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Abstract:  

The debate about whether technical progress causes 
technological unemployment, as the Luddites argued in the 
early 19th century, has recently resurfaced in the context of 
new technologies and automation and the so-called Fourth 
Industrial Revolution. We review the main issues and then 
consider in detail the studies of Autor and Salomons (2017, 
2018). They find that after both direct and indirect effects are 
accounted for, technical change is, on the aggregate, 
employment-augmenting. They find no evidence that technical 
change (proxied by the growth of productivity) reduces 
employment growth. We demonstrate that the regressions 
they estimate are problematic because they approximate an 
accounting identity. One or two variables in the identity 
(output growth or both output growth and capital growth) 
are omitted, which implies that the coefficient of productivity 
growth suffers from omitted-variable bias. As the omitted 
variable is known, we can have a good idea of what the 
statistical results must be. We conclude that, unfortunately, 
their work does not shed light on the question they address. 
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The debate about the impact of mechanization (or, more generally, the role of technical 

progress) on employment growth goes back to at least the work of David Ricardo (1821), 

writing in the context of the Luddite movement. This group of English textile workers believed 

that faster growth of technical progress and the introduction of new machines caused a slower, 

or even negative, growth of employment, resulting in technological unemployment. For a long 

time, however, many economists have considered that technical progress does not lead to a 

reduction in employment growth; their view is that the Luddite arguments (that an economy-
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wide technical breakthrough enabling production of the same amount of goods with fewer 

workers will result in an economy with fewer workers) simply involved a fallacy.  

In response to the Luddites’ destruction of new labor-saving textile machinery over the 

period 1811 to 1816, Ricardo added the chapter “On Machinery” to the third edition of the 

Principles. Here, he agreed with the opinion prevailing in “the laboring class, that the 

employment of machinery is frequently detrimental to their interests, is not founded on 

prejudice and error, but is comfortable to the correct principles of political economy” (Ricardo, 

1821, p. 392). This was the first time that the concept of technological unemployment had been 

provided with a theoretical economic justification. Adam Smith and Karl Marx also discussed 

the relationship between wages, productivity and (un)employment. 

This view has persisted over the years. For example, in an article in the New York Times on 

26 February 1928, Evan Clark, at a time when the rate of unemployment was 4.2 per cent, 

predicted automation would lead to a dramatic rise in unemployment. 
The term “technological unemployment” was first coined by Keynes (1930), who wrote 

that “This means unemployment due to our discovery of means of economising the use of 

labour outrunning the pace at which we can find the new use of labour”. But in the next 

sentence, he dismisses this as a possibility. “But this is only a temporary phase of 

maladjustment. All this means in the long run that mankind is solving its economic problem” 

(emphasis in the original). Keynes, looking at the next hundred years, considered that what he 

termed “absolute” needs would be satisfied. He contrasts this with “relative” needs, or 

positional goods, the satisfaction of which “lifts us above, makes us feel superior to, our 

fellows”. The latter is closely related to Veblen’s (1899) concept of conspicuous consumption. 

Consequently, when absolute needs are satiated, the demand for leisure becomes increasingly 

important. It goes without saying that history has shown the demand for new absolute goods 

is insatiable. 

The refutation of the Luddite fallacy by some economists derives from the more general 

belief that long-run growth is, ultimately, determined by the overwhelming importance of 

technological change. In the neoclassical tradition, the aggregate demand curve for labor is 

downward sloping but technical change shifts the demand curve, leading to an increase in the 

demand for labor over time. Solow’s (1956, 1957) classic papers made it clear that labor-saving 

technical change was the only way for output per worker to increase in the long run. In simple 

terms, the Luddite fallacy confuses, the argument goes, the shift of employment from old to 

new technologies (which has caused, and continues to cause, significant changes in sectoral 

employment and unemployment) with an overall decline in employment or, at least, a 

significant reduction in its rate of growth. For example, increases and improvements in 

agricultural machinery have decreased the share of agricultural employment in the U.S. from 

40 percent in 1900 to 2 percent today, in spite of a substantial increase in agricultural output. 

The fall in the relative price of agricultural commodities has increased overall purchasing 

power, which has led to the increased production of other goods and services. The reality is 

that advanced economies have not displayed a long-run trend toward increasing aggregate 

unemployment (Autor, 2016).1 

The fact that many economists dismiss the Luddite arguments does not mean that these 

ideas may not have some merit. The mechanism that has enabled real per capita demand in 

market economies to rise has been the increase in real wages in line with productivity, which 
 

1 Similar arguments were being made during the latter part of the 20th century, with concerns about the information 
technology revolution putting middle-skilled workers engaged in repetitive activities out of work. 
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in turn is largely due to technical progress. In these economies, real wages have increased to 

offset reductions in the growth of labor inputs by supporting a rise in aggregate per capita 

demand. However, this process can break down: even if wages increase to offset lower labor 

growth, increased productivity growth does not necessarily lead to higher employment 

growth. The Luddite argument may be valid if an economy with less-than-full employment is 

wage-led, that is, if a higher real wage rate, or wage share, induces an increase in 

employment. In these economies, an increase in labor productivity is unlikely to be followed 

immediately by a higher real wage rate, especially if some labor is unemployed. Total wage 

payments will decline as jobs are eliminated, thus reducing consumer demand. Investment and 

new capacity formation may also decline (Bowles and Boyer, 1995; Taylor, 1996). 

In this paper, we undertake a brief and possibly partial review of the recent literature on 

whether the recent introduction of new technology, including that of robotization, while 

displacing labor in specific occupations, is causing or is likely to cause increased technological 

unemployment. It will be argued that some of those studies that come to this conclusion omit 

the impact of the increased growth of output demand. In particular, we present a detailed 

consideration of the econometric studies of Autor and Salomons (2017, 2018) on the 

relationship between employment and technical progress. We show that their work involves a 

‘catch 22’ problem that results from the fact that their regressions are what we refer to as quasi-

accounting identities. This is because, by adding one variable, e.g., output growth, the equation 

estimated becomes an identity. The implication is that the coefficient that supposedly 

measures the impact of technical progress on employment growth suffers from omitted-

variable bias, where the omitted variable is known. 

The rest of the paper is organized as follows. Section 1 provides a survey of the recent 

literature on robots, technical change, and technical unemployment. Section 2 discusses Autor 

and Salomons’ (2017) approach (AS hereafter) and comments on its most salient results. 

Section 3 discusses Autor and Salomons’ (2018) approach. We think doing this is useful in 

order to appreciate the differences between the two approaches and to better explain our 

arguments. Moreover, as we argue below, we do not think Autor and Salomons’ (2018) 

approach provides a more compelling analysis. The final section offers some conclusions. 

 
 

1. Robots, technical change, employment growth and technological unemployment 

 

Recently, the debate about the likelihood of technological unemployment has surfaced in 

the context of the role and impact of the new technologies and the so-called Fourth Industrial 

Revolution.2 These technologies include robotics, additive manufacturing, artificial 

intelligence, the “internet of things” and big data. Some have argued that there are reasons to 

believe that this time may be different. There is fear that faster technical change will reduce 

employment growth and will lead to “Robocalypse,” the idea that the use of robots will cause a 

massive destruction of employment opportunities. Brynjolfsson and McAfee (2014) argue that 

machines are substituting for more types of human labor than ever before. As such, machines 

replicate themselves; essentially, they create more capital. The implication is that the real 

winners of the future will not be the providers of cheap labor or the owners of standard capital. 

 
2 This review is necessarily partial. It is impossible to cover the very rich literature on the subject. This would require 
a full survey. 
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Rather, the winners will be those who can innovate and create new products, services, and 

business models. In this view, workers without any special skills will be the most threatened. 

Likewise, Harari (2018) argues that workers possess just two kinds of ability: physical and 

cognitive. Over the course of the 20th century, technological progress was associated with 

eliminating low-skilled, physically intensive tasks and jobs. These have been replaced with 

employment requiring cognitive skills that are more difficult to automate. The more recent 

technological advances, however, are also replacing jobs requiring cognitive skills, raising 

doubts as to future employment possibilities when machines are more capable than humans 

at both physical and cognitive tasks. 

One approach adopted in much of the recent literature usually follows that developed by 

Frey and Osborne (2013, 2017).3 Frey and Osborne reviewed the literature on machine 

learning and artificial intelligence and concluded that there seem to be technological 

bottlenecks corresponding to three main job task categories: perception and manipulation 

tasks (i.e., recognizing, configurating and manipulating objects), creative intelligence tasks (i.e., 

finding non-routine solutions to non-routine problems), and social intelligence tasks (i.e., 

interacting with humans in a social way). They argued that jobs that contain a large degree of 

tasks in these three categories will not be easily automated in the near future – taken to be 10 

to 20 years – but other jobs will be. They then asked a panel of experts (in machine learning) 

to assess a set of 70 job descriptions in terms of the potential to be automated over the coming 

decades, with jobs being classified as either automatable or not automatable. Using this 

information, alongside information on the mix of knowledge, skills and abilities that the jobs 

require (i.e., based on the identified technological bottlenecks), Frey and Osborne predicted 

the probability of a job being automatable or not. They classified jobs with a 70 percent or more 

probability of being automated as jobs at a high risk of automation. Applying these estimates 

to data on the structure of employment (in their case, for the U.S.), it is then possible to obtain 

an estimate of the actual distribution of automation for workers – for example, the share of 

workers at a high risk of automation. Frey and Osborne (2017) estimated the probability of 

computerization of 702 detailed occupations in the U.S. and concluded that about 47 percent 

of total U.S. employment is at risk. 

This type of analysis and methodology has been extended by, among others, Nedelkoska 

and Quintini (2018), who used a broader database covering the entire OECD area and also 

estimated the risk of automation at the level of individuals rather than jobs. They found a 

smaller share of employment to be in the high-risk group than did Frey and Osborne (2017) 

but still a median risk of automation of 48 percent. For the OECD as a whole, they found that 

16.6 percent of jobs are at a high risk of automation (i.e., greater than a 70 percent chance) and 

30.2 percent of jobs had a significant risk of automation (i.e., between 50 percent and 70 

percent). The World Bank (2016) applied the methodology to data for a set of around 40 

countries, including developing and transition countries. Results indicate that the risk of 

automation is higher than that found for developing countries by Frey and Osborne (2017) and 

for developed countries by Nedelkoska and Quintini (2018). Estimates of the share of 

employment that is susceptible to automation range from around 55 percent in Uzbekistan to 

more than 80 percent in Ethiopia. The World Bank (2016) study presents a second set of 

automation risk estimates to account for the fact that technology takes a certain time to diffuse, 

generally taking longer in poorer countries. This is because of lower technological capability 

 
3 Frey and Osborne (2013) is an earlier version of Frey and Osborne (2017). 
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and because wages tend to be significantly lower, making technologies initially less 

competitive. Given these diffusion lags, the risk of jobs being automated in some countries is 

likely to be delayed, meaning that such employment would not necessarily disappear in the 

next couple of decades. The World Bank (2016) uses information on diffusion lags to adjust the 

automation risk estimates. When adjusting for these technological lags, the share of 

employment at high risk of automation drops significantly. In the case of Uzbekistan, for 

example, the risk of automation drops to around 35 percent, with the highest rate in Argentina 

at around 65 percent. 

However, the methodology used in these studies has been shown to produce biased 

estimates of the employment share at risk from automation. An OECD study by Arntz et al. 

(2016) points out that Frey and Osborne (2013) assumed that automation affects an entire 

occupation, rather than specific tasks within an occupation. Moreover, there may be economic, 

legal and ethical reasons why robots do not replace workers, even where this is technically 

feasible. Arntz et al. (2016) recalculated the share of jobs at risk for 21 OECD countries and 

found that their corresponding figure is only 9 percent. Furthermore, it should be noted that 

none of these results necessarily imply that the use of robots leads to a fall in aggregate 

employment. They find that other effects of non-robotic IT investment either increase 

employment or are broadly neutral. 

Atkinson and Wu (2017, p. 22) describe Frey and Osborne’s results as “just plain wrong” 

and add, “The only problem is that their methodology produces results that make little sense, 

as when they predict that technologies such as robots will eliminate the jobs of fashion models, 

manicurists, carpet installers, and barbers”. When Atkinson and Wu use corrected data and a 

very “generous assumption of how tech could eliminate jobs”, they find that just about 10 

percent of jobs were at risk of automation, a figure very close to that of Arntz et al. (2016).  

Atkinson and Wu (2017) consider the impact of technological change and innovation in 

the U.S. over the period from 1850 to 2015. They argue that the erroneous argument that 

robotization and current developments in new technology will lead to increasing technological 

unemployment suffers from being ahistorical. They find that, in all decades over the last 165 

years, innovations directly reduced the number of jobs in particular sectors. But, inevitably, the 

second-order effects due to the growth of demand offset these losses. The level of occupational 

churn in the last 20 years, for example, is less than 50 percent that found in previous decades. 

In fact, Atkinson and Wu (2017) consider that the problem in the U.S. today is not too much 

churn, but too little, reflecting the historically low rate of productivity growth.  

Indeed, Robert Solow (1987) famously wrote that “you can see the computer age 

everywhere but in the statistics”, which is equally true today. Atkinson and Wu (2017) provide 

historical evidence that the view currently expressed, that the pace of technical change is 

accelerating to such an extent that it will lead to technological unemployment, is just not 

supported by the facts. As we have noted above, technology creates new jobs as new industries 

arise, just as it destroys jobs that produce goods for which demand falls. It can also destroy jobs 

in existing industries as the rate of automation outstrips the growth of demand for these goods. 

Atkinson and Wu (2017) discuss a number of historical case studies of this phenomenon. The 

pessimistic view of the likely increase in technological unemployment merely confuses this 

with “structural unemployment”. While the latter can have severe consequences in the short 

run for jobs, especially in local communities, it is an inevitable consequence of economic 

growth.  
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A particular influential study is that of Acemoglu and Restrepo (2017, 2020) with, for 

example, the Washington Post (Guo, 2017) and the New York Times (Miller, 2017) drawing 

apocalyptic conclusions from the study for U.S. jobs.4 The approach Acemoglu and Restrepo 

(2020) adopted was based on the fact that local labor markets (consisting of 722 commuting 

zones or CZs) in the U.S. have different exposures to industrial robots. They compare 

employment and wage changes in the CZs with a large share of employment in industries with 

a high usage of robots to those CZs with a low share of employment in high-robot-use 

industries. They then use these results over the period 1990-2007, together with a number of 

assumptions, to generate estimates of the effect of industrial robots at the national level. While 

these results were interpreted by the New York Times and other media outlets as “large”, Mishel 

and Bivens (2017) are sceptical of this interpretation. The loss according to Acemoglu and 

Restrepo (2020) is around 45,000 jobs per year over the 17-year period. The effect of the 

increase in import penetration by China was about two and a half times as great as this. Mishel 

and Bivens’s (2017) own estimates are of a similar magnitude. Moreover, the decline in the 

employment-to-population ratio “stemming from macroeconomic conditions have utterly 

swamped any effect of robotic displacement” (Mishel and Bivens, 2017, p. 7). Furthermore, the 

growth of labor productivity has declined over the periods 2002-2007 and 2007-2016, along 

with the growth of the capital stock and the growth of capital investment in both hardware and 

software (Mishel and Bivens, 2017, figure A, p. 10). They argue, for example, that greater 

income inequality observed over the last three decades or so has little or nothing to do with 

increased automation or skill-biased technical change. It is due to institutional changes, 

especially in worker power and the rapid increase in the income share of the top one percent 

(Bivens and Mishel, 2013).  
 
 

2. The studies of Autor and Salomons (2017, 2018) 

 

In two recent papers, David Autor and Anna Salomons (2017, 2018) approach the 

technology-employment relationship by posing a different question and using a different 

methodology. They try to resolve the issue by testing econometrically whether technical 

progress leads to lower employment growth. Using aggregate and sectoral data for the 

advanced economies, AS (2017) statistically tests the hypothesis that a faster rate of technical 

change (proxied by the growth of labor productivity) reduces employment growth. They 

regressed employment growth on labor productivity growth, plus some controls. Overall, they 

rejected the null (Luddite) hypothesis and provided what, at first sight, is compelling evidence 

that technical progress at the aggregate level of the economy is employment-augmenting. 

AS (2018) is a more detailed study than AS (2017), in that the authors used total factor 

productivity (TFP) growth (and also patent counts and citations) as their measure of the rate 

of technical progress. Likewise, AS (2018) considered several outcome, or dependent, 

variables besides employment growth, namely the growth of hours worked, output, the wage 

bill, and the labor share. Acknowledging that productivity growth may or may not be a good 

proxy for the rate of technical progress, the authors also used patent data as a proxy for 

technical progress.  

 
4 An earlier version of this paper was published in 2017 as NBER Working Paper, n. 23285. 



J. Felipe, D.F. Bajaro, G. Estrada, J. McCombie 373 

PSL Quarterly Review 

The AS (2018) test is to run regressions of the different outcome variables (employment, 

hours, wage bill, nominal value added, real value added, and labor share) on total factor 

productivity (TFP) growth (or, alternatively, patents). The authors concluded that automation 

displaces employment and reduces the labor share in own industries. They also find that own-

industry labor share losses are not compensated by increases in other industries. Finally, in 

the case of employment, the losses are reversed by the indirect gains in client industries and 

by induced increases in aggregate demand. If correct, the AS (2018) work and conclusions have 

important implications for this age-old debate. Particularly important is the last point, namely 

that, overall, the rate of technology does not have a negative impact on employment growth. 

We next provide a critical evaluation of the models estimated by AS (2017, 2018) and of 

the inferences made based on their results. While the authors make a commendable attempt 

at shedding light on the employment-technical-progress debate using contemporary data (and 

certainly the two papers contain useful information), in our view, there are fundamental 

problems with their econometric procedures and hence with the conclusions drawn. Although 

AS (2018) seems to contain the more comprehensive analysis, this work builds on AS (2017), 

and we begin by considering this paper. Moreover, as we argue below, it does not seem that AS 

(2018) provides a more compelling analysis.  

 
 

2.1. The employment identity and the “catch 22” problem 

 

AS’s (2017) approach is to test whether or not a faster growth of productivity reduces the 

growth of employment. Consequently, they estimate the following basic specification: 

�̂�𝑐𝑡 = 𝛾0 + 𝛾1�̂�𝑐𝑡 + [∑ 𝛾1(𝑡−𝑘)�̂�𝑐(𝑡−𝑘) + 𝜃𝑐
𝑚
𝑘=1 ] + 𝜀𝑐𝑡  (1) 

where �̂�𝑐𝑡 is the growth rate of aggregate employment in country 𝑐 at time 𝑡, �̂�𝑐𝑡 is the 

growth rate of labor productivity, 𝑘 is the time lag of labor productivity growth, 𝜃𝑐 is a set of 

country fixed effects, and  is the error term. Here and in the rest of the paper, growth rates are 

denoted by a circumflex over the corresponding variable. 

The parameter of interest is 𝛾1 in the static regressions (i.e., with no lagged variables 
included), and [𝛾1

∗ = 𝛾1 + ∑ 𝛾1 𝑡−𝑘
𝑚
𝑘=1 ] in the dynamic regressions. Note that this is a reduced-

form regression that is not derived from a specific model. AS (2017) interprets the parameters 

of interest as elasticities. 

The regressions are estimated using either the ordinary least squares (OLS) or the 

instrumental variables (IV) method, though the latter is dismissed by the authors (see below). 

Algebraically, the null hypothesis is 𝐻0: 𝛾1 < 0 or, more generally, 𝐻𝑜: 𝛾1
∗ < 0 (i.e., the Luddite 

argument is that the impact of the rate of technical progress on employment growth is 

negative), with the alternative 𝐻1: 𝛾1
∗ ≥ 0. In most cases, the authors find (at the aggregate 

level) that 𝛾1 is negative, while 𝛾∗ is positive. This last result is what leads the authors to 

conclude that technical progress is employment-generating.  

As noted above, the purpose of this paper is to evaluate the methodology used by AS 

(2017) to estimate the impact of technical progress on employment growth. It is problematical 

that their estimates are the true elasticities. The reason is that it is not clear what is the 

rationale, or theory, behind equation (1). We elaborate on this point below. As a consequence, 

it can be seen instead that, in reality, the estimated parameters of interest are just the 
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coefficients of a quasi-accounting identity. As such, they do not convey any relevant information 

and AS (2017) cannot provide an answer to the question they pose. 

To facilitate the discussion, we rerun the key regressions of AS (2017). Our results are 

qualitatively the same. 

To obtain a broad overview of the problem, consider first the growth rates of aggregate 

employment and productivity in Australia over the period 1970–80 (see AS [2017], table 2). 

The exact country and time period are immaterial, as we are using the data simply to illustrate 

a general point. Employment growth was 1.44 percent per annum and productivity growth was 

1.00 percent per annum. Compare this with Germany, where the comparable figures are 0.49 

percent and 2.22 percent per annum, respectively. Thus, Germany, with a higher rate of 

productivity growth than Australia, had lower employment growth. 

Now compare these figures with South Korea’s growth rates over the same period. 

Employment growth was 6.30 percent per annum, much faster than the rate of Australia or 

Germany, but productivity growth was 4.11 percent, also much faster. South Korea’s statistics 

may seem to suggest that a faster rate of technical progress increases the rate of employment 

growth, in contradistinction to the cases of Australia or Germany. The reason is, of course, that 

output growth was also much faster in South Korea. As, by definition, output growth equals 

productivity growth plus employment growth, it follows that the growth rate of output was 

2.44 in Australia, 2.71 in Germany, and 10.41 in South Korea. Therefore, running a regression 

of employment growth on productivity growth and excluding output growth misses the latter’s 

“effect.” For convenience, the growth rates are reported in table 1. 
 
 

Table 1 – Growth rates (%) of Australia, Germany and South Korea, 1970-1980 
 

 Employment Productivity Output 

Australia 1.44 1.00 2.44 

Germany 0.49 2.22 2.44 

South Korea 6.30 4.11 10.41 

 

 

Given the neoclassical flavor of AS’s work, this point (i.e., the role of output growth 

determining employment growth) may also be seen by considering a neoclassical aggregate 

production function of the form 𝑌𝑡 = 𝐴𝑡𝐹(𝐾𝑡 , 𝐿𝑡). It should be noted that there are numerous 

objections that have been raised to the aggregate production function, including 

insurmountable aggregation problems and the fact that it is nothing more than an isomorphic 

transformation of a national income accounting identity (Sylos Labini, 1995; Felipe and 

McCombie, 2013). The literature discussing the unsurmountable aggregation problems within 

the neoclassical framework goes back to the 1940s and so, consequently, it should be well 

known (e.g., Fisher, 1993). See Felipe and Fisher (2003) and Baquee and Farhi (2019) for 

surveys of the aggregation literature.5  

 
5 However, the issue is more important than what we may term the neoclassical aggregation problems. One only 
needs to consider the wide variety of production processes and different types of firms and institutions with varying 
degrees of x-efficiency, to question whether they can be adequately represented by a few aggregate variables. Does 
it make any economic sense to arithmetically sum the inputs and outputs of, say, Amazon, the production of aircraft 
at Boeing, the output of textile firms, the output of government services, and the finance sector, to give an aggregate 
production function with the usual neoclassical properties? Furthermore, how are we to view the aggregate 
elasticity of substitution, which Fisher et al. (1977) persuasively argued in their simulation study is “non-existent”? 
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We stress that the only reason we use the Cobb-Douglas example is that it is surprising 

that any consideration of the growth of employment and productivity within the neoclassical 

framework, could ignore the growth of capital. One would be very surprised if any neoclassical 

economist estimated, say, a Cobb-Doulas, CES or translog production function, omitting the 

capital stock. Hence, we merely use this to illustrate the problems with AS’s argument within a 

neoclassical production function. AS (2018) use the growth of total factor productivity that, as 

a measure of the rate of technical progress, depends on the existence of an aggregate 

production function (Solow, 1957). We will return to this point below (section 3.1) and show 

that, in fact, one does not need a production function. 

For expositional ease, let us further assume a Cobb-Douglas production function with 
constant returns to scale (i.e., 𝑌𝑡 = 𝐴0𝑒𝑡𝐾𝑡

𝛼𝐿𝑡
1−𝛼), where 𝐴0 is the level of TFP, 𝜆 is the 

(constant) rate of TFP growth, 𝐾 is the capital input, 𝐿 is the labor input, and 𝛼 and (1 − 𝛼) are 

the output elasticities of capital and labor, respectively. Expressing the Cobb-Douglas in growth 

rates and rearranging the terms gives us: 

�̂�𝑡 =  −
1

(1−𝛼)
𝜆 +

1

(1−𝛼)
�̂�𝑡 −

𝛼

(1−𝛼)
𝐾𝑡  (2) 

where a circumflex on L, P, and K again denotes a rate of growth. 

 Using the Kaldorian stylized fact that the growth rates of output and capital are roughly 

equal gives us: 

�̂�𝑡 =  −
1

(1−𝛼)
𝜆 + �̂�𝑡  (3) 

From this perspective, it can be seen that employment growth is determined by both the 

rate of technical progress and the growth of output, as seen in table 1. 

From equation (3), as �̂�𝑡 ≡ �̂�𝑡 − �̂�𝑡 (i.e., employment growth equals the growth of output 

minus the growth of labor productivity), it can be seen that in this framework the rate of 

technical change (𝜆) equals (1 − 𝛼)�̂�𝑡 . 

Let us now discuss AS’s (2017) analysis in the light of these observations. For expositional 

purposes, let us start with the static regression: 

�̂�𝑡 = 𝛾0 + 𝛾1 �̂�𝑡 + 𝑢𝑡 (4) 

 

 
Table 2 – Employment growth and labor productivity growth: equation (4) 

 
 Coefficient 

R2 “Bias”  Labor productivity 

growth (𝛾𝟏 ) 

No fixed effects -0.014 0.001 0.986 

Fixed effects -0.038** 0.145 0.962 
 

Notes: estimates using data from World Development Indicators and Penn World Tables version 9.1. The estimates 
are the results of pooled regressions with data for 19 advanced countries: Australia, Austria, Belgium, Denmark, 
Finland, France, Germany, Greece, Ireland, Italy, Japan, Luxembourg, Netherlands, Portugal, Republic of Korea, 
Spain, Sweden, United Kingdom, and United States. 
** denotes that the coefficient is statistically significant at the 5 percent level. 
 

Estimation results using pooled data (without and with country fixed effects) are shown 

in the first column of table 2. We use the same sample of 19 industrialized countries as in AS 
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(2017). These results are qualitatively similar to those of AS (2017). Taken at face value, the 

results in table 2 indicate that there is a small negative relationship between employment 

growth and labor productivity growth (i.e., the rate of technical progress). 

As we argued above, most models, including the neoclassical, would include the growth of 

output in the regression as a proxy of the growth of demand. As we noted in our brief literature 

review, the question is often posed as to the extent to which a lower rate of employment growth 

due to technical change is offset by the increased growth of demand. What would happen, 

however, if we add output growth to equation (4)? This now becomes: 

�̂�𝑡 = 𝛾0 + 𝛾1�̂�𝑡 + 𝛾2�̂�𝑡 + 𝑢𝑡   (5) 

where �̂�𝑡 is again the growth rate of labor productivity, �̂�𝑡 is the growth rate of output, and 

𝑢𝑡 is the error term. The problem with this equation is that it is just the tautological definition 

of employment growth, where the level of employment is given by: 

𝐿𝑡 ≡
𝐿𝑡

𝑌𝑡
𝑌𝑡 ≡

1

𝑃𝑡
𝑌𝑡   (6) 

Equation (6) expressed in growth rates is: 

�̂�𝑡 ≡ −�̂�𝑡 + �̂�𝑡    (7) 

The argument about the need to include output growth in the regression could, 

misleadingly, give the impression that estimation of equation (5) has a behavioral 

interpretation. This is that a greater rate of technical progress causes the growth of 

employment to fall, and a faster growth of output (demand) causes it to increase. The problem 

is that by virtue of equation (7), regression (5) must always yield coefficients 𝛾1 = −1, 𝛾2 = 1 

and a perfect statistical fit (since there is no actual error), because it is a tautology, or 

definitionally true. 

No matter what method is used (such as OLS, IV) to estimate regression (5) and what 

dataset is used (i.e., pooled data, without or with, fixed effects or individual-country data), the 

results must be the same in all cases. Note that the coefficients of the country dummies in a 

regression including fixed-effects are equal to zero, because they are irrelevant variables. 

We note that while identities have a role in the construction of economic models that can 

then be empirically tested, there is no point in statistically estimating an identity. This applies 

equally to any mathematical transformation of the identity (e.g., growth rates). It is important 

to make it clear that a relationship between two variables in an identity can provide a testable 

hypothesis, but in the case of Autor and Salomons, the implicit full model is effectively an 

identity. 

It follows that equation (4) can be interpreted as equation (5) with the growth rate of GDP 

(�̂�𝑡) “omitted.” Consequently, equation (4) may be referred to as a quasi-accounting identity. 

The implications of this are, first, that even in case it was argued that the estimation of (4) 

yields an elasticity, it is problematical as to whether or not this is true. It is just the result of the 

fact that employment and productivity growth are related through the identity, which ensures 

the negative relationship. Secondly, while there could seem to be no restrictions on the value 

that 𝛾1  in regression (4) can take, the reality is that we know exactly the value that this 

coefficient would take in regression (5), namely -1. Therefore, equation (4), in fact, suffers from 

the standard econometric problem of omitted-variable bias. There is, however, an important 

difference. In this case, we know exactly what the omitted variable is: output growth. Hence, 
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this is not a statistical problem that calls for the IV (or any other) estimation method. The 

expected value of 𝛾1  in equation (4) can be calculated as: 

𝛦(𝛾1 ) = 𝛾1 + 𝛾2 [
𝑐𝑜𝑣(�̂�𝑡,�̂�𝑡)

𝑣𝑎𝑟(�̂�𝑡)
 ] (8) 

where 𝛾1 = −1 , 𝛾2 = 1, and the “bias” is 
𝑐𝑜𝑣(�̂�𝑡,�̂�𝑡)

𝑣𝑎𝑟(�̂�𝑡)
 . The value of the latter is shown in the last 

column of table 2. 

We have stressed above the terms “omitted” and “bias.” This merits further explanation. 

First, it is not correct that any regression can be transformed into an identity or tautology by 

adding (as a regressor) the difference between the left- and the right-hand-side variables. It 

would certainly be incorrect to argue that in, for example, the standard export demand 

function, where the log of exports (𝑙𝑛𝑋) typically depends on relative prices (𝑙𝑛𝑅𝐸𝐿𝑃) and 

foreign income (𝑙𝑛𝑌𝑤), the two coefficients of the right-hand-side variables suffer from 

omitted-variable bias because the regression does not include the variable 𝑙𝑛𝑍, where 𝑙𝑛𝑍 =
(𝑙𝑛𝑋 − 𝑙𝑛𝑅𝐸𝐿𝑃 − 𝑙𝑛𝑌𝑤). This variable is economically meaningless. In the case under 

discussion here, however, the omitted variable is clearly output growth. 

Secondly, AS (2017) indicates that the regressions yield conditional correlations and 

interprets them as elasticities. However, because in reality equation (4) is a reduced form, it is 

very difficult to justify that the estimated coefficient is the true elasticity. From an economic 

point of view, as we have seen, output growth should also be a determinant of employment 

growth.  

The problem is that including output growth in equation (4) turns the regression into the 

identity (or a tautology) given by equation (5). This poses a “catch-22” problem in that the 

better the statistical fit, the closer the results approximate an identity. It also means that 𝛾1  is 

a biased estimate of the true coefficient of the rate of technical progress, i.e., labor productivity 

growth. Therefore, equation (5) tells us that any additional variable in regression (4) increases 

the goodness of fit and its coefficient tends to 1 if it is correlated with output growth. A 

corollary is that the coefficient of labor productivity growth tends to −1. The higher the 

correlation between output growth and the added variable, the closer this regression 

approximates identity (5). 
 
 

2.2. Additional variables: what is their role? 

 

 AS (2017) tried to improve the explanatory power of their regressions. In particular, they 

were concerned with the sign of labor productivity growth in equation (4) (i.e., is it truly 

negative?). To do this, they used lagged values of labor productivity growth, and population 

growth, as additional explanatory variables in equation (4). They also used the growth rate of 

the employment-to-population ratio as their dependent variable. We will show that all these 

variants of equation (4) can also be explained in terms of the definitional identity equation (5) 

and the omission of a variable in it. 

What would happen if we add lagged values of labor productivity growth to regression 

(4), effectively estimating equation (1)? It should be self-evident that these variables will have 

a positive sign in the regression to the extent that they are positively correlated with GDP 
growth (�̂�𝑡). They can be regarded, in fact, as proxying it. Indeed, the correlations between (�̂�𝑡) 

and the first three lags of labor productivity growth are 0.460, 0.327, and 0.368, respectively. 
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Since these correlations are not perfect (and they decline with time), the coefficients are less 

than one and only the first lag is statistically significant. The results are shown in table 3. To 

make the point clear: the inclusion into regression (4) of any variable that is perfectly 

correlated with GDP growth would have a coefficient of one and would reproduce expression 

(5).6 
 
 

Table 3 – Regression of employment growth on labor productivity growth 
 (current and lagged values): equation (1) 

 

 Coefficient R2 

 
Labor 

productivity 
growth 

Labor 
productivity 
growth, lag 

1 

Labor 
productivity 
growth, lag 

2 

Labor 
productivity 
growth, lag 

3 

 

No fixed 
effects 

-0.073*** 0.126*** - - 0.030 

Fixed effects -0.089*** 0.115*** - - 0.170 

No fixed 
effects 

-0.075*** 0.121*** 0.031 - 0.035 

Fixed effects -0.091*** 0.112*** 0.024 - 0.171 

No fixed 
effects 

-0.075*** 0.123*** 0.032 0.012 0.037 

Fixed effects -0.089*** 0.114*** 0.024 0.012 0.170 
 

Notes: estimates are based on data from World Development Indicators and Penn World Tables version 9.1. The correlation 
between GDP growth and: (i) labor productivity growth lagged 1 period is 0.460; (ii) labor productivity growth lagged 2 periods 
is 0.327; and (iii) labor productivity growth lagged 3 periods is 0.368. 
*** denotes that the coefficient is significant at the 1 percent level. 
 

 
 

AS (2017) also added population growth (�̂�𝑡) to equation (1) and estimated: 

�̂�𝑡 = 𝛾
0

+ 𝛾
1

�̂�𝑡 + 𝛾
3

�̂�𝑡 + 𝑢𝑡  (9) 

Comparing equation (9) with the identity (5) indicates that the former will yield a close 

statistical result if population growth is a good proxy for output growth. In our dataset, both 

variables are positively correlated with a value of 0.31. 

The problem can also be stated as follows:  

𝐿𝑡 ≡
𝐿𝑡

𝑌𝑡
∙

𝑌𝑡

𝑁𝑡
∙ 𝑁𝑡   (10) 

where 𝑁𝑡  denotes population. In growth rates, equation (10) is: 

�̂�𝑡 ≡ −�̂�𝑡 + �̂�𝑡
∗ + �̂�𝑡  (11) 

where �̂�𝑡
∗ is the growth rate of income per capita. As above, estimation of this regression as: 

 
6 Naturally, if the added variable is not perfectly correlated with output growth, it will not have a coefficient of one. 
This does not affect the essence of the argument. 
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�̂�𝑡 = 𝛾
0

+ 𝛾
1

�̂�𝑡 + 𝛾
3

�̂�𝑡 + 𝛾
4

�̂�𝑡
∗ + 𝑢𝑡  (12) 

would yield 𝛾1 = −1, 𝛾3 = 1, 𝛾4 = 1. It should be emphasized that these coefficients 

(unity) and signs are predetermined by construction (i.e., from the identity). 

However, AS (2017) estimated equation (9). In this case, the omitted variable is the growth 

rate of income per capita (�̂�𝑡
∗). The effect is, again, to introduce a bias in the coefficients of the 

included variables. The expected value of 𝛾1  is: 

𝛦(𝛾1 ) = 𝛾1 + 𝛾4 [
𝑐𝑜𝑣(�̂�𝑡,�̂�𝑡

∗)𝑣𝑎𝑟(�̂�𝑡)−𝑐𝑜𝑣(�̂�𝑡,�̂�𝑡
∗)𝑐𝑜𝑣(�̂�𝑡,�̂�𝑡)

𝑣𝑎𝑟(�̂�𝑡)𝑣𝑎𝑟(�̂�𝑡)−[𝑐𝑜𝑣(�̂�𝑡,�̂�𝑡)]2  ] (13) 

with 𝛾1 = −1 and 𝛾4 = 1. The estimation results of equation (9) and the bias in equation 

(13) are reported in table 4. AS (2017, table 3a, column 6) found a coefficient of population 

growth of 1.013, which the authors consider “noteworthy” (AS 2017, p. 58). Their 

interpretation is that employment rises equiproportionally with population. In our case, we 

obtain a coefficient of 1.145 (with no fixed effects) and 0.794 (with fixed effects), and neither 

is statistically different from one. Clearly, the coefficient of unity is the result of the nature of 

the exercise, that is, results are driven by identity (11). The results are not perfect because 

equation (9) omits income per capita growth as a regressor. Nevertheless, the coefficient of 

population growth is close to what the identity predicts. It should be noted that the growth of 

labor productivity (the growth of output per worker) very closely correlates with the growth 

of income per capita. Consequently, omitting the latter from equation (11) will cause the 

coefficient of labor productivity to be subject to a significant downward bias, which is precisely 

what happens (see table 4). 

 

 
Table 4 – Employment growth, productivity growth, and population growth: equation (9) 

 

 Coefficient R2 “Bias” (𝛾𝟏 ) 

 Labor productivity 

growth (𝛾𝟏 ) 

Population growth 

(𝛾𝟑 ) 
  

No fixed effects -0.045** 1.145*** 0.140 0.955 

Fixed effects -0.054*** 0.794*** 0.184 0.946 

 
Notes: estimates use data from World Development Indicators and Penn World Tables version 9.1. 
*** denotes that the coefficient is significant at the 1 percent level and ** denotes significance at the 5 percent level. 

 

 

The effect of adding lagged values of labor productivity growth in regression (9) is to proxy 

the growth rate of income per capita. To the extent that this variable and the lags are positively 

correlated (which they are), these variables will have a positive sign in the regression. This 

extended regression (not reported here, but available upon request) also yields a coefficient of 

population growth in the neighborhood of one, with the coefficient of labor productivity 

growth statistically significant (and statistically insignificant further lags).  
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2.3. Using the growth rate of the employment-to-population ratio as the dependent variable 

 

To corroborate their results, the authors of AS (2017) substituted the growth rate of 

employment on the left-hand side by the growth rate of the employment-to-population ratio 

(
𝐿𝑡

𝑁𝑡
). Once again, the tautological nature of the exercise is clear. One can express the ratio of 

employment to population definitionally as follows: 

𝐸𝑡 ≡
𝐿𝑡

𝑁𝑡
≡

𝐿𝑡

𝑌𝑡
∙

𝑌𝑡

𝑁𝑡
 (14) 

where 𝐸𝑡 =
𝐿𝑡

𝑁𝑡
 is the employment-to-population ratio. 

In growth rates, equation (14) is: 

�̂�𝑡 ≡ −�̂�𝑡 + �̂�𝑡
∗ (15) 

The estimation of the regression: 

�̂�𝑡 = 𝛾0 + 𝛾5�̂�𝑡 + 𝛾6�̂�𝑡
∗ + 𝑢𝑡  (16) 

would yield the estimates of 𝛾5 = −1 and 𝛾6 = 1. 
 

The estimated regression by AS (2017) in this case is:  

�̂�𝑡 = 𝛾0 + 𝛾5 �̂�𝑡 + 𝑢𝑡  (17) 

and so it appears that AS (2017) “omitted” the growth rate of income per capita (�̂�𝑡
∗), which 

would yield a biased estimate of the coefficient of labor productivity growth. Estimation results 

for equation (17) and the computed bias are shown in table 5. Again, the lagged values of labor 

productivity growth proxy the growth rate of per capita income (results available upon 

request). 
 
 

Table 5 – Employment-to-population growth and productivity growth: equation (17) 
 

 Coefficient 

R2 “Bias”  Productivity growth 

(𝛾𝟓 ) 

No fixed effects -0.041** 0.005 0.959 

Fixed effects -0.058 0.054 0.942 

 
Notes: estimates use data from World Development Indicators and Penn World Tables version 9.1. 
** denotes that the coefficient is significant at the 5 percent level. 
 

 
 

2.4. Industry-level evidence and the effect of other sectors’ productivity growth 
 

To assess the effect of productivity growth at the industry level, AS (2017) estimated: 

�̂�𝑖𝑐𝑡 = 𝛾0 + 𝛾1�̂�𝑖𝑐𝑡[+𝛿𝑡 + 𝜃𝑐 + 𝜏𝑖] + 𝜀𝑖𝑐𝑡  (18) 

where i denotes the industry, c the country, and t once again is a time variable; and 𝛿𝑡 , 𝜃𝑐, and 

𝜏𝑖 are a set of year, country, and industry fixed effects, respectively. 
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The problem is that this regression suffers from the same concerns discussed above. 

Theoretically, output growth needs to be included, but this will again result in estimating an 

identity. The coefficient of labor productivity growth takes a negative sign, but this is implicit 

in the identity (the results of estimating regression (18) are available upon request). AS (2017) 

also added population growth to this specification. The coefficient of this variable in our 

regression is 1.099, statistically not different from 1, for the reasons discussed above. 

Finally, to assess the effect of other sectors’ productivity growth, AS (2017) estimated: 

�̂�𝑖𝑐𝑡 = 𝛾0 + 𝛾1�̂�𝑖𝑐𝑡 + ∑ 𝛾7(𝑡−𝑘)�̃�𝑐(𝑡−𝑘),𝑗≠𝑖
𝑚
𝑘=0 [+𝛿𝑡 + 𝜃𝑐 + 𝜏𝑖] + 𝜀𝑖𝑐𝑡  (19) 

where �̂�𝑖𝑐𝑡 is the growth rate of employment in own-industry i, country c, at time t; �̂�𝑖𝑐𝑡 is 
the growth rate of labor productivity in own-industry; �̃�𝑐(𝑡−𝑘),𝑗≠𝑖 is the average growth rate of 

labor productivity in all other industries (i.e., except own-industry i), country c, at time t 

(including current and lagged values); and 𝛿𝑡 , 𝜃c, and 𝜏i are a set of year, country, and industry 

fixed effects, respectively. 

Results (also available upon request) indicate that own-labor productivity growth has a 

negative sign, and that most of the growth rates of other sectors’ labor productivity growth 

carry a positive sign (and positive in the aggregate). AS (2017) argues that this is due to the 

effect of spillovers. An alternative, and more plausible, view is that this is because the growth 

rates of other sectors’ labor productivity growth are correlated with the growth rate of GDP. 

Finally, the coefficient of population growth is again statistically not different from 1. 

 

 

3. Autor and Salomons (2018): The use of total factor productivity (TFP), and its 

problems, as an explanatory variable 

 

As noted above, AS (2018) offers a more detailed analysis of the relationship between 

technical progress and employment growth, although this does not avoid the criticisms 

outlined above. In this paper, the authors focus on whether or not technological progress is 

employment-displacing and the direct and indirect factors behind this. Unlike AS (2017), here 

they used the neoclassical concept of total factor productivity growth, instead of labor 

productivity growth, as a measure of the rate of technical progress (with a number of caveats 

acknowledged as to whether this is the correct measure or indicator). They also used several 

outcome, or dependent, variables besides employment growth. These are: the growth of hours 

worked, the growth of the wage bill, the growth of nominal and real output, and the shares of 

labor. Finally, their econometric analysis is more sophisticated than that of AS (2017) in two 

respects. First, they use other countries’ TFP growth rates in the same industry in lieu of own-

country-industry TFP growth; and, secondly, a time lag is introduced to account for the effects 

of TFP growth impacts on the outcome variables. We show below that these two refinements 

do not solve the problems we highlight. 

The question in this case is that, as we elaborate below, TFP growth is not an ‘independent’ 

or theory-neutral measure of the rate of technical progress. By independent we mean that the 

value of the rate of technical change is not dependent upon a particular economic theory and 

the assumptions underlying that theory. TFP growth is a theory-dependent concept, unlike, 

say, the growth of employment or productivity.7 
 

7 Productivity growth is, of course, calculated as the difference between the growth of output and the growth of 
employment, but this is the result of a definition, not a theory. 
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Focusing on the authors’ initial estimates, AS (2018, table 5) finds: a negative relationship 

between TFP growth and the growth rates of employment, hours, the wage bill, nominal output, 

and the labor share; and a positive relationship between TFP growth and real output. The main 

finding for employment growth is that there is an own-industry negative impact of increasing 

TFP growth, which is offset by the indirect effects arising from the input-output linkages, as 

well as from the overall positive impact of increasing TFP on aggregate value-added and final 

demand. 

We find it again somewhat surprising that AS (2018) does not refer explicitly to a 

neoclassical aggregate production function in its analysis, although this is implicit in the use of 

the primal measure of TFP growth. As in AS (2017), the entire empirical analysis is a series of 

reduced-form equations. Hence, the results are conditional correlations at best. Also, the 

measure of TFP growth (taken from the KLEMS database; see O’Mahony and Timmer, 2009) 

seems to assume Hicks-neutral technical progress (AS 2018, footnote 15). However, if technical 

progress is, for example, labor-saving, and the elasticity of substitution is different from one, 

the standard TFP growth calculations are incorrect insofar as, under these circumstances, 

technical progress affects the factor shares and this effect has to be eliminated.8 Finally, if AS 

(2018) had started from an explicit production function, then it would have had to account for 

the effects of the growth of capital and output, the other two variables in the production 

function.  

The explicit consideration of a production function takes us to a more fundamental 

problem with AS’s (2018) analysis, namely the use of TFP growth as a measure of technical 

progress. As we shall see, the problem with the use of TFP growth is that it is, in fact, not an 

opaque measure of technical progress (as AS, 2018, refers to it). This is because, even though 

TFP growth is most often calculated as a residual, its interpretation, nevertheless, is 

unambiguous. The problem is that it cannot be considered as a measure of exogenous or 

endogenous technical progress. This has been known for a long time, but it has been ignored 

by the literature (Felipe and McCombie, 2013, 2020).9 What TFP growth actually measures and 

captures is key for understanding the problems with the AS (2018) analysis. The reason for 

focusing on TFP growth is that we show it is not an independent measure of technical progress. 

Hence, our point is that the many regressions estimated do not capture what the authors think 

they do. AS (2018) raises questions about the relevance of TFP growth, as do the two 

discussants of the paper, Haltiwanger (2018) (much of his discussion is about TFP) and 

Rogerson (2018). However, their criticisms are very different from those in this paper. Given 

this, we think it is worth explaining our arguments in detail. 

 
8 Nelson (1973) noted that the purpose of growth accounting is to separate the contribution of technological 
progress from that of factor accumulation. In doing this, the factor shares that multiply the growth rates of capital 
and labor should be those that would have occurred if there had been no technical change. However, the factor shares 
actually used in these exercises are the observed ones, taken from the national accounts, which incorporate the effect 
of technical progress. If the latter is labor saving, purging this effect would reduce the capital share. See also 
Ferguson (1968) and Felipe and McCombie (2001). 
9 It is worth noting that the two discussants of AS (2018) – Haltiwanger (2018) and Rogerson (2018) – questioned 
at length the soundness of the AS (2018) exercise and concluded that it had failed to provide compelling evidence 
of the causal effects of technical progress on employment. Haltiwanger and Rogerson offered discussions of different 
TFP-related issues in the context of the AS (2018) results, but neither one ventured to even suggest that TFP growth 
might capture something very different from technical progress. This is more so in the case of Haltiwanger, who 
argued at length about the negative TFP growth rates for many U.S. industries. He referred to issues such as 
mismeasurement error and misallocation problems as possible explanations. 
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Since Solow (1957), the neoclassical approach starts with the assumption that there is a 

well-behaved aggregate production function: 𝑌𝑡 = 𝐴𝑡𝐹(𝐿𝑡, 𝐾𝑡). This assumes, without loss of 

generality, that technical progress is Hicks-neutral. Totally differentiating the production 

function with respect to time, the growth rate of output is given by: 

�̂�𝑡 = 𝑇𝐹�̂�𝑡 + 𝛿𝑡�̂�𝑡 + 𝛽𝑡𝐾𝑡 (20) 

where, as before, a circumflex over the variables denotes the growth rate; 𝛿𝑡 and 
𝛽𝑡 denote the elasticities of output with respect to labor and capital, respectively; and 
𝑇𝐹�̂�𝑡 denotes what is often interpreted as the rate of technological progress (i.e.,  or 
the growth rate of 𝐴𝑡). This is referred to as TFP growth, or the residual, a variable that 

supposedly captures all output growth not due to the rate of growth of the factor inputs. 

Growth accounting derives an estimate of 𝑇𝐹�̂�𝑡 residually as 𝑇𝐹�̂�𝑡 ≡ �̂�𝑡 − 𝛿𝑡�̂�𝑡 − 𝛽𝑡�̂�𝑡, given 

values for the right-hand-side variables.  

The problem, however, is that there are very few reliable estimates of the output 

elasticities from statistical estimations because of the econometric issues that plague the latter. 

To solve this problem, growth accounting exercises assume that: (i) production is subject to 

constant returns to scale, (ii) the objective function of the firms in the perfectly competitive 

economy is to maximize profits, and (iii) labor and capital markets are perfectly competitive 

(wage and profit rates are given by the first-order optimizing conditions, and equal their 

marginal products). Under these circumstances, the factor elasticities equal the shares of labor 

and capital in total output – namely, 𝛿𝑡 = 𝑎𝑡 = (𝑊𝑡/𝑌𝑡) and 𝛽𝑡 = (1 − 𝑎𝑡) = (𝑆𝑡/𝑌𝑡), where 𝑎𝑡 

and (1 − 𝑎𝑡) denote the labor and capital shares in output (𝑊 is the total wage bill and 𝑆 is the 

total surplus), respectively.  

Output growth can be written as: 

�̂�𝑡 = 𝑇𝐹�̂�𝑡 + 𝑎𝑡�̂�𝑡 + (1 − 𝑎𝑡)𝐾𝑡  (21) 

And, consequently, the TFP growth rate is calculated as: 

𝑇𝐹�̂�𝑡 ≡ �̂�𝑡 − 𝑎𝑡�̂�𝑡 − (1 − 𝑎𝑡)𝐾𝑡  (22) 

given that data for all the right-hand-side variables are now readily available (the shares 

of labor and capital in total output can be obtained from the national accounts). The residually 

measured TFP growth in equation (22) is referred to as the primal measure of TFP growth. 

This is probably the most widely used method for calculating the TFP growth rate. Since the 

calculation involves two subtractions, it gives the impression that the resulting figure is some 

sort of a mystery, a residual or measure of our ignorance, which is how TFP growth is often 

referred to. However, even though this is noted, it is, nevertheless, commonly interpreted as 

the rate of technical progress (Solow, 1957). As the derivation above shows, TFP growth is a 

theory-dependent measure. 

From the National Income and Product Accounts (NIPA) we have the accounting identity 

for GDP: 

𝑌𝑡 ≡ 𝑊𝑡 + 𝑆𝑡  (23) 

where 𝑌 is real (i.e., deflated) GDP, or value-added (e.g., dollars measured in base-year prices), 

𝑊 is the real total wage bill (in dollars of a base year), and 𝑆 is the operating surplus (in dollars 

of a base year). It is important to emphasize that identity (23) (note the symbol ≡) is true at 

any level of aggregation, including at the firm level. NIPA statisticians construct the identity by 
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arithmetic summation (aggregation) from individual firm-level data and government 

institutional data. This aggregation is logically consistent, and unrelated to the problem of the 

conditions necessary to aggregate production functions (Felipe and Fisher, 2003). We will 

nevertheless return to this important issue below when we discuss the interpretation of TFP. 

Equation (23) is theory-free (e.g., it does not depend on the zero profits assumption) and it is 

not related to, or derived from, either production or cost theory. 

We now dichotomize the wage bill and operating surplus into the products of a price times 

a quantity as: 

𝑌𝑡 ≡ 𝑤𝑡𝐿𝑡 + 𝑟𝑡𝐾𝑡 (24) 

where 𝑤 is the average real wage rate (in dollars of a base year per worker), 𝐿 is total 

employment (number of workers), 𝑟 is the ex post average profit rate (in dollars of operating 

surplus per dollar of capital stock, a pure number), and 𝐾 is the stock of capital (in practice, 

dollars of a base year, not a physical quantity). 10 Note that, by construction, 𝑊𝑡 = 𝑤𝑡𝐿𝑡 is the 

wage bill and 𝑆𝑡 = 𝑟𝑡𝐾𝑡 is total profits (the gross operating surplus).11 

Now one can simply express the accounting identity (24) in growth rates as:  

�̂�𝑡 ≡ 𝑎𝑡�̂�𝑡 + (1 − 𝑎𝑡)�̂�𝑡 + 𝑎𝑡�̂�𝑡 + (1 − 𝑎𝑡)𝐾𝑡  (25) 

or 

�̂�𝑡 ≡ 𝜆𝑡 + 𝑎𝑡�̂�𝑡 + (1 − 𝑎𝑡)𝐾𝑡  (26) 

 Rearranging the terms yields: 

𝑡 ≡ �̂�𝑡 − 𝑎𝑡�̂�𝑡 − (1 − 𝑎𝑡)𝐾𝑡 ≡ 𝑎𝑡�̂�𝑡 + (1 − 𝑎𝑡)�̂�𝑡 ≡ 𝜆𝑡
𝐷  (27) 

where the superscript 𝐷 is used to refer to the right-hand side of the identity (i.e., the 

weighted average of the growth rates of the wage and profit rates). It will be noted that 

equations (26) and (27) are identical to equations (21) and (22) and, consequently, 𝜆𝑡 ≡ 𝜆𝑡
𝐷 ≡

 𝑇𝐹�̂�𝑡 . This is true by construction. Since (27) is an identity, it poses insurmountable problems 

for the interpretation of (22) as a measure of technical progress. More generally, it poses a 

problem for all empirical work using aggregate production and cost functions and their 

associated concepts, such as TFP (Felipe and McCombie, 2013, 2020). 

The neoclassical tradition acknowledges identity (24) but argues that the aggregate 

production function, together with the usual neoclassical assumptions and Euler’s theorem, 

provides a theory of the income side of the NIPA. This line of reasoning is incorrect.12 Identity 

 
10 We note that it makes no difference whatsoever to our argument writing equations (23) and (24) by splitting the 
surplus into the cost of capital and monopolistic profits, namely 𝑆𝑡 ≡ 𝑟𝑡𝐾𝑡 ≡ 𝜌𝑡𝐾𝑡 + 𝑍𝑡, where 𝜌 is the user cost of 
capital and 𝑍 denotes pure profits. Consequently, 𝑌𝑡 ≡ 𝐶𝑡 + 𝑍𝑡 ≡ 𝑤𝑡𝐿𝑡 + 𝜌𝑡𝐾𝑡 + 𝑍𝑡 , where 𝐶𝑡 ≡ 𝑤𝑡𝐿𝑡 + 𝜌𝑡𝐾𝑡  is the 
total cost. 
11 While it is self-evident that the wage bill (𝑊𝑡) is split into the product of a price (𝑤𝑡 is measured in, say, dollars 
[$] per worker) times a quantity (𝐿𝑡 is measured in number of workers), it is much less obvious that this is also the 
case of the operating surplus (𝑆𝑡). This is because the units of 𝑟𝑡 and 𝐾t are pure numbers and dollars of a base year, 
respectively. This does not mean that writing 𝑆𝑡 = 𝑟𝑡𝐾𝑡 is incorrect, as the product still yields dollars. Also, it should 
be obvious that 𝑤𝑡 and 𝑟𝑡 may or may not be the marginal products of labor and capital, respectively, in the sense of 
being derived from a production function, even though this is what equation (24) will always indicate, namely 

(
𝜕𝑌

𝜕𝐿
) ≡ 𝑤𝑡 and (

∂Y

∂K
) ≡ 𝑟𝑡. 

12 This seems to be the view of, for example, Jorgenson and Griliches (1967, pp. 252-253). From 𝑌 = 𝐹(𝐾, 𝐿), one 
can write 𝑌 = 𝐹𝐾𝐾 + 𝐹𝐿𝐿 (Euler’s theorem), and from the first-order conditions, 𝐹𝐾 = 𝑟 and 𝐹𝐿 = 𝑤. Hence 𝑌𝑡 =
𝑟𝑡𝐾𝑡 + 𝑤𝑡𝐿𝑡  is taken to be identity (24). That is, the neoclassical framework considers that the production function 
through Euler’s theorem implies the identity. While this derivation is mathematically correct, it does not mean that 
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(24) holds by itself and is not dependent upon any conditions from production theory. It is also 

important to note that, while the weights of the growth rates (the factor shares) in equation 

(22) are theoretically derived by imposing the first-order conditions, the shares in the identity 

are simply the result of taking the derivative with respect to time. This means that they are the 

true weights whether factor markets are perfectly competitive or not. Equation (27) is an 

identity and not a behavioral model. 

To understand the problems AS (2018) faces in using TFP growth as a measure of technical 

progress, we make the following four clarifications: 
(i) Identity (27) makes it clear that the residually calculated TFP growth, 𝑇𝐹�̂�𝑡 ≡ �̂�𝑡 − 𝑎𝑡�̂�𝑡 −

(1 − 𝑎𝑡)�̂�𝑡  ≡  𝜆𝑡, is numerically equivalent to 𝜆𝑡
𝐷 ≡ 𝑎𝑡�̂�𝑡 + (1 − 𝑎𝑡)�̂�𝑡. This means that 

TFP growth is not a “measure of our ignorance.” We know precisely what it is. It is a 
weighted average of the growth rates of the wage and profit rates. This is the result of how 
the accounting identity (23) was split into identity (24), namely 𝑊𝑡 = 𝑤𝑡𝐿𝑡 and 𝑆𝑡 = 𝑟𝑡𝐾𝑡 
(which is unrelated to an aggregate production function). This self-evident, yet important, 
point seems to have been missed by those who regard 𝑇𝐹�̂�𝑡 as derived from a production 
function, because they do appreciate its direct dependence on the accounting identity. It 
is important to point out the resemblance between 𝜆𝑡

𝐷 and the dual of TFP growth, which 
in neoclassical theory is derived from the cost function. What our analysis shows is that 
so-called primal and dual measures of TFP growth are essentially the same, except for 
some issues that we omit here.13 

(ii) The identity given by equation (25) can certainly be used to apportion growth in an 
accounting sense into the various components of the identity (the same way it is often 
done with the identity from the demand side). However, interpreting 𝑇𝐹�̂�𝑡  as a measure 
of the growth in efficiency or of the rate of technical progress (or rate of cost reduction) is 
problematic. Nothing in the identity identifies 𝜆𝑡 ≡ �̂�𝑡 − 𝑎𝑡�̂�𝑡 − (1 − 𝑎𝑡)�̂�𝑡 ≡ 𝜆𝑡

𝐷 ≡ 𝑎𝑡�̂�𝑡 +
(1 − 𝑎𝑡)�̂�𝑡 as the rate of technical progress. After all, identity (25) is just �̂�𝑡 ≡ 𝑎𝑡�̂�𝑡 +
(1 − 𝑎𝑡)�̂�𝑡 ≡ 𝑎𝑡(�̂�𝑡 + �̂�𝑡) + (1 − 𝑎𝑡)(�̂�𝑡 + �̂�𝑡), a measure of distributional changes.14 

Arguing that neoclassical production and cost theories explain what 𝜆𝑡 ≡ 𝜆𝑡
𝐷 ≡  𝑇𝐹�̂�𝑡 

measures is an act of faith. The literature on aggregation of production functions is clear: 
the conditions under which aggregate production functions with neoclassical properties 
exist, in the sense that it can be generated from micro-production functions, are so 
stringent that they are not met by actual economies. This makes the existence of aggregate 
production functions in real economies a non-event (Felipe and Fisher, 2003). Nadiri 
(1970, p. 1144), in a survey on the topic, already realized that the aggregation problem 
matters because “without proper aggregation we cannot interpret the properties of an 

 

the production function provides a theory of the accounting identity. See also Hulten (2009), who traces the history 
of growth accounting from the 1930s through the 1950s, with the identity as starting point. This formulation was 
“atheoretical” (Hulten, 2009, p. 4). Solow’s (1957) contribution was to provide the economic structure that the 
approach lacked. 
13 The neoclassical dual uses cost shares instead of revenue shares and the user cost of capital instead of the average 
profit rate. See the discussion in Felipe and McCombie (2020). Empirically, the primal (from the production 
function) and the dual (from the cost function) tend to be very close and are statistically not different. 
14 It could be argued that the growth of the wage rate is the consequence of productivity growth, where both 

variables are related through the first-order condition (𝑤 =
𝜕𝑌

𝜕𝐿
). Hence, this provides the link with the production 

function (and similarly the profit rate and capital productivity), and this is what 𝜆𝑡
𝐷 captures. The problem with this 

argument is that the relationship between the growth of the wage rate and labor productivity growth is definitional, 

and hence cannot be tested. Indeed, as the labor share is 𝑎𝑡 ≡
(𝑤𝑡𝐿𝑡)

𝑌𝑡
, in growth rates: �̂�𝑡 ≡ �̂�𝑡 + �̂�𝑡 (where 𝑃 ≡

𝑌

𝐿
). 

This relationship will always be true. For short periods of time, �̂�𝑡 ≃ �̂�𝑡, as factor shares vary little and slowly. 
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aggregate production function, which rules the behavior of total factor productivity.”15 
The Cambridge Capital Theory Controversies of the 1960s and early 1970s, which 
centered around the theoretical problems in the measurement of capital (Cohen and 
Harcourt, 2003), have also been described as essentially an aggregation problem. 
However, Harcourt (1976) argues to the contrary, that there is more to the controversies 
than that. 

(iii) The growth rate of the wage rate tends to be mildly procyclical (wages are cyclically 
sticky), whereas that of the profit rate is markedly so. This means that most of the variation 
in 𝜆𝑡 ≡ 𝜆𝑡

𝐷 is, in fact, largely induced by �̂�𝑡. 
(iv) Labor productivity growth and TFP growth are directly related through the accounting 

identity, given by equation (26), since the former can be written as �̂�𝑡 ≡ 𝜆𝑡
𝐷 +

(1 − 𝑎𝑡)(�̂�𝑡 − �̂�𝑡). This is true always by construction. This means that the formulations 
(regressions) in AS (2017) and AS (2018) are intrinsically related. 

 

Given that the AS (2018) measure of technical progress is just 𝜆𝑡 ≡ 𝜆𝑡
𝐷 ≡ 𝑎𝑡�̂�𝑡 +

(1 − 𝑎𝑡)�̂�𝑡, a weighted average of the growth rates of the wage rate and profit rate, a question 
arises concerning the meaning of regressions of the growth employment (�̂�𝑡), hours, the wage 

bill (�̂�𝑡), output (�̂�𝑡), and the labor share (�̂�𝑡) on 𝜆𝑡 ≡ 𝜆𝑡
𝐷, given the identity given by equation 

(27), which links all these variables. Naturally, the fact that AS (2018) uses other countries’ 

TFP growth rates (the leave-out-mean approach) to measure within-industry-by-country TFP 

growth, as well as a complex lag structure of TFP growth, is beside the point.16 This is because 

these procedures do not solve any putative endogeneity, or other econometric, problem. The 

identity argument also applies to the AS (2018) cross-sectoral linkage analysis, as it is self-

evident that the identity holds for each cross-section. 

This analysis also helps understand the well-documented finding in the literature of very 

low and negative TFP growth rates in many U.S. industries (Haltiwanger, 2018, pp. 66-68). 

Given our arguments and understanding of what TFP truly captures, the low TFP growth rates 

have been the result of: (i) very low wage growth because a great deal of employment has been 

generated in non-tradable services, activities which, in general, experience low wage increases; 

and (ii) the well-documented decline in the U.S. labor share (Dao et al., 2017; Stockhammer, 

2017). This means that 𝑎𝑡�̂�𝑡 was approximately zero, or even negative, in some industries and 

was not compensated for by an increase in (1 − 𝑎𝑡)�̂�𝑡.17 Very importantly, this result (finding) 

follows directly from the accounting identity, and, at best, says something only about 

distributional changes. 

 
 

 
15 It is worth quoting Nadiri on this: “The conclusion to be drawn from this brief discussion is that aggregation is a 
serious problem affecting the magnitude, the stability, and the dynamic changes of total factor productivity. We need 
to be cautious in interpreting the results that depend on the existence and specification of the aggregate production 
function… That the use of the aggregate production function gives reasonably good estimates of factor productivity 
is due mainly to the narrow range of movement of aggregate data, rather than the solid foundation of the function. 
In fact, the aggregate production function does not have a conceptual reality of its own” (Nadiri, 1970, pp. 1145-
1146). 
16 After several exchanges, our disagreements with David Autor and Anna Salomons remain on two points: (i) the 
interpretation of TFP growth, and how it is derived; and (ii) their belief that their leave-out-mean approach and use 
of lags solve the problem. We dispute this. We acknowledge that the use of patents is a different identification 
approach, but this is not trouble-free either and it is a minor part of their work. 
17 While it is true that the capital share has increased (the mirror image of the decline in the labor share), the profit 
rate has not increased. Often the variable is about flat or shows decline, with the consequence that its growth rate 
is either zero or even negative. 
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3.1. An example 

 

Apart from the conceptual problem discussed above, it should now be clear that the AS 

(2018) regressions with TFP growth as regressor are also problematic. The focus of attention 

is on equations (25), (26), and (27), namely the accounting identity expressed in growth rates. 

A series was constructed for output growth, employment growth, capital growth, and TFP 

growth so that they satisfy the identity. The purpose of the regressions in table 6 is to show 

that one can reinterpret the AS (2018) regressions of employment growth on TFP growth in 

terms of the accounting identity. We do not report the regressions for all outcome variables, 

and only show the one for employment growth. This regression is run separately for five 

countries, Austria, Belgium, Italy, Netherlands, and Sweden. 

We start with the regression of output growth on 𝜆𝑡 ≡ 𝜆𝑡
𝐷, together with the growth rates 

of labor and capital (equation 26). 𝜆𝑡 ≡ 𝜆𝑡
𝐷 was constructed from the data and the coefficients 

of labor and capital growth were estimated in unrestricted form. The regressions for the five 

countries are shown in the first four columns of table 6. It is known from equation (26) that the 

coefficients of the growth rates of labor and capital will be positive and will have to be close to 

the corresponding factor shares (and consequently add up to unity) if these do not show great 

variation. The coefficient of 𝜆𝑡
𝐷 will be positive and should be close to unity. Naturally, since the 

regression assumes that the coefficients of labor and capital growth are constant, there is an 

“error” to the extent these two coefficients are not exactly constant. As their variation is very 

small (see footnote to table 6), the statistical fits and t-values are very high (as it is a quasi-

accounting identity). Overall, results indicate that, in the five countries, factor shares are 

sufficiently constant so that the regressions give almost a perfect statistical fit. Some 

researchers have traditionally confused these results and thought that they are driven by an 

underlying production function. It should be obvious that it is just the identity.  
 
 

Table 6 – Employment growth and TFP growth regressions (I) 

 
Regressand �̂�𝒕: Eq. (26) �̂�𝒕: Eq. (28) �̂�𝒕: Eq. (29) 

 �̂�𝑡
𝐷 �̂�𝑡 �̂�𝑡  R2 �̂� �̂�𝑡

𝐷 �̂�𝑡  R2 �̂�𝑡
𝐷  R2 

Austria 1.000 0.586 0.435 0.999 1.683 -1.681 -0.733 0.991 0.177** 0.299 

Belgium 1.012 0.639 0.376 0.999 1.562 -1.580 -0.587 0.999 0.078** 0.027 

Italy 1.004 0.677 0.380 0.999 1.472 -1.478 -0.555 0.998 0.081NS 0.060 

Netherlands 1.012 0.599 0.433 0.999 1.666 -1.686 -0.719 0.998 -0.002NS 0.000 

Sweden 1.007 0.495 0.519 0.999 2.012 -2.026 -1.042 0.997 0.136NS 0.126 

 
Notes: all coefficients in regressions (26) and (28) are statistically significant at the 1 percent level, with extremely 
high t-values. Coefficients with ** in regression (29) are statistically significant at the 5 percent level. NS stands for 
not statistically significant. Mean, Min, Max labor shares are, respectively: Austria: 0.578, 0.523, 0.648; Belgium: 
0.622, 0.588, 0.657; Italy: 0.650, 0.612, 0.716; Netherlands: 0.581, 0.519, 0.640; and Sweden: 0.482, 0.449, 0.552. 
Mean, Min, Max capital shares are, respectively: Austria: 0.422, 0.352, 0.477; Belgium: 0.378, 0.343, 0.412; Italy: 
0.350, 0.284, 0.388; Netherlands: 0.419, 0.360, 0.481; and Sweden: 0.518, 0.448, 0.551. 

 

 

Secondly, and as argued above, it is difficult to understand the omission of the growth rates 

of output and capital in the AS (2018) employment growth regressions, to the extent that, as it is 

essentially a neoclassical analysis, an aggregate production function should underlie these 
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regressions. The problem is that adding these two variables to the regression leads, again, to the 

identity given by equation (26), now with employment growth on the left-hand side, that is: 

�̂�𝑡 ≡ −
1

𝑎𝑡
𝜆𝑡

𝐷 +
1

𝑎𝑡
�̂�𝑡 −

(1−𝑎𝑡)

𝑎𝑡
𝐾𝑡  (28) 

AS (2018) again faces the “catch-22” problem. The estimation results of regression (28) 

are reported in the middle four columns of table 6. It is worth emphasizing that the coefficients 

are, both in size and sign, as predicted by equation (28), and is − (
1

𝑎𝑡
) in the case of 𝜆𝑡

𝐷. These 

are the result of the accounting identity and not of estimating any behavioral relationship. This 

regression has no behavioral implications at all. 

We argued in section 2.1 that the neoclassical example with the Cobb-Douglas production 

function was for expositional ease, introduced to show that output growth is a determinant of 

employment growth. We also mentioned that we could show that we do not need a production 

function. Indeed, equation (28) is the general form of equation (2) above. There, it was written 

with constant factor elasticities (while equation (28) is written with the factor shares with the 

time subscript, and without making any neoclassical assumptions) and with a constant rate of 

weighted factor prices (λ, the neoclassical measure of productivity growth). This is because it 

is derived from a Cobb-Douglas ‘production function’ with a constant rate of ‘technical 

progress’ (λ). As the derivation from the identity shows, equation (28) is simply an identity; 

there is no underlying aggregate production function. What does the identity with the growth 

rate of employment on the left-hand side tell us? ‘Nothing’ beyond the self-evident definition. 

Can it be used to test? Clearly the answer to this is ‘no’. 

Moreover, if output and capital happen to grow at the same rate (i. e. , �̂�𝑡 = �̂�𝑡), then equation 

(28) reduces to �̂�𝑡 ≡ �̂�𝑡 − [
𝑎𝑡�̂�𝑡+(1−𝑎𝑡)�̂�𝑡

𝑎𝑡
], which will also be an accounting identity under these 

circumstances. Moreover, if factor shares happen to be constant, and this does not imply a Cobb-

Douglas function (Fisher 1971), the expression will reduce to �̂�𝑡 ≡ �̂�𝑡 − [�̂�𝑡 +
(1−𝑎)

𝑎
�̂�𝑡]. We 

emphasize that it makes no difference whether one refers to the more general expression for �̂�𝑡, 

or to the one where �̂�𝑡 = 𝐾𝑡 happens to hold, and additionally factor shares are constant. They 

are accounting identities derived with no reference to a Cobb-Douglas production function.18 

 
18 Our arguments do not depend either on the assumption of Hicks-neutral technical progress (although it is true 
that this is how we specified the Cobb-Douglas production function). The reason is that our arguments and criticisms 
are based on an accounting identity. Because of this, our arguments hold for any mathematical specification that 
resembles a ‘production function’, including one of the form: 

𝑌𝑡 = 𝐹(𝐴𝐿𝐿𝑡, 𝐴𝐾𝐾𝑡)  

where 𝐴𝐿  and 𝐴𝐾  are interpreted to represent factor-augmenting technical change. In growth rates this becomes 
(imposing the standard assumption in growth accounting, that elasticities equal the factor shares): 

�̂�𝑡 = 𝑎𝑡�̂�𝐿 + (1 − 𝑎𝑡)�̂�𝐾 + 𝑎𝑡�̂�𝑡 + (1 − 𝑎𝑡)�̂�𝑡  

where �̂�𝐿 and �̂�𝐾  are the growth rates of factor-augmenting technical change (which might or might not be constant 
– we assume they are constant here to simplify the exposition). It should be self-evident that what is calculated as 
total factor productivity growth is the weighted average of the growth rates of labor and capital-augmenting 
technical change, that is, 

𝑇𝐹𝑃𝑡 = �̂�𝑡 − 𝑎𝑡�̂�𝑡 − (1 − 𝑎𝑡)�̂�𝑡 = 𝑎𝑡�̂�𝐿 + (1 − 𝑎𝑡)�̂�𝐾   

    
Now recall the accounting identity is �̂�𝑡 ≡ 𝑎𝑡�̂�𝑡 + (1 − 𝑎𝑡)�̂�𝑡 + 𝑎𝑡�̂�𝑡 + (1 − 𝑎𝑡)�̂�𝑡 , or equation (25) above, and 

that it always holds. This implies that:  
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Thirdly, the growth rates of output and capital in regression (28) are omitted and we 

estimate the same regression that AS (2018) estimated. This is given by equation (29) below: 

�̂�𝑡 = 𝑐 + 𝜌𝜆𝑡
𝐷 + 𝑢𝑡 (29) 

Results are shown in the right-hand-side two columns of table 6. It may be seen that the 

coefficient of 𝜆𝑡
𝐷 changes, both in magnitude and sign, compared with that of equation (28). 

This is straightforwardly the result of omitting the growth rates of output and capital, which 

causes a significant bias in the estimate of the coefficient 𝛾. Given that we have argued that 𝜆𝑡
𝐷 

is effectively a measure of distributional changes, and the interpretation of equation (29) as 

equation (28) with two variables omitted, it is not clear that the leave-out-mean approach of 

AS (2018) yields an estimate of 𝜌 that can be interpreted with any confidence to be the impact 

of technical progress on employment growth. 

Finally, table 7 shows the regressions of employment growth on two of the three 

regressors in identity (28): on 𝜆𝑡
𝐷 and �̂�𝑡 , the results of which are reported on the left-hand side 

of the table; and on 𝜆𝑡
𝐷 and �̂�𝑡, reported on the right-hand side of the table. The results of the 

first set (i.e., with output growth as the added regressor) are much better. They are not far, in 

fact, from the results in table 6 for the full equation (28), in terms of the magnitude, sign, and 

statistical significance of the coefficients. This means that omitting the capital stock’s growth 

rate when output growth is included together with 𝜆𝑡
𝐷 (left-hand side of the table) causes a 

small bias. The opposite happens when output growth is the omitted variable and instead the 

growth rate of the capital stock is added as a regressor (right-hand side of the table). The 

correlation between 𝜆𝑡
𝐷 and �̂�𝑡 is higher than that between �̂�t and these two variables. 

 
 

Table 7 – Employment growth and TFP growth regressions (II) 

 
Regressand �̂�𝒕 �̂�𝒕 

 𝜆𝑡
𝐷  �̂�𝑡   R2 𝜆𝑡

𝐷  𝐾t R2 

Austria -1.271 1.286 0.800 0.183** -0.112NS 0.305 

Belgium -0.930 0.944 0.783 0.073NS 0.304NS 0.172 

Italy -1.141 1.134 0.953 0.031NS 0.989 0.455 

Netherlands -1.278 1.276 0.899 0.015NS 0.693NS 0.170 

Sweden -1.046 1.118 0.754 0.150* 0.420NS 0.231 

 
Notes: all coefficients in the first regression are statistically significant at the 1 percent level. Coefficients in the 
second regression marked with ** are significant at the 5 percent level; those marked with * are significant at the 
10 percent level; and NS stands for not statistically significant. 

  

 

𝑇𝐹𝑃𝑡 ≡ 𝑎𝑡�̂�𝐿 + (1 − 𝑎𝑡)�̂�𝐾 ≡ 𝑎𝑡�̂�𝑡 + (1 − 𝑎𝑡)�̂�𝑡 ≡ 𝐹𝑅𝑡  

    
that is, the weighted average of the growth rates of labor and capital-augmenting technical change must be identical 
to the weighted average of the growth rates of the wage and profit rate given by the identity. This is correct, although 
the precise interpretation of the results is open to question for the same reasons advanced earlier. We do not 
consider, pace Autor and Salomons, that the changing distribution of factor shares into payments to labor and capital 
informs the question of whether technological change is factor-augmenting or labor task-displacing can be 
statistically tested (i.e., the possibility of the data rejecting a null hypothesis). 
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4. Conclusions 

 

The last decade has brought to the forefront the discussion of the role of technical progress 

on employment growth, in the context of the technologies being associated with the Fourth 

Industrial Revolution. The specific questions asked by researchers and the statistical methods 

used are different, but overall, there is a sense that these new technologies may have a negative 

impact on employment. 

AS (2017, 2018), however, show that once one takes into account both the direct and 

indirect effects, technical progress is not detrimental to employment growth at the economy-

wide level. The attempt to shed light on the old question of the impact of innovation and 

productivity growth on employment is important. The assessment in this paper of AS (2017; 

2018) studies, however, leads to the conclusion that their methods are problematical and 

ultimately do not answer their research questions in a satisfactory way. The equations of AS 

(2017) should include the growth rate of output as a determinant of employment growth. 

However, we have shown that adding this variable would transform the equations into 

tautologies. It is a “catch-22” problem that has no solution within the framework used. 

AS (2018) suffers from a similar, though more complex, problem. The measure of technical 

progress used in this case, total factor productivity (TFP) growth, is simply a weighted average 

of the growth rates of the wage and profit rates, i.e., a measure of distributional changes, and 

not necessarily of technical progress. Hence, the regressions with TFP growth as the 

explanatory variable miss the point. The authors’ analysis with patents as a proxy for technical 

progress is perhaps more promising, although it is not clear whether patents have a large effect 

on productivity. See, in particular, Boldrin and Levine (2013), who question the use of patents. 

The problem is also that one needs a model to justify and interpret the regressions with the 

selected outcome variables and the results. Unfortunately, this is not the core of their analysis. 

These problems appear as a result of the fact that the proxy for technical progress is 

productivity (labor or TFP), which is not an independent measure.  

Summing up, the question Autor and Salomons intend to answer cannot be addressed with 

the regressions they ran in the two papers. It transpires that the old, and important, question 

about the impact of technical progress on employment growth cannot be answered by this 

approach. 
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