the clinopyroxenes of the contact zone.
These amphiboles have acicular shape and green color
(Figure 4C); (3) brown to green amphibole pseudomorphs
in the contact zone which completely or partly enclosed
the clinopyroxene grains (Figure 4D).

The core sections of the hydrothermal veins are nearly
homogeneous in the petrography and consist of calcite,
garnet and prehnite, without the accessory phases (Figure
4 G,H). Calcite with coarse morphology is the main
mineral. Garnet and calcite are the latest minerals in
this association. The main textures in the core of veins
are granoblastic and poikiloblastic (Figure 4 E,F). The
hydrothermal veins are generally devoid of oxide and
sulphide minerals.

Mineral chemistry
Major elements

Electron microprobe analyses of the various minerals in
the Jandaq hydrothermal veins and enclosing metagabbros
are presented in Tables 1 to 8. Feldspar and amphibole are
present in both metagabbro and contact zone. The electron
microprobe analyses of the feldspars in the metagabbros
show chemical heterogeneity. Plagioclases are labradorite
(An 50 to 63%), andesine (An 32 to 49%), oligoclase
(An 21 to 25%) and albite (An 0 to 1%) (Table 1 and
Figure 5A) in composition. Chemical compositions of the
plagioclases in the contact zone are andesine (An 33 to
38%), oligoclase (An 15 to 28%) and albite (An 0 to 9%;
Table 1, Figure 5A). Alkali feldspars with anorthoclase
composition (An 7 to 8%) are present in the contact zone
(Figure 5A).

Amphiboles are calcic and have a wide range of
chemical compositions (Table 2; Figure 5B). They are
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Figure 4. Photomicrographs of the Paleozoic Jandaq metagabbros and the hydrothermal veins. (A,B) Plagioclase and amphibole
present mainly granoblastic, nematoblastic and poikiloblastic textures in the Jandaq metagabbros. (C,D) Contact zone between the
metagabbros and veins mainly consists of albite, amphibole, prehnite, clinopyroxene and garnet. (E,F,G,H) Hydrothermal veins are
composed of calcite, prehnite, garnet, epidote and clinopyroxene.
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Figure 5. Mineral chemistry diagrams of the Jandaq ophiolite metagabbros and hydrothermal veins; (A) Feldspar classification triangle
(Deer et al., 1992). (B) Amphibole classification graph (Hawthorne et al., 2012). (C) Pyroxene classification triangle (Morimoto,
1989). (D) The igneous and metamorphic clinopyroxene discrimination plot. The compositional gap between igneous and metamorphic

pyroxene has been defined by Berger et al. (2005).

tschermakite, magnesio-hornblende and actinolite in
the metagabbros (Figure 5B; Hawthorne et al., 2012)
with Mg# 53.66 to 69.98, 60.81 to 89.04, and 60.81 to
88.36, respectively (Table 2). Low values of magnesio-

A pM

—

hornblende (Mg# =67.90-80.93), and actinolite (Mg# =
82.02-91.18) are present in the contact zone (Table 2,

Figure 5B).
The chemical analyses of minor minerals in the Jandaq
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Table 2. Representative chemical compositions of amphiboles (in wt%) from the Jandaq ophiolite metagabbros and the contact zone
(between the metagabbros and hydrothermal veins) and their calculated structural formula.

Rock type Metagabbro

Sample no. 624 624 624 640 763 763 763 760 760 760 760
Point no. 24 26 28 50 193 197 200 192 190 187 188
Mineral Ts Ts Ts Ts Ts Ts Ts Mg-Hbl  Mg-Hbl  Mg-Hbl = Mg-Hbl
SiO, 42.79 42.56 41.62 41.53 4533 45.55 45.19 50.84 44.82 48.44 46.94
TiO, 0.54 0.58 0.41 0.66 1.16 0.89 0.72 0.34 0.08 0.38 0.44
AL O4 15.85 15.33 16.42 14.04 12.12 12.15 12.67 6.63 13.18 9.25 10.82
Cry)0; 0.00 0.00 0.03 0.01 0.02 0.00 0.00 0.00 0.00 0.03 0.02
FeOtou! 16.54 16.70 16.56 18.80 15.13 15.23 15.11 9.94 11.68 10.09 10.55
MnO 0.38 0.41 0.37 0.48 0.28 0.34 0.33 0.26 0.26 0.28 0.26
MgO 9.30 9.48 8.71 8.34 11.22 11.08 10.88 16.60 13.60 16.21 15.05
CaO 10.48 10.57 10.76 11.12 10.88 10.82 11.17 11.92 11.57 11.59 11.80
Na,O 1.86 1.69 1.93 1.67 1.38 1.32 1.23 1.25 2.49 1.81 1.94
K,0 0.39 0.40 0.42 1.10 0.37 0.36 0.40 0.04 0.11 0.08 0.10
Total 98.13 97.73 97.23 97.76 97.93 97.73 97.69 97.82 97.82 98.17 97.95
Oxygen# 23 23 23 23 23 23 23 23 23 23 23

Si 6.189 6.182 6.118 6.196 6.539 6.575 6.543 7.171 6.427 6.809 6.669
Al 1.811 1.818 1.882 1.804 1.461 1.425 1.457 0.829 1.573 1.191 1.331
>T 8.000 8.000 8.000 8.000 8.000 8.000 8.000 8.000 8.000 8.000 8.000
AIVD 0.889 0.805 0.961 0.663 0.599 0.639 0.704 0.271 0.653 0.341 0.480
Ti 0.059 0.063 0.045 0.074 0.126 0.096 0.078 0.036 0.009 0.040 0.046
Cr 0.000 0.000 0.003 0.001 0.003 0.000 0.000 0.000 0.000 0.003 0.002
Fe?* 1.038 0.982 1.227 1.602 1.035 1.027 1.119 0.635 0.766 0.418 0.644
Fe* 0.963 1.046 0.809 0.743 0.790 0.811 0.711 0.537 0.634 0.768 0.610
Mn 0.047 0.050 0.046 0.061 0.035 0.041 0.040 0.031 0.031 0.033 0.031
Mg 2.005 2.053 1.909 1.855 2.413 2.385 2.348 3.490 2.907 3.397 3.187
>C 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000
Ca 1.624 1.645 1.695 1.778 1.682 1.673 1.733 1.801 1.777 1.745 1.797
Na 0.376 0.355 0.305 0.222 0.318 0.327 0.267 0.199 0.223 0.255 0.203
>B 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000
Na 0.146 0.121 0.245 0.261 0.068 0.043 0.078 0.142 0.470 0.239 0.332
K 0.072 0.074 0.079 0.209 0.068 0.067 0.074 0.006 0.020 0.014 0.018
YA 0.218 0.195 0.324 0.470 0.136 0.110 0.153 0.148 0.490 0.254 0.350
Sum 15218 15.195 15.324 15.470 15.136 15.110 15.153 15.148 15.490 15.254 15.350
Fet# 34.11 32.36 39.13 46.34 30.02 30.10 32.28 15.39 20.85 10.96 16.81
Mgt 65.89 67.64 60.87 53.66 69.98 69.90 67.72 84.61 79.15 89.04 83.19

metagabbros indicate that chlorites are pycnochlorite in and MgO values of 15.93 to 16.43, 1.59to 1.71 and 12.55
composition (Hey, 1954) with average Mg# of 65.18 and to 12.77 (wt%), respectively (Table 3). The analyzed
almost present in the margins of the altered amphiboles muscovites contain high values of Al,O; (average 31.54
(Table 3). The opaque minerals are ilmenite, with the wt%) and low amounts of MgO (average 1.69 wt%)
average TiO, and FeO“® amounts of 52.85 and 43.52 (Table 3).

(Wt%), respectively (Table 3). Biotites have FeO"®!, TiO, Clinopyroxene and garnet occur as anhedral to subhedral

8 PM
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Table 2. ...Continued

Rock type Metagabbro Contact zone between the metagabbros and hydrothermal veins
Sample no. 763 628 633 760 760 699 751 624-1 751 751 751 757
Point no. 205 30 32 183 181 213 24 60 22 25 268 236
Mineral Mg-Hbl  Mg-Hbl  Mg-Hbl  Mg-Hbl  Mg-Hbl Act Mg-Hbl  Mg-Hbl Act Act Act Act
SiO, 46.75 51.07 52.03 53.49 54.00 55.02 49.44 46.70 54.90 54.74 55.70 57.16
TiO, 0.56 0.47 0.19 0.10 0.17 0.08 0.51 1.38 0.10 0.08 0.15 0.03
AL)O, 10.46 5.44 7.00 433 3.85 1.41 7.49 9.45 1.63 1.82 1.68 1.12
Cr)0; 0.00 0.10 0.08 0.00 0.00 0.00 0.06 0.00 0.01 0.04 0.08 0.00
FeOQtw! 15.48 11.70 7.16 8.45 8.34 11.11 10.69 16.95 7.84 7.13 8.80 6.08
MnO 0.26 0.29 0.23 0.24 0.25 0.24 0.22 0.49 0.08 0.20 0.23 0.25
MgO 10.87 15.68 17.41 18.24 18.37 17.12 15.97 11.16 18.70 19.58 18.40 20.64
CaO 11.75 12.09 12.15 12.25 12.09 12.08 12.42 10.62 12.80 12.91 12.46 12.73
Na,O 0.91 0.71 0.68 0.71 0.70 0.35 1.23 1.19 0.44 0.38 0.40 0.19
K,0 0.46 0.38 0.06 0.03 0.03 0.02 0.10 0.49 0.01 0.05 0.04 0.04
Total 97.50 97.96 97.00 97.85 97.80 97.44 98.17 98.43 96.58 96.94 97.95 98.24
Oxygen# 23 23 23 23 23 23 23 23 23 23 23 23

Si 6.840 7.271 7.303 7.467 7.529 7.796 7.014 6.739 7.807 7.710 7.799 7.858
Al 1.160 0.729 0.697 0.533 0.471 0.204 0.986 1.261 0.193 0.290 0.201 0.142
>T 8.000 8.000 8.000 8.000 8.000 8.000 8.000 8.000 8.000 8.000 8.000 8.000
AIVD 0.642 0.183 0.460 0.178 0.161 0.030 0.266 0.344 0.081 0.012 0.076 0.039
Ti 0.062 0.050 0.020 0.011 0.018 0.008 0.054 0.150 0.011 0.009 0.016 0.003
Cr 0.000 0.011 0.009 0.000 0.000 0.000 0.007 0.000 0.001 0.005 0.009 0.000
Fe?* 1.528 0.911 0.503 0.517 0.503 0.927 0.796 1.135 0.869 0.595 0.800 0.409
Fe3* 0.366 0.482 0.337 0.469 0.469 0.389 0.472 0911 0.064 0.245 0.231 0.290
Mn 0.032 0.035 0.027 0.028 0.030 0.029 0.026 0.060 0.009 0.024 0.028 0.029
Mg 2.371 3.328 3.643 3.796 3.819 3.616 3.378 2.401 3.965 4.111 3.841 4.230
>C 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000
Ca 1.843 1.844 1.827 1.833 1.806 1.834 1.888 1.642 1.951 1.949 1.870 1.875
Na 0.157 0.156 0.173 0.167 0.189 0.097 0.112 0.333 0.049 0.051 0.108 0.051
>B 2.000 2.000 2.000 2.000 1.994 1.931 2.000 1.975 2.000 2.000 1.977 1.926
Na 0.101 0.040 0.012 0.026 0.000 0.000 0.226 0.000 0.073 0.053 0.000 0.000
K 0.086 0.069 0.011 0.005 0.005 0.004 0.018 0.090 0.001 0.009 0.006 0.007
YA 0.187 0.109 0.023 0.031 0.005 0.004 0.244 0.090 0.074 0.062 0.006 0.007
Sum 15.187 15.109 15.023 15.031 14.999 14934  15.244 15.065 15.074  15.062 14984  14.932
Fet 39.19 21.49 12.13 11.99 11.64 20.41 19.07 32.10 17.98 12.64 17.24 8.82
Mg# 60.81 78.51 87.87 88.01 88.36 79.59 80.93 67.90 82.02 87.36 82.76 91.18

crystals along the veins wall and in inner part of the veins.
Clinopyroxenes are diopside in compositions (Figure
5C; Morimoto, 1989). Chemistry of clinopyroxenes in
the contact zone shows Mg# = 73.66-89.79, Cr,0;<0.04
(Wt%), Ti0,<0.81 (wt%) and Al,O5 values of 0.25-1.12
(Wt%) (Table 4). Clinopyroxenes from the inner part of
the veins have lower values of Mg# (78.21-80.60), Cr,O3
(bdl), TiO, (<0.05 wt%) and Al,O3 (<0.94 wt%) (Table

4). Chemical compositions of the clinopyroxenes, as well
as using the Al versus Ti+Cr+Na diagram, indicate their
metamorphic nature (Figure 5D; Berger et al., 2005).
The ACF chemographic diagram (Figure 6) shows the
position of the all analyzed hydrothermal minerals from
the studied veins (Figure 6).

The coarse grained-garnets with porphyroblastic texture
are present as a major mineral in the inner part of the veins

A pM
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Polymineralic veins in the Jandaq ophiolite gabbros

Table 4. ...Continued

Rock type Hydrothermal veins

Sample no. 751-1 751-1 751-1 751 751 751 751 751 753 753
Point no. 169 170 172 270 271 272 280 281 242 243
Mineral Di Di Di Di Di Di Di Di Di Di
Si0, 53.85 53.77 53.94 53.76 54.05 54.05 54.10 54.09 53.89 53.38
TiO, 0.03 0.01 0.00 0.05 0.03 0.05 0.00 0.00 0.02 0.00
AlL)O4 0.51 0.48 0.42 0.73 0.29 0.62 0.19 0.17 0.33 0.94
Cr,04 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00
FeOtw! 6.87 6.63 6.47 6.64 6.25 6.44 6.63 6.04 6.90 6.94
MnO 0.21 0.22 0.22 0.27 0.25 0.19 0.24 0.25 0.23 0.19
MgO 13.87 14.02 14.27 14.33 14.54 14.35 14.43 14.69 14.09 13.66
CaO 24.43 24.43 24.41 23.95 24.01 23.78 24.06 24.22 24.15 24.33
Na,O 0.21 0.26 0.22 0.28 0.17 0.34 0.14 0.08 0.24 0.20
K,0 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00
Total 99.97 99.82 99.94 100.01 99.59 99.82 99.79 99.53 99.85 99.65
Oxygen# 8 8 8 8 8 8 8 8 8 8

Si 2.001 1.998 2.000 1.991 2.009 2.004 2.010 2.012 2.003 1.990
Ti 0.001 0.000 0.000 0.001 0.001 0.001 0.000 0.000 0.001 0.000
Al 0.000 0.002 0.000 0.009 0.000 0.000 0.000 0.000 0.000 0.010
AIVD 0.022 0.019 0.018 0.023 0.013 0.027 0.008 0.007 0.014 0.032
Cr 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Fe3* 0.000 0.001 0.000 0.003 0.000 0.000 0.000 0.000 0.000 0.000
Fe?* 0.214 0.205 0.201 0.203 0.194 0.199 0.206 0.188 0.215 0.217
Mg 0.768 0.777 0.788 0.791 0.806 0.793 0.800 0.814 0.781 0.759
Mn 0.007 0.007 0.007 0.009 0.008 0.006 0.007 0.008 0.007 0.006
Ca 0.972 0.972 0.970 0.950 0.956 0.945 0.958 0.965 0.962 0.972
Na 0.015 0.019 0.015 0.020 0.012 0.025 0.010 0.006 0.017 0.014
K 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Sum 4.000 4.000 3.999 4.000 3.999 4.000 3.999 4.000 4.000 4.000
Fet# 0.22 0.21 0.20 0.20 0.19 0.20 0.20 0.19 0.22 0.22
Mgt 0.78 0.79 0.80 0.80 0.81 0.80 0.80 0.81 0.78 0.78

(Figure 4 G,H). The average values of CaO, Al,0O5, and
FeO' @ of garnets from the contact zone are 34.99, 18.10
and 6.80 (wt%), respectively. The values of these elements
in the garnets from the inner part of the veins are 35.86,
18.80 and 5.37 (wt%), respectively (Table 5). The garnets
are grossular-andradite in the composition (Grsg7.94Adr, 5
in the veins margin and Grss.9;Adrg,o in the core of
veins).

Calcite is the main mineral in the veins with average
CaO value of 59.44 wt% (Table 6). Prehnite with a
nearly homogeneous chemistry is commonly present
in the margin and core of the veins. They are Fe-poor
with average CaO and Al,O; values of 27.23 and 24.32

wt%, respectively (Table 7, Figure 6). The analyzed
epidotes from the margin of the veins present PS# values
[100*Fe**/(AIV+Fe*")] of 16.21 to 27.30 (Table 8).

Trace elements

Clinopyroxenes have low amounts of Al, Ti, Cr, Mn,
Na, K and REE possibly support their non-magmatic
nature (Table 4, 9). They have higher values of the LREE
in the margin of veins. Garnets in the studied veins
present great heterogeneity with lower LREE and higher
HREE amounts in the margin compared to the inner part
of the veins (Figure 7A, Table 9). Clinopyroxenes and
garnets from the contact zone have higher values of REEs
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Figure 6. ACF ternary chemical diagram and position of the rock- forming minerals of the Jandaq hydrothermal veins and enclosing

metagabbros.

relative to the core of the veins (Figure 7A). Epidote and to greenish brown in color and are associated with
prehnite have very low values of REEs, as well as positive plagioclase and ilmenite (Figure 4 A,B). These igneous
anomaly of Eu in the chondrite- normalized REE patterns amphiboles are tschermakite and magnesio-hornblende in
(Fig 7A). composition (Table 2).

Amphiboles of the metagabbros present high values of (2) Amphiboles commonly occur as rim around the
REE and negative anomaly of Eu (Figure 7B), support clinopyroxenes in the contact zone between metagabbros
their magmatic nature. On the other hand, amphiboles and hydrothermal veins. These types of amphiboles are
in the contact zones have lower REE contents and show actinolite in composition (Table 2, Figure 5B).
positive anomaly of Eu (Figure 7B). Plagioclases of the (3) Brown to green amphiboles that completely or
metagabbros show a significant positive anomaly of Eu partially enclose the clinopyroxene grains (Figure 4D),
in the chondrite- normalized REE patterns (Figure 7B). are classified as magnesio-hornblende and actinolite

The primitive mantle-normalized multi-element (Table 2, Figure 5B). These types of amphiboles have fine
spidergram of the magmatic amphiboles from the inclusions of magnetite.
metagabbros (Figure 7D) show negative anomalies of The low amounts of A1V and high values of Al'V in the
Rb, Th, La, Sr, Zr, Hf and Ti (normalization factors after calculated structural formula of the studied amphiboles in
McDonough and Sun, 1995). The plagioclases present the metagabbros (Table 2), indicate high occupancy of the
negative anomalies of Ce, Pr and Zr and positive spikes tetrahedral site by aluminum (more than 90% of Al). The
of Pb, Sr and Eu in this diagram (Figure 7D). amounts of FeO"? are high (7.16-18.80 wt%), most of

them are characterized by low amounts of Fe*" and high
DISCUSSION contents of Fe?* (Table 2). The chemical compositions of
Discrimination of magmatic and hydrothermal amphiboles amphiboles in the studied metagabbros indicate they are

Petrographic characteristics, major and trace elements calcic, silica and magnesia poor, ferroan rich and have
chemical compositions and geothermometry results of most of their aluminum in the tetrahedral site (Figure 6).
the amphiboles are useful to determine their magmatic The contents of Al and (Na+K) vary from 0.1 to 2.8
or hydrothermal origin (e.g., Gillis and Meyer, 2001 and (a.p.fu.) and 0.1 to 0.7 (a.p.f.u.), respectively (Figure
references therein). According to the petrographic studies, 8). No significant changes are observed in the Ti values
three types of amphiboles are present in the investigated in the chemical compositions of amphiboles from the
metagabbros and the associated veins: metagabbros. The mineral chemistry of the studied three

(1) Granular amphiboles in the metagabbros are brown types of amphiboles shows that granular amphiboles in
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Table 5. ...Continued

Rock type Hydrothermal veins
Sample no. 751-1 751-1 751-1 751-1 753 753
Point no. 158 161 163 174 244 247
Mineral Grt Grt Grt Grt Grt Grt
Sio, 39.67 39.41 40.00 39.64 39.36 40.02
TiO, 0.03 0.03 0.10 0.04 0.03 0.05
AL O3 18.32 17.28 20.36 18.68 18.08 20.08
Cr,0; 0.00 0.00 0.00 0.00 0.00 0.00
FeQtow! 6.10 7.56 3.19 5.76 6.17 3.49
MnO 0.08 0.04 0.06 0.06 0.07 0.11
MgO 0.05 0.05 0.08 0.07 0.06 0.06
CaO 35.70 35.70 36.28 35.64 35.79 36.07
Na,O 0.00 0.02 0.00 0.00 0.00 0.01
K,0 0.01 0.00 0.00 0.00 0.00 0.00
Total 99.95 100.09 100.07 99.88 99.57 99.88
Oxygen# 12 12 12 12 12 12
Si 3.029 3.017 3.026 3.025 3.018 3.036
Ti 0.002 0.002 0.005 0.002 0.002 0.003
AlYV) 0.000 0.000 0.000 0.000 0.000 0.000
AIVD 1.647 1.558 1.814 1.679 1.632 1.794
Cr 0.000 0.000 0.000 0.000 0.000 0.000
Fe3* 0.286 0.402 0.118 0.261 0.323 0.125
Fe?' 0.103 0.082 0.083 0.107 0.073 0.097
Mn 0.005 0.003 0.004 0.004 0.005 0.007
Mg 0.006 0.005 0.009 0.007 0.007 0.007
Ca 2921 2.929 2.941 2915 2.940 2.931
Na 0.000 0.003 0.000 0.000 0.000 0.001
K 0.000 0.000 0.000 0.000 0.000 0.000
Sum 7.999 8.001 8.000 8.000 8.000 8.001
Fe# 0.94 0.94 0.90 0.94 0.91 0.93
Mgt 0.06 0.06 0.10 0.06 0.09 0.07
Alm 3.407 2.709 2.742 3.524 2.407 3.186
Adr 14.777 20.501 6.104 13.430 16.489 6.481
. |Grs 81.436 76.441 90.732 82.683 80.717 89.841
—q-; Prp 0.188 0.178 0.297 0.244 0.234 0.230
§ Sps 0.175 0.088 0.124 0.119 0.152 0.232
E Uv 0.012 0.000 0.000 0.000 0.000 0.000

the metagabbros are rich in Al, Ti, and (Na+K) (Figure about the origin of the amphiboles. Equilibrium
8 A,B). Some amphibole and plagioclase crystals in the temperatures were calculated for plagioclase-amphibole
studied metagabbros exhibit chemical variations possibly pairs using the edenite + albite = richterite + anorthite
can be attributed to the hydrothermal alteration effects. exchange geothermometer (Holland and Blundy, 1994).

Estimation of temperatures provides useful information The average values of the calculated temperatures
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Polymineralic veins in the Jandaq ophiolite gabbros

Table 6. Representative chemical compositions of calcite (in wt%) from the hydrothermal veins and the contact zone (between the
metagabbros and hydrothermal veins) and their calculated structural formula.

Rock type Hydrothermal veins Contact Zon;;(frt;ﬁ:r:;? \rlr;itle;gabbros and
Sample no. 751-1 751-1 751-1 751-1 753 753 753 757 757 757
Point no. 159 166 167 175 248 249 250 218 220 221
Mineral Cal Cal Cal Cal Cal Cal Cal Cal Cal Cal
Si0, 0.00 0.00 0.00 0.00 0.14 0.00 0.00 0.02 0.00 0.00
TiO, 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.03
AL)O, 0.01 0.00 0.00 0.01 0.02 0.00 0.01 0.00 0.00 0.01
Cr)0, 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Feotw! 0.04 0.00 0.01 0.00 0.05 0.04 0.00 0.01 0.03 0.07
MnO 0.04 0.00 0.00 0.03 0.01 0.02 0.01 0.01 0.10 0.05
MgO 0.01 0.01 0.01 0.00 0.02 0.00 0.01 0.00 0.11 0.04
CaO 61.11 60.41 61.55 61.12 60.18 60.15 58.75 52.77 57.36 61.02
Na,O 0.00 0.00 0.00 0.00 0.02 0.01 0.00 0.00 0.00 0.00
K,0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00
Total 61.20 60.42 61.56 61.17 60.45 60.21 58.78 52.82 57.62 61.22
Oxygen# 3 3 3 3 3 3 3 3 3 3

Si 0.000 0.000 0.000 0.000 0.007 0.000 0.000 0.001 0.000 0.000
Ti 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001
Al 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000
AIVD 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Cr 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Fe3* 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Fe?* 0.001 0.001 0.000 0.000 0.003 0.001 0.000 0.000 0.001 0.001
Mn 0.001 0.001 0.000 0.001 0.001 0.001 0.001 0.001 0.004 0.002
Mg 0.000 0.000 0.000 0.002 0.001 0.000 0.000 0.000 0.008 0.003
Ca 2.998 2.998 3.000 2.997 2.985 2.998 2.999 2.998 2.987 2.993
Na 0.000 0.000 0.000 0.000 0.002 0.000 0.000 0.000 0.000 0.000
K 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Sum 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000

by amphibole-plagioclase geothermometry are 706
and 524 °C for the metagabbros and the contact zone,
respectively. Thermometry of the igneous amphiboles
in the metagabbros using the “Ti-content of amphibole”
thermometry (Otten, 1984) suggest 616° to 698 °C for
their formation. Most of the granular amphiboles in the
metagabbros equilibrated at higher temperatures than
hydrothermal amphiboles in the contact zone. Based on
the Al-in-amphibole geobarometry (Schmidt, 1992);
P (£0.6kbar)=4.76A1°%.3.01, the igneous amphiboles
yield pressure ranges of 5.56 to 9.84 kbar. Calculation
of the fO, values using the Wons (1989) equation;
Log fO,=-30930/T+14.98+0.142(P-1)/T for the Jandaq

metagabbros, show ranges of -15.90 to -19.46. In these
calculations, temperature and pressure of the magmatic
amphiboles are considered as 616° to 698 °C and 5.56
to 9.84 kbar, respectively. These ranges of the fO,
indicate high values of the fO, and oxidation state of the
environment.

Trace elements chemical compositions of amphiboles
are useful for discrimination of the magmatic and
hydrothermal amphiboles. REE contents of the
amphiboles in metagabbros indicate LREE enrichment
relative to the HREE with [Ce/Yb]cn=1.27-2.12. They
have ratios of [Ce/Sm]cn<I, [Dy/Er]cy~1.2, and [Eu/
Eu*]cn=0.59-0.66. But amphiboles in the contact zones
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Table 7. Representative chemical compositions of prehnite (in wt%) from the hydrothermal veins and the contact zone (between the
metagabbros and hydrothermal veins) and their calculated structural formula.

Rock type Hydrothermal veins Contact Zonfl;;rt;:ﬁ:?ntl}; \r/rel?rtla;gabbros and
Sample no. | 751-1 751-1 751-1 751-1 751-1 751-1 751-1 757 757 757 757 757
Point no. 160 162 164 165 168 171 176 225 232 238 245 246
Mineral Prh Prh Prh Prh Prh Prh Prh Prh Prh Prh Prh Prh
SiO, 44.10 44.29 44.25 44.48 44.46 44.11 44.30 43.94 44.07 44.60 44.01 44.11
TiO, 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00
Al O3 24.21 24.48 24.24 24.28 24.37 24.56 24.12 24.14 23.82 23.09 24.15 2431
Cr,03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
FeQtwl 0.31 0.18 0.13 0.08 0.33 0.04 0.39 0.09 0.04 0.44 0.00 0.02
MnO 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.01 0.03 0.01 0.03
MgO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 1.15 0.01 0.00
CaO 27.38 27.13 27.20 27.18 27.42 27.04 27.24 26.84 26.05 24.74 27.10 26.98
Na,O 0.02 0.01 0.00 0.00 0.01 0.00 0.00 0.06 0.14 0.16 0.00 0.01
K,0 0.01 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.13 0.42 0.00 0.00
Total 96.03 96.10 95.81 96.01 96.59 95.78 96.07 95.10 94.26 94.63 95.29 95.46
Oxygen# 22 22 22 22 22 22 22 22 22 22 22 22

Si 6.041 6.048 6.061 6.075 6.050 6.040 6.062 6.061 6.120 6.169 6.060 6.059
Ti 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000
AV 3.908 3.941 3914 3.909 3.909 3.964 3.889 3.924 3.899 3.764 3.919 3.935
AIVD 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Cr 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Fe’* 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Fe?* 0.035 0.021 0.015 0.009 0.037 0.005 0.044 0.011 0.005 0.051 0.000 0.002
Mn 0.000 0.000 0.000 0.000 0.000 0.003 0.000 0.000 0.001 0.004 0.001 0.003
Mg 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.001 0.237 0.002 0.000
Ca 4.018 3.970 3.992 3.997 3.998 3.967 3.994 3.968 3.876 3.666 3.998 3.972
Na 0.006 0.002 0.000 0.000 0.003 0.000 0.001 0.015 0.038 0.043 0.000 0.003
K 0.002 0.001 0.000 0.000 0.002 0.001 0.000 0.001 0.022 0.075 0.000 0.000
Sum 14.010 13.983 13.982 13.990 13.999 13.980 13.991 13.983 13.962 14.009 13.980 13.974
have lower REE contents compared to the amphiboles (Table 9). Whereas, the acicular amphibole rims around

in metagabbros with [Ce/Yb]cn=0.75-1.42. The studied the clinopyroxenes and amphibole pseudomorphs after
amphiboles from the contact zone present ratios of [Ce/ clinopyroxene exhibit high-Al®°®) (0.63-2.22), low-
Sm]cy>1, [Dy/Er]cn~0.9, and [Euw/Eu*]-\=1.29-3.36. [Dylen (3.46-8.18) and high-[EwEu*]|cy (1.29-3.36)

Chondrite-normalized REE patterns of the amphiboles grains from the contact zone.

and clinopyroxenes from the contact zone indicate that Using the [Ce]cy versus [Dy]en graph shows that
the amphiboles are slightly more enriched in REE than the granular amphiboles in the metagabbros follow the
the clinopyroxenes (Figure 7B). Correlations between gabbro crystallization trend (Figure 9). This trend possibly
the major and trace elements chemical compositions indicates their magmatic nature. Amphibole grains in
and textures of the amphiboles indicate that the granular the contact zone follow a general mixing trend between
amphiboles in the metagabbros have a general decrease clinopyroxene and plagioclase (Figure 9). This trend
in [Dy]cny (46.43-61.46) and increase in [Euw/Eu*] possibly suggests that their REE contents are affected by
e~ (0.58-0.66) with an increase in Al®%D (1.80-2.06) local mineral-scale reactions involving clinopyroxene,
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Table 8. Representative chemical compositions of epidote (in wt%) from the hydrothermal veins and the contact zone (between the
metagabbros and hydrothermal veins) and their calculated structural formula.

Rock type Hydrothermal veins Contactaznodnfl;;rtzﬁzrrlntgf \r/reniartla;gabbros

Sample no. 751 751 754 754 754 754 640 640 699 699 699 699
Point no. 276 277 251 261 573 577 48 52 207 208 210 212
Mineral Ep Ep Ep Ep Ep Ep Ep Ep Ep Ep Ep Ep
SiO, 38.72 38.92 39.00 39.05 37.12 39.12 38.36 38.65 38.38 38.50 38.46 38.30
TiO, 0.23 0.24 0.06 0.03 0.01 0.23 0.12 0.10 0.03 0.01 0.07 0.03
Al O3 24.26 24.29 26.33 27.07 24.32 20.81 24.98 25.27 23.31 23.31 23.65 23.39
Cr,03 0.00 0.00 0.01 0.00 0.00 0.02 0.00 0.00 0.04 0.01 0.00 0.00
FeQ@! 10.54 10.36 8.94 7.36 10.17 10.95 10.54 9.71 11.85 12.11 11.71 11.99
MnO 0.04 0.03 0.09 0.08 0.04 0.15 0.26 0.22 0.12 0.12 0.10 0.09
MgO 0.04 0.02 0.02 0.06 0.04 0.11 0.05 0.15 0.00 0.01 0.00 0.04
CaO 23.32 23.38 22.87 23.48 22.62 26.29 22.49 22.34 23.39 23.41 23.47 23.33
Na,O 0.00 0.00 0.01 0.00 0.02 0.05 0.02 0.00 0.02 0.01 0.00 0.00
K,0 0.01 0.00 0.00 0.00 0.02 0.00 0.01 0.02 0.00 0.00 0.00 0.01
Total 97.16 97.24 97.31 97.12 94.35 97.72 96.83 96.46 97.14 97.49 97.45 97.17
Oxygen# 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5

Si 3.044 3.055 3.038 3.041 3.006 3.102 3.021 3.045 3.034 3.034 3.028 3.027
Ti 0.013 0.014 0.004 0.002 0.000 0.014 0.007 0.006 0.002 0.001 0.004 0.002
AV 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
AIVD 2.246 2.245 2.415 2.482 2.319 1.944 2.317 2.344 2.170 2.163 2.193 2.177
Cr 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.002 0.001 0.000 0.000
Fe’* 0.690 0.680 0.580 0.480 0.690 0.730 0.690 0.640 0.780 0.800 0.770 0.790
Fe?* 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Mn 0.003 0.002 0.006 0.005 0.003 0.010 0.017 0.015 0.008 0.008 0.007 0.006
Mg 0.005 0.002 0.003 0.007 0.005 0.012 0.006 0.018 0.000 0.001 0.000 0.004
Ca 1.964 1.966 1.908 1.958 1.962 2.234 1.898 1.886 1.981 1.977 1.980 1.975
Na 0.000 0.000 0.001 0.000 0.003 0.007 0.003 0.000 0.003 0.001 0.000 0.000
K 0.001 0.000 0.000 0.000 0.002 0.000 0.001 0.002 0.000 0.000 0.000 0.001
Sum 7.966 7.964 7.955 7.975 7.990 8.054 7.960 7.956 7.980 7.986 7.982 7.982
Ps 0.235 0.232 0.194 0.162 0.229 0.273 0.229 0.214 0.264 0.270 0.260 0.266
plagioclase, and hydrothermal fluids. These amphiboles Amphibole is present as a minor phase in the water-
are possibly inherited the REE patterns of the primary rich magmas from the volcanic arcs (e.g., Rutherford
clinopyroxenes (Figure 7B). But, enrichment in LREE et al., 1985; Sisson and Layne, 1993; Sato et al., 1999;
and Eu relative to clinopyroxene and correlation of these Webster, 1992; Sisson and Grove, 1993; Gillis and Meyer,
REEs with Al values show the influence of plagioclase. 2001 and references therein). Chemical analyses of the
Based on the trace elements chemical compositions of melt inclusions in the phenocrysts (Sisson and Layne,
minerals in the metagabbros, during the crystallization of 1993) and the results of experimental investigations
amphibole and plagioclase, the Pb, Sr and Eu prefer to on amphibole stability (Rutherford et al., 1985; Sisson
enter in plagioclase structure more than the amphibole one and Grove, 1993; Sato et al., 1999), indicate that the

(Figure 7D). Because, partition coefficient (Kd) of these H,O content of the magma saturated with amphibole is
elements in the plagioclase is higher than the amphibole typically between 2 to 6 wt%. The H,O-saturated magmas
(Blundy and Wood, 1994; Klein et al., 1997). are typical of the subduction zone-related ones. But the

8 PM
A 4

—



134 Periodico di Mineralogia (2022) 91, 113-142 Nosouhian N. et al.

Table 9. Microprobe (major elements) and LA-ICP-MS (trace elements) analyses of minerals from the metagabbros, contact zones and
hydrothermal veins of the Jandaq ophiolite.

Rock type Metagabbros Contactaz;);ﬁ}?g:z}el:ﬁflgf \r]r;?rtla;gabbros
Sample no. 763 760

Point no. 193 197 205 194 181 187 190 192
Mineral Amp Amp Amp Pl Amp Amp Amp Amp
SiO, 45.33 45.55 46.75 55.73 53.99 48.44 44.82 50.84
TiO, 1.16 0.89 0.56 0.00 0.17 0.38 0.08 0.34
Al)O4 12.12 12.14 10.46 28.34 3.85 9.25 13.18 6.63
FeOtw! 15.13 15.23 15.48 0.01 8.34 10.09 11.68 9.94
MnO 0.28 0.34 0.26 0.00 0.25 0.28 0.26 0.26
MgO 11.22 11.08 10.87 0.00 18.37 16.21 13.60 16.60
CaO 10.88 10.82 11.75 10.26 12.09 11.58 11.57 11.92
Na,O 1.38 1.32 0.91 5.93 0.70 1.81 2.49 1.25
K,0 0.37 0.36 0.46 0.04 0.03 0.08 0.11 0.04
Total 97.93 97.73 97.50 100.32 97.80 98.17 97.82 97.82
Rb 2.609 1.826 2.034 16.079 0.129 0.150 0.118 0.087
Sr 39.473 37.610 34297  1414.797 7.601 4.174 7.277 2.117
Y 79.438 70.155 59.620 0.303 12.372 5.795 7.998 5.144
Zr 61.410 37.058 27.352 0.014 6.496 3.579 3.712 7.493
Nb 7.788 6.337 5.535 0.000 0.998 1.136 0.407 0.445
Ba 124.404 59.425 15.936 141.811 1.080 1.590 1.404 0.781
La 5.141 4912 10.993 1.883 0.989 1.393 0.882 0.782
Ce 42.766 36.208 51.285 2.490 3.919 4.107 3.631 2.571
Pr 9.260 7.672 8.728 0.220 0.629 0.537 0.522 0.341
Nd 52.528 45.053 45.124 0.783 3.161 2.238 2.467 1.466
Sm 15.069 13.718 12.206 0.077 0.951 0.553 0.647 0.407
Eu 2.858 2.803 2.541 0.455 0.475 0.639 0.678 0.301
Gd 14.660 13.325 11.434 0.092 1.311 0.608 0.842 0.575
Tb 2.242 2.004 1.725 0.007 0.250 0.104 0.155 0.114
Dy 15.119 13.430 11.423 0.032 2.013 0.853 1.182 0.875
Ho 3.009 2.693 2.282 0.003 0.434 0.187 0.291 0.187
Er 8.520 7.502 6.302 0.021 1.213 0.576 0.901 0.603
Tm 1.211 1.075 0918 0.007 0.181 0.096 0.150 0.092
Yb 8.226 7.492 6.355 0.011 1.225 0.757 1.278 0.647
Lu 1.113 1.005 0.850 0.000 0.160 0.103 0.193 0.096
Hf 3.021 2.359 2.088 0.008 0.417 0.146 0.065 0.381
Ta 0.434 0.313 0.339 0.000 0.042 0.039 0.006 0.019
Pb 5.314 3.910 5.922 21.461 0.078 0.038 0.054 0.038
Th 0.071 0.080 0.449 0.003 0.043 0.010 0.066 0.157
U 0.083 0.142 0.171 0.005 0.011 0.009 0.007 0.021
[Ce/Yb]en 1.37 1.27 2.12 57.19 0.84 1.43 0.75 1.04
Eu/Eu* 0.59 0.63 0.66 16.44 1.30 3.36 2.80 1.90
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Table 9. ...Continued

Rock type Contact Zoni}?ggiﬁzr:rfﬁ \r/r:i:rtla;gabbros and Hydrothermal veins

Sample no. 751-1 751

Point no. 161 162 169 172 271 272 273 276
Mineral Grt Prh Cpx Cpx Cpx Cpx Grt Ep
SiO, 39.41 44.29 53.84 53.94 54.05 54.04 39.53 38.72
TiO, 0.03 0.00 0.03 0.00 0.03 0.05 0.05 0.23
Al)O, 17.28 24.48 0.51 0.42 0.29 0.62 17.04 24.26
FeOQ! 7.56 0.18 6.87 6.47 6.25 6.44 9.02 10.54
MnO 0.04 0.00 0.21 0.22 0.25 0.19 0.08 0.04
MgO 0.05 0.00 13.90 14.26 14.54 14.35 0.05 0.04
CaO 35.70 27.13 24.43 24.41 24.01 23.78 34.13 23.32
Na,O 0.02 0.01 0.21 0.21 0.17 0.34 0.00 0.00
K,0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01
Total 100.09 96.10 100.00 99.98 99.61 99.82 99.91 97.16
Rb 0.002 0.019 0.006 0.030 0.003 0.003 0.003 0.003
Sr 1.505 1.198 10.777 9.332 15.622 15.515 1.501 0.387
Y 0.295 0.019 4.440 6.808 5.176 4.514 5.158 0.149
Zr 0.780 0.021 1.617 4.043 2.319 1.885 7.138 0.865
Nb 0.003 0.001 0.001 0.003 0.002 0.002 0.026 0.491
Ba 0.014 0.106 1.173 0.323 0.043 0.007 0.011 0.049
La 0.013 0.013 0.028 0.038 0.270 0.235 0.001 0.015
Ce 0.105 0.034 0.239 0.304 1.143 1.019 0.010 0.362
Pr 0.016 0.003 0.060 0.077 0.192 0.168 0.010 0.067
Nd 0.054 0.011 0.453 0.645 1.101 0.950 0.181 0.170
Sm 0.003 0.004 0.194 0.353 0.429 0.353 0.142 0.015
Eu 0.024 0.006 0.031 0.033 0.142 0.123 0.489 0.037
Gd 0.014 0.012 0.343 0.573 0.712 0.596 0.316 0.023
Tb 0.001 0.002 0.064 0.115 0.132 0.113 0.064 0.002
Dy 0.021 0.004 0.584 0.957 1.003 0.823 0.580 0.018
Ho 0.007 0.002 0.150 0.236 0.217 0.179 0.147 0.003
Er 0.030 0.000 0.478 0.750 0.586 0.518 0.469 0.009
Tm 0.008 0.002 0.071 0.112 0.086 0.081 0.070 0.002
Yb 0.074 0.001 0.537 0.789 0.601 0.558 0.545 0.017
Lu 0.013 0.000 0.097 0.117 0.111 0.101 0.075 0.002
Hf 0.001 0.000 0.066 0.235 0.099 0.079 0.143 0.016
Ta 0.002 0.000 0.000 0.004 0.000 0.000 0.000 0.001
Pb 0.061 0.306 0.079 0.081 0.263 0.100 0.008 0.029
Th 0.002 0.000 0.001 0.004 0.000 0.001 0.000 0.001
6] 0.032 0.002 0.003 0.003 0.001 0.000 0.101 0.032
[Ce/Yb]cen 0.37 11.21 0.12 0.10 0.50 0.48 0.01 5.44
EwEu* 11.03 2.51 0.37 0.23 0.78 0.82 7.03 6.12
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Figure 7. Chondrite-normalized REE patterns (A,B) and primitive mantle-normalized spidergram (C,D) of the minerals from the
studied hydrothermal veins and enclosing metagabbros of the Jandaq ophiolite. Normalizing values of the chondrite and primitive
mantle are taken from Sun and McDonough (1989), and McDonough and Sun (1995), respectively.

magmas of the mid-ocean ridges have low content of the
H,0. The N-MORB and E-MORB magmas which form
the igneous amphiboles, have 0.1-0.2 wt% and up to 0.6
wt% H,O, respectively (e.g., Sobolev and Chaussidon,
1996, Gillis and Meyer, 2001). Therefore, the granular
amphiboles with magmatic origin in the metagabbros are
formed by the melts enriched in H,O. The geological and
tectonic history of the CEIM confirm a supra-subduction
zone setting (back-arc) for the ophiolitic mélange of
Paleozoic age in the Yazd block (e.g., Bagheri, 2007;
Bagheri and Stampfli, 2008; Torabi and Aria, 2013;
Shafaii Moghadam and Stern, 2014; Nosouhian et al.,
2016; Berra et al., 2017; Nosouhian et al., 2019).

Petrogenesis of the hydrothermal veins

The Joints and cracks of the Jandaq gabbroic intrusions
are filled by hydrothermal minerals. Nicolas et al.
(2003) propose that penetration of the seawater has been
introduced along the grain boundaries and fractures in
the deep oceanic crust. Rock-forming minerals of the
studied contact zones consist of hydrous (amphibole +
chlorite + epidote + prehnite) and anhydrous (plagioclase
+ clinopyroxene + garnet + albite) minerals. Most of the
minerals are hydrous silicates. The high abundance of
the hydrous minerals in the contact zone suggest that the
fluid flow was focused along the joints and cracks with
enhanced permeability.
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Figure 8. Major elements chemical compositions of the amphiboles in the metagabbros and contact zone between the metagabbros and
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The temperature estimation of the metamorphism can be prehnite + epidote can crystallize at temperatures between
constrained roughly by mineralogical assemblage. In the 300 and 450 °C (e.g., McCollom and Shock, 1998 and
NaO-CaO-FeO-MgO-Al,05-Si0,-H,O system, varying references therein; Bach et al., 2012). The stability
amounts of sodic plagioclase + diopside + actinolite + range of the prehnite and epidote in the similar rocks is
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Figure 9. [Ce]cy versus [Dy]cy values of amphibole in the metagabbros and contact zone between the metagabbros and hydrothermal
veins. The green arrow with a black line is a simple mixing trend between average plagioclase and clinopyroxene values; numbers
indicate the percentage of plagioclase in the mix. The gray arrow shows the gabbro crystallization trend. The plagioclase and
clinopyroxene fields are from (Gillis and Meyer, 2001 and references therein).

0.1

220-430 °C and >300 °C, respectively (e.g., Liou et al., ranging from 650-800 °C, 450-650 °C, and 300-450 °C,
1983; Bach et al., 2012). At 450 °C, prehnite + epidote respectively. The core of veins mainly consists of high-
are no longer present among the equilibrium minerals, temperature mineral association of calcite + clinopyroxene
leaving alteration assemblage of plagioclase + diopside + garnet £ oxides. The modal values of the hydrous
+ actinolite. These three minerals are stable up to a minerals increase with decreasing the temperature.
temperature of 650 °C (e.g., McCollom and Shock, 1998). Medium- temperature mineral assemblage in the contact
Over this temperature, amphiboles are no longer present zone is plagioclase (andesine, oligoclase) + clinopyroxene
among the predicted equilibrium minerals, leaving an + amphibole (magnesio-hornblende, actinolite) + chlorite
alteration assemblage of clinopyroxene and garnet (e.g., + garnet + oxides followed by low- temperature alteration
McCollom and Shock, 1998). The presence of diopside paragenesis mainly consists of epidote + prehnite +
association with grossular-andradite suggests the high actinolite. One of the most important characteristics of
temperature ranging from 500 to 800 °C (Frost et al., the studied veins is high abundance of calcite, which is an
2008). These petrological results reveal that the mineral evidence for the high fCO, of the hydrothermal fluids. The
assemblages of the hydrothermal veins from the Jandaq chemical compositions of the minerals from the Jandaq
area are typical result of the interaction between the hydrothermal veins and enclosing gabbros are plotted in

metagabbros and seawater-derived fluids (e.g., McCollom the ACF (Al-Ca-(Fe+tMg)) ternary diagram (Figure 6).
and Shock, 1998). The core of the hydrothermal veins and The higher CaO and MgO values, and the lower Al,0O;

contact zones within the Jandaq metagabbros record the and FeO" amounts in the metagabbros relative to the
high, medium and low temperature hydrous alteration, veins can be attributed to the metasomatism (Figure 6).
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Such metasomatism is responsible for the hydrothermal
processes active within the oceanic crust (e.g., Puga et al.,
1999; Kitajima et al., 2001; Huot et al., 2002).

Minerals of the investigated veins exhibit wide
ranges of the patterns in the chondrite-normalized REE
diagram (Figure 7), indicates chemical heterogeneity of
the hydrothermal fluids. LREE-enrichment cannot be
achieved by a closed system crystallization. The REE
mobility via aqueous fluids occurs at temperatures up
to 700 °C (Lieftink et al., 1994). Activity of the REEs
gradually decreases in the hydrothermal solutions by
decreasing the temperature of the solution or the host.
The REE-enriched diopsides and relatively REE-depleted
garnets precipitated in the studied veins core by a high
temperature hydrothermal solution (e.g., Python et al.,
2007 a;b; Figure 7). The LREE and Eu have higher
mobility in hydrothermal fluids involved in the studied
veins (Figure 7 A,B). After downward ingression and
circulation of the hydrothermal fluids through the crustal
section, when reaching the mantle-crust transition zone,
the hydrothermal fluids lose the alkalic elements by
precipitation of minerals like amphibole, epidote, albite
in the crustal hydrothermal veins. These minerals are
selectively enriched in the elements like Ca and Eu due
to their interaction with the gabbros from the lower crust.
Therefore, the positive Eu anomaly of the hydrothermal
minerals in the chondrite-normalized REE patterns
associated with high modal amounts of calcite, and the
presence of Ca-rich minerals (Figure 6) in the studied
veins suggest that the involved hydrothermal fluids of the
Jandaq oceanic crust were leached the calcic plagioclase-
rich lithologies as pillow lavas, diabasic sheeted dykes
and gabbroic lithologies before penetrating the lower
crust.

The formation of diopsidites (Python et al., 2007 a,b;
2011; Akizawa and Arai, 2014) and hornblendite (Torabi
et al., 2017) in the uppermost mantle section and crustal
diopsidites (Akizawa et al., 2011) in the lower crust
provide useful informations about the deep circulation of
seawater-derived fluids at high temperature hydrothermal
activity. This circulation changes the primary distribution
of Ca, Si, Eu and REE in the crust and the upper mantle.
The chemical compositions of minerals in the studied
veins indicate the mobility of Ca, Si, Al, Fe, Mg and REE
during activity of the seawater-derived high temperature
fluids. They are gained Ca during circulation through the
crustal section down to the mantle. The Mg content is
lower than the other ions in the major minerals and presents
only as a main component in the clinopyroxenes suggest
a lower activity of Mg in the penetrating fluids, and point
to the higher contribution of gabbros in the hydrothermal
metasomatism compared to the peridotites. Accordingly,
the studied hydrothermal vein-filling minerals are the

results of the high temperature penetration and circulation
of the seawater-derived fluids into the upper part of the
oceanic crust, which is constructed of the highly porous
and permeable volcanic (pillow lavas), sub-volcanic
(sheeted dykes) and plutonic (tectonized and crushed
gabbros) rocks.

CONCLUSIONS

Polymineralic hydrothermal veins occur within the
Jandaq Paleozoic ophiolite metagabbros. The chemical
compositions and the modal abundance of minerals
in these veins (calcite> prehnite> garnet> epidote>
clinopyroxene> chlorite> albite> sericite) show that Ca,
Si, Al, Fe and Mg were the main components of involved
hydrothermal fluid. High abundance of the calcite present
in the mineral association of the veins indicates high fCO,
in the hydrothermal fluid. Chemical characteristics of the
minerals in the hydrothermal veins and contact zone show
a systematic enrichment of the fluid mobile elements
(e.g., LREE, Eu). Enrichment of Ca and Eu show that
the hydrothermal fluid in the Jandaq oceanic crust was
leached the basic lithologies rich in plagioclase before
penetrating the lower crust. The composition of the rock-
forming minerals and non-magmatic chemical signatures
of the hydrothermal veins and contact zones in the Jandaq
metagabbros suggest that they are possibly produced by
reheating of the host rock (gabbros). The studied veins
suggest a model which requires to the ingression of a
seawater-derived high temperature fluid into the basic
rocks of the uppermost oceanic crust.
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