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Evaluating non-linear models  
on point and interval forecasts: 

an application with exchange rates˚ 

GIANNA BOERO and EMANUELA MARROCU 

1. Introduction 

Since the adoption of the floating-rates regime in 1973 numerous 
efforts have been made to understand exchange rate dynamics. By 
providing evidence on the superiority of the random walk forecasts, 
the seminal paper by Meese and Rogoff (1983) gave rise to a long series 
of papers aimed at proving the superiority of exchange rate determina-
tion models based on economic theory. The evidence so far is mixed, 
some authors finding that some simple specifications including prices, 
money supplies and output as fundamentals are able to improve fore-
cast accuracy (among others Mark and Sul 2001), while in other papers 
the Meese and Rogoff’s results find new support. Recently attention 
has focused on the relevance of non-linear dependence in the first and 
second moments of exchange rate log-differences (Meese and Rose 
1991); the presence of non-linearity features might well have impor-
tant implications in terms of model adequacy, predictability and 
market efficiency.  

The analysis presented in this paper is an attempt to contribute 
to this avenue of research by exploiting recent developments in non-
linear time series econometrics and in forecasting evaluation methods 
within a univariate framework. In the context of univariate models 
the most commonly applied non-linear models are the GARCH 
–––––––––– 

 Università degli Studi di Cagliari, Dipartimento di Ricerche Economiche e  
Sociali, Cagliari (Italy); e-mail:boero@unica.it; 

Università degli Studi di Cagliari, CRENoS, Cagliari (Italy); e-mail: emarrocu@ 
unica.it 



BNL Quarterly Review 92 

(generalised autoregressive conditional heteroscedastic) and the SE-
TAR (self-exciting threshold autoregressive) models, which have 
proved successful in describing the dynamic behaviour of many eco-
nomic and financial variables. With the GARCH models it is possible 
to specify the process governing both the mean and the variance of the 
series, and  they are  particularly suitable to describe the typical behav-
iour of financial time series, namely the fact that large (small) price 
changes tend to be followed by large (small) price changes of either 
sign; this kind of dependency can be exploited to improve interval 
forecasts. The SETAR models represent a stochastic process generated 
by the alternation of different regimes. This class of model has been 
used with impressive success to forecast certain natural phenomena, 
such as Canadian lynx data and Wolf’s sunspot numbers (Tong 1995); 
they have also provided significant gains in forecasting economic and 
financial variables; reference here is, among others, to Kräger and 
Kugler (1993), Peel and Speight (1994), Tiao and Tsay (1994), Potter 
(1995) and Clements and Smith (1999). 

Related models are the Markov-switching autoregressive (MS-
AR) model and the Smooth transition autoregressive (STAR) model, 
which have also received great attention in the empirical literature on 
non-linearity in exchange rate movements. The main feature of the 
MS-AR model is that the switch between regimes is entirely governed 
by an unobservable variable (for application to exchange rate dynam-
ics see the well-known studies by Hamilton 1989, Engel and Hamilton 
1990, Engel 1994, and the very recent application by Clarida et al. 
2003). The STAR model, on the other hand, is a variant of the SETAR 
model and can be obtained when the parameters are allowed to change 
smoothly over time (Granger and Teräsvirta 1993). In this study we 
limit our investigation to the case of SETAR models in order to facili-
tate comparison with the existing empirical literature on univariate 
exchange rate dynamics. Moreover, recent findings (see Clements et al. 
2003) suggest that the MS-AR and the STAR model provide qualitative 
similar results to those obtained from SETAR specifications. 

Although there have been extensive applications of new tech-
niques to describe the non-linearities and asymmetries which character-
ise exchange rate dynamics, there are still few studies on the forecasting 
performance of the different models for historical time series data. 
Comparisons have been carried out typically with respect to the ran-
dom walk model or, more recently, by means of simulated data based 
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on Monte Carlo experiments (see, for example, Clements and Smith 
1999). In general, the significant presence of mean-non-linearities for the 
in-sample period has only rarely provided better out-of-sample forecasts 
than those obtained from a simple linear or a random walk model. 
Furthermore, the results are often sensitive to the length of the forecast 
horizon and to the metric adopted to measure the forecasting accuracy. 

Diebold and Nason (1990) suggest four different reasons why 
non-linear models cannot provide better out-of-sample forecasts than 
the simpler linear model even when linearity is significantly rejected 
in-sample: 1) non-linearities concern the even-ordered conditional 
moments and are therefore not useful for improving forecasts; 2) in-
sample non-linearities are due to structural breaks or outliers which 
cannot be exploited to improve out-of-sample forecasts; 3) conditional 
means non-linearities are a feature of the DGP but are not large 
enough to offer better forecasts; 4) non-linearities are present but they 
are captured by the wrong type of nonlinear model. 

Dacco and Satchell (1999) and Clements and Smith (2001) argue 
that the alleged poor forecasting performance of non-linear models can 
also be due to the evaluation and measurement method adopted. 
Clements and Smith show, on the basis of a Monte Carlo study, that  
evaluation of the whole forecast density may reveal gains to the non-
linear models which are systematically masked if the comparison is 
carried out only in terms of mean square forecast error (MSFE). This 
result was confirmed by Boero and Marrocu (2002) in an application 
with actual data. Dacco and Satchell (1999) suggest that methods based 
on the profitability criterion should prove more adequate in the case 
of financial variables. 

The aim of the present paper is to compare the forecasting per-
formance of SETAR and GARCH models against the AR benchmark 
by using weekly log-differences of the Japanese yen and the daily log-
differences of the British pound, both quoted against the US dollar. 
Building on the results in Boero and Marrocu (2000, 2002 and 2003), 
we pursue the evaluation of alternative models along different lines. 
We conduct the forecast analysis by using different evaluation criteria 
based on point forecasts and interval forecasts. The measure adopted for 
the evaluation of point forecasts is the MSFE. Interval forecasts are 
evaluated by means of the Likelihood Ratio (LR) tests of correct 
conditional coverage, as recently proposed by Christoffersen (1998). 
The use of interval forecasts is becoming increasingly common in 
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practical applications, as they provide a description of forecast uncer-
tainty which is not available from point forecasts alone. Models of 
conditional variance, such as GARCH, are particularly suitable to 
provide some indication of the uncertainty around the forecast, and 
when evaluated on interval forecasts they can exhibit accuracy gains 
which may be systematically masked in MSFE comparisons. 

For both point and interval forecast we conduct a multi-period 
evaluation in order to assess the sensitivity of the results to the selec-
tion of the forecast origin and to the specific period considered (Fildes 
1992 and Tashman 2000).  

The rest of the paper is organised as follows. In section 2 we de-
scribe the models adopted. In section 3 we present the statistical prop-
erties of the data and the results of the tests performed to detect the 
presence of non-linearities. The findings from the modelling and fore- 
casting exercises are reported in sections 4 and 5, respectively. Finally, 
in section 6 we summarise the main results and make some concluding 
remarks. 

2. The models 

2.1. The threshold autoregressive models  

Threshold autoregressive models were first proposed by Tong (1978), 
Tong and Lim (1980) and Tong (1983). The essential idea of this class 
of non-linear models is that the behaviour of a process can be de-
scribed by a finite set of linear autoregressions. The appropriate AR 
model that generates the value of the time series at each point in time 
is determined by the relation of a conditioning variable to the thresh-
old values; if the conditioning variable is the dependent variable itself 
after some delay, d, then the model is known as self-exciting, hence the 
acronym SETAR. 

The SETAR model is piecewise-linear in the space of the thresh-
old variable, rather than in time. If the process is in the jth regime, the 
pth order linear autoregression is formally defined as: 
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where ε t
(j) ∼ IID(0,σ 2(j)), rj−1 and rj are threshold values, p is the lag 

order and d is the delay parameter.  
In order to allow for different autoregressive structures across 

regimes, p can be seen as the maximum lag order. An interesting 
feature of SETAR models is that the stationarity of yt does not require 
the model to be stationary in each regime; on the contrary, the limit 
cycle behaviour that this class of models is able to describe arises from 
the alternation of explosive and contractionary regimes.  

In this study we choose two-regime (SETAR-2) and three-regime 
(SETAR-3) SETAR models, which can be represented as follows:  
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where εt
(j) is assumed IID(0,σ 2(j)) and rj represents the threshold values. 

When the structural parameters, r and d, are known, a SETAR 
model can be estimated by fitting an AR model to the appropriate 
subset of observations determined by the relationship of the threshold 
variable to the value of the threshold (arranged autoregression).  

In cases where the threshold parameter (r) and the delay parameter 
(d) are unknown, Tong (1983) suggests an empirical procedure which 
selects as ‘best’ the model that yields the minimum Akaike Information 
Criteria (AIC). However, as stressed by Priestley (1988), such a proce-
dure is to be seen as a guide in choosing a small subclass of non-linear 
models featuring desirable economic and statistical properties. 

For the case of a SETAR (p1, p2; d) model, Tong (1983) proposes 
a three-stage procedure: for given values of d and r, separate AR mod-
els are fitted to the appropriate subsets of data, the order of each 



BNL Quarterly Review 96 

model being chosen according to the usual AIC criteria. In the second 
stage r can vary over a set of possible values while d has to remain 
fixed and is determined as the parameter for which AIC(d, r̂ ) attains 
its minimum value. In stage three the search over d is carried out by 
repeating both stage 1 and stage 2 for d=d1, d2, ..., dp. The selected 
value of d is, again, the value which minimise AIC(d). 

2.2. GARCH models 

An ARCH process can be defined in terms of the error distribution of 
a model in which the variable yt is generated by: 

ttt xy ε+β=     t=1, ..., T (2)

where xt is a vector of kx1 explanatory variables, which in our study 
includes only lagged values of yt, and β is a kx1 vector of autoregressive 
coefficients. The ARCH model proposed by Engle (1982) specifies the 
distribution of εt conditioned on the information set Ψt−1, which 
includes the actual values for the variables yt−1, yt−2, …, yt−k. In particu-
lar, the model is based on the assumption that: 

1−Ψttε ∼N(0,ht)    where 2
qtq

2
1t10t ...h −− εα++εα+α=  (3)

with α0 > 0 and αi ≥ 0, i=1, ..., q, in order to constrain the conditional 
variance to be positive. Thus, the error variance is time-varying and 
depends on the magnitude of past errors. 

Bollerslev (1986) proposes a generalisation of the ARCH model, 
which leads to the following specification of the conditional variance: 

ptp1t1
2

qtq
2

1t10t h...h...h −−−− β++β+εα++εα+α=  (4)

This process is known as GARCH(p, q). To guarantee that the condi-
tional variance assumes only positive values, the following restrictions 
have to be imposed: α0 > 0, αi ≥ 0 for i=1, ..., q, and βi ≥ 0 for i=1, ..., p. 
In practice, the value of q in the GARCH model is much smaller than 
the corresponding value of q in the ARCH representation. Usually, a 
simple GARCH(1,1) model offers an adequate description of most 
economic and financial time series. 
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3. Preliminary data analysis and linearity tests 

The empirical analysis was carried out on the log-differences of the 
end-of-week quotation of the Japanese yen exchange rate series and the 
daily quotation for the British pound exchange rate series. The log-
levels and the log-differences of the series for the period 1973.1-1997.7 
are depicted in figure 1. The log-differences series are mean-stationary, 
while the variance features the typical volatility clustering phenome-
non with periods of high volatility followed by periods of low volatil-
ity. Table 1 outlines the descriptive statistics for the exchange rate log-
differences. The series are characterised by excessive kurtosis and 
asymmetry, while the Jarque-Bera test strongly rejects the normality 
hypothesis.  

In order to detect the presence of nonlinear components in the 
differenced series, we apply the RESET test and the S2 test proposed 
by Luukkonen, Saikkonen and Teräsvirta (1988). These tests are 
devised for the null hypothesis of linearity. The RESET test is applied 
in its Lagrange Multiplier variant (Granger and Teräsvirta 1993): a 
linear autoregression of order p is run, followed by an auxiliary regres-
sion in which powers of the fitted values obtained in the first stage are 
included along with the initial regressors up to the power k = 2, 3, 4. 
The test is distributed as a χ 2 with k−1 degrees of freedom. While the 
RESET test is devised for a generic form of misspecification, the S2 test 
is formulated for a specific alternative hypothesis, i.e. STAR-type non-
linearity; the authors show that the S2 test has reasonable power even 
when the true model is a SETAR one. The test is calculated as 
S2=T(SSE0−SSE1)/SSE0, where SSE0 is the residual sum of squares from 
a linear autoregression of order p for yt, and SSE1 is the residual sum of 
squares from the auxiliary regression in which the initial regressors 
enter linearly and multiplied by the transition variable yt−d raised up to 
the third power.1 In this analysis we perform the test selecting the 
value of the delay parameter, d, in the range [1,5]; under the null hypo- 

–––––––––– 
1 The auxiliary regression is specified as: 
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where tε̂ are the residuals from the linear AR(p) model. 
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DESCRIPTIVE STATISTICS FOR THE LOG-DIFFERENCED SERIES 

 Japanese yen British pound 

Frequency weekly daily 

Mean –0.000740 –0.000058 

Median –0.000000 –0.000100 

Maximum –0.063120 –0.038400 

Minimum –0.105679 –0.045900 

Standard deviation –0.014186 –0.006278 

Skewness –0.702024 –0.152252 

Kurtosis –7.815579 –6.972260 

   

Jarque-Bera 1342.976 4078.99 

Probability 0.000000 0.000000 

   

Period 03.01.73-31.07.97 03.01.73-31.07.97 

Observations 1281 6168 
 

FIGURE 1 

EXCHANGE RATE LOG-LEVELS AND LOG-DIFFERENCES 1973.1-1997.7 
WEEKLY JAPANESE YEN SERIES 

 

 
 

TABLE 1 
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FIGURE 1 (cont.) 

DAILY BRITISH POUND SERIES 
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thesis of linearity the test has a χ2 distribution with 3p degrees of 
freedom. 

In table 2 we report the probability values for the tests computed 
for the whole sample period, the estimation period and the forecast 
period. For each test the linear model under the null hypothesis was 
estimated assuming different lag structures (p=2, …, 6). The table 
shows results only for p=3, 4 and 5. As we can see, when the tests are 
applied to the whole sample, they lead to the rejection of the null in a 
large number of cases, indicating that there is strong evidence of non-
linear components in the data. However, by splitting the sample into 
the estimation period and the forecast period we find that there is less 
evidence of non-linearities in the latter for the weekly Japanese yen. 
When the tests are applied to the forecast period, in fact, we obtain 
clear evidence of non-linearity only from the S2 test with d=1, indicat-
ing some type of threshold behaviour. The daily British pound series, 
on the other hand, exhibits a high degree of non-linearity in both 
estimation and forecasting period. 

4. Model estimation  

The models are estimated over the period 1973.2-1991.6. The estima- 
tes of the models are set out in table 3. The linear model selected for 
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TABLE 2 

LINEARITY TESTS – P-VALUES 

Japanese yen 
Entire sample 

observations = 1281 
02.01.73-31.07.97 

Estimation sample 
observations = 964 
02.01.73-30.06.91 

Forecasting sample 
observations = 313 
01.07.91-31.07.97 

p 3 4 5 3 4 5 3 4 5 

RESET  h=2 0.878 0.712 0.958 0.697 0.522 0.756 0.684 0.644 0.613 

RESET  h=3 0.025 0.098 0.036 0.118 0.165 0.094 0.435 0.870 0.464 

RESET  h=4 0.018 0.085 0.016 0.083 0.109 0.043 0.621 0.877 0.445 

S2,   d=1 0.141 0.067 0.009 0.259 0.152 0.030 0.005 0.000 0.000 

S2,   d=2 0.422 0.227 0.172 0.551 0.173 0.141 0.477 0.709 0.789 

S2,   d=3 0.017 0.037 0.101 0.155 0.300 0.524 0.317 0.449 0.602 

S2,   d=4 0.139 0.071 0.087 0.056 0.020 0.024 0.456 0.556 0.375 

S2,   d=5 0.013 0.002 0.007 0.016 0.008 0.049 0.374 0.280 0.080 

British pound 
Entire sample 

observations = 6168 
02.01.73-31.07.97 

Estimation sample 
observations = 4636 

02.01.73-30.06.91 

Forecasting sample 
observations = 1532 

01.07.91-31.07.97 

p 3 4 5 3 4 5 3 4 5 

RESET  h=2 0.3541 0.3668 0.0172 0.7403 0.6254 0.1675 0.0000 0.0000 0.0000 

RESET  h=3 0.5688 0.5784 0.0583 0.0342 0.0428 0.1307 0.0000 0.0000 0.0000 

RESET  h=4 0.6382 0.6267 0.0328 0.0688 0.0665 0.2476 0.0000 0.0001 0.0001 

S2,   d=1 0.0027 0.0004 0.0001 0.0012 0.0001 0.0001 0.0000 0.0000 0.0000 

S2,   d=2 0.3573 0.3846 0.0018 0.0022 0.0028 0.0000 0.0000 0.0000 0.0000 

S2,   d=3 0.0956 0.1695 0.1662 0.0060 0.0080 0.0022 0.0004 0.0037 0.0014 

S2,   d=4 0.1063 0.0073 0.0078 0.0006 0.0000 0.0000 0.1066 0.0609 0.1011 

S2,   d=5 0.0025 0.0046 0.0047 0.0000 0.0000 0.0002 0.0355 0.0798 0.0364 

p is the autoregressive lag order under the null hypothesis of linearity.  
Numbers in bold indicate rejections of the linearity hypothesis up to 10% level of significance. 

 
the forecast exercise is an AR(2) process for the Japanese yen series and 
an AR(9) process for the British pound series. The AR models are 
compared in the forecasting exercise with a GARCH(1,1) model and 
with a two-regime and three-regime SETAR model. All model specifi-
cations are reported in table 3. As we can see from table 3 Panel A, 
GARCH components are strongly present in the data, thus capturing 
the evident volatility clustering illustrated in figure 1. Moreover, in 
both GARCH specification shocks to volatility have markedly persis-
tent effects. 
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TABLE 3 

MODELS SPECIFICATIONS OVER THE ESTIMATION SAMPLE 

Panel A 

Japanese yen British pound  
AR GARCH(1,1) AR GARCH(1,1) 

Model yt=c+ρ1yt−1+ρ2yt−2+et
yt=c+byt−1+et 

ht=α0+α1e2
t+β1ht−1 

yt=ρ1yt−1+ρ2yt–5+ 
+ρ3yt+9+et 

yt=b1yt–1+ b2yt–5+ 
+b3yt–9+et 

ht=α0+α1e2
t+β1ht–1 

  estimate t−value  estimate t−value  estimate t−value  estimate t-value 
 C –0.0007 –1.471 c –0.0005 0–1.336 ρ1 0.0405 2.083 b1 0.0648 03.039 
 Ρ1 00.0705 02.196 b 00.0991 002.971 ρ2 0.0599 3.079 b2 0.0684 03.530 
 Ρ2 00.1038 03.230 α0 6.84E-07 002.527 ρ3 0.0646 3.323 b3 0.0456 02.365 
    α1 00.0726 13.171    α0 9.08E-07 22.187 
    β1 00.9301 234.329    α1 0.1360 18.622 
 σ 00.0063     σ 0.0073  β1 0.8482 140.95 

 

Panel B 

Japanese yen British pound 
SETAR-2 SETAR-3 SETAR-2 SETAR-3 

  

estimate t-value estimate t-value estimate t-value estimate t-value 
φ0

(1) –0.0010 –2.139 –0.003 –3.804 –  –0.0003 –1.500 
φ1

(1) 00.0960 02.698   –    
φ2

(1) 00.1370 03.989   –0.1582 –3.202   
σ(1) 00.0134  –0.0164  00.0084  00.0071  

Regime 1 

T(1) 736  332  503  1428  
φ0

(2) 0.001 01.441 –0.001 00.283 –  –  
φ1

(2) –  –0.407 01.708 00.0810  00.0095 3.785 
φ2

(2) –  –0.220 05.176 00.0235 –5.329 –0.0739 –2.875 
φ3

(2) –  –  –0.0200 –1.546 –  
φ4

(2) –  –  – –1.307 –  
φ5

(2) –  –  00.0531  –  
φ6

(2)      2.87 00.08290 2.961 
σ(2) 00.0150  –0.0103  00.0060  00.00480  

Regime 2 

T(2) 222  361  4120  1343  
φ0

(3) –  –0.001 01.160   00.0004 2.000 
φ1

(3) –      00.0932 4.070 
φ2

(3) –      00.0486 2.122 
σ(3) –  –0.0140    00.0065  

Regime 3 

T(3) –  265    1859  
σ(model) 0.0138  –0.0137  00.0063  00.0063  
d 3  1  5  5  
r1 0.0072  –0.0032  –0.0066  –0.0020  

Model 

r2 –  00.0057    00.0008  
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With regard to the SETAR models, we estimated specifications 
with one threshold (2 regimes) and two thresholds (3 regimes), follow-  
ing the estimation procedure suggested by Tong (1983). Model selec-
tion was conducted on the basis of the AIC criterion; however, when 
it appeared that the AIC overestimated the autoregressive order of the 
model, we selected the model with the most parsimonious dynamic 
structure. We considered models with a maximum lag order p=6 for 
the weekly yen series and p=9 for the daily British pound series. The 
models selected are indicated in Panel B of Table 3. In general, the 
dynamic structure, the estimated coefficients and the error variance 
differ significantly across regimes, thus indicating that the data are 
strongly characterised by non-linearities. Moreover, it is interesting to 
note that the dynamics of the three-regime SETAR model for the yen 
series are in line with the theoretical model described in Hsieh (1989) 
and with the empirical evidence reported by Kräger and Kugler (1993): 
the evidence of non-linearity in the mean is probably due to the exis-
tence of a managed floating exchange rate regime, in which the central 
banks intervene in order to avoid excessive depreciation or apprecia-
tion.  

5. The forecasting exercise 

The forecasting performance of the models is evaluated in different 
ways. First we compute MSFE for the various models for different 
steps ahead (1 to 5), and compare the relative performance of the 
models by means of the Diebold and Mariano test. This exercise is first 
conducted over the entire period, then on different sub-samples where 
non-linearities may be present with varying intensities. Fildes (1992) 
and Tashman (2000) point out the importance of carrying out this 
kind of investigation, arguing that selection of the forecasting origin 
might affect the accuracy of the results. Selection of the forecasting 
origin is, in fact, often arbitrary, there being no clear-cut criterion to 
decide the splitting of the entire sample into estimation and forecast-
ing periods, apart from the need to have enough observations in the 
first period to obtain sensible and robust estimates, and to reserve 
enough observations to the second period to be able to evaluate the 
out-of sample performance of the model. 
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Diversifying into “multiple test period” (Tashman 2000) is par-
ticularly wise when some important characteristics of the data may be 
masked on carrying out analysis over the whole forecasting period. 
Our sub-sample analysis may provide some fruitful insights into the 
capacity of the models to discriminate between periods featuring high 
non-linearity and periods characterised by linearity. 

We then extend the evaluation of the models to cover interval 
predictions. Models of conditional variance are particularly useful 
when the object of the analysis is to provide some indication of the 
uncertainty around the mean. Evaluation of interval forecasts could 
reveal gains to the non-linear models, particularly the GARCH mod-
els, which may not be apparent on MSFE measures.  

5.1. Point forecasts evaluation 

5.1.1. MSFEs over the entire forecast period 

In this comparative exercise the forecasting ability of the models is 
assessed by means of the MSFE. The forecasts for the two series were 
calculated recursively from 1 to 5 steps-ahead. The models were identi-
fied and specified only once, over the first estimation periods, 1973.2-
1991.6. The models were then re-estimated (but not re-specified) by 
expanding the sample with one observation each time, over the period 
1991.7-1997.7, obtaining for each forecasting horizon (h) 313 point 
forecasts for the weekly yen and 1532 for the daily British pound. 
Computation of multi-step-ahead forecasts (h>1) from non-linear 
models (SETAR) involves complex analytical calculations and the use 
of numerical integration techniques or, alternatively, the use of si-
mulation methods. In this study the forecasts are obtained by applying 
the Monte Carlo2 method. In Table 4 we report the MSFEs  
and MSFEs normalised with respect to the linear model, which repre-
sents our benchmark. The values are calculated as the ratio 
MSFENL/MSFEL; a number less than one means that the non-linear 
model provides more accurate forecasts than the simple linear model. 
Furthermore, in order to assess whether this superiority is stati- 
stically significant, we perform the Diebold-Mariano (1995) test; values 
 
–––––––––– 

2 Each point forecast is obtained as the average over 500 replications. 
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TABLE 4 

FORECASTING PERFORMANCE – MSFE AND NORMALISED MSFE 

Number of steps-ahead  
1 2 3 4 5 

Japanese yen MSFE N-MSFE MSFE N-MSFE MSFE N-MSFE MSFE N-MSFE MSFE N-MSFE 
Naïve 1.8917 – 1.8944 – 1.8915 – 1.8985 – 1.8992 – 
Linear AR(2) 1.8929 – 1.8892 – 1.8837 – 1.8948 – 1.8992 – 
GARCH 1.8980 1.003 1.8903 1.001 1.8785 0.997** 1.8913 0.998 1.8965 0.999 
SETAR-2 1.8643 0.985 1.8777 0.994 1.8569 0.986** 1.9306 1.019** 1.8686 0.984** 
SETAR-3 1.9324 1.021 1.9384 1.026** 1.8847 1.001** 1.9153 1.011 1.8747 0.987 
British pound           
Linear AR(9) 0.3886 – 0.3884 – 0.3881 – 0.3881 – 0.3892 – 
GARCH 0.3883 0.9920* 0.3883 0.997 0.388 0.997** 0.3880 0.997 0.3891 0.997 
SETAR-2 0.3906 1.0051 0.3950 1.0170** 0.3954 1.0188** 0.3898 1.0044 0.3895 1.0008 
SETAR-3 0.3903 1.0045 0.3951 1.0173** 0.3906 1.0065** 0.3889 1.0022 0.3948 1.0145** 

Values are calculated for 313 forecasts for the yen and 1532 forecasts for the British pound. Note 
that the value of MSFE has been rescaled by multiplying by 104. The normalised MSFE is 
calculated as the ratio MSFENL/MSFEL; *, ** denotes significance of the Diebold-Mariano test at 
10% and 5% level of significance. 
 
leading to rejection of the null hypothesis of equality of forecast 
accuracy are indicated with stars. Table 4 also shows for the yen 
series the MSFE obtained from a naïve forecast by assuming that 
the levels of the exchange rates follow a random walk with drift 
process. 

We note that in terms of MSFE the models exhibit in general 
similar values. The SETAR-2 model for the yen produces point fore-
casts which are marginally better than the AR forecasts for 4 horizons 
out of 5, although only in one case do the forecasting gains prove 
significant according to the Diebold-Mariano test. In the case of the 
daily British pound the few significant values seem to favour the linear 
model. 

As mentioned in the introduction, such results may, as argued by 
Diebold and Nason (1990), be due either to the fact that non-linearity 
is weaker over the forecast period or to the fact that, if non-linearities 
concern the even-ordered conditional moments, they are of no use in 
improving point forecasts and cannot be revealed in terms of MSFE. 
In our application the former explanation may apply to the weekly 
yen for which, as we have seen, the linearity tests detected fewer 
rejections in the forecasting period than in the estimation period. On 
the other hand, for the daily British pound, which is strongly charac-
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terised by second order non-linearities, we expect the GARCH model 
to outperform the linear AR in terms of interval forecasts rather than 
point forecasts.  

5.1.2. MSFEs over different sub-samples 

Following the recommendations in Tashman (2000), in this section we 
further articulate evaluation of the models by conducting multi-period 
tests to assess the sensitivity of the results to specific sub-samples.  

We start from examination of the linearity properties of the se-
ries over different sub-samples. The results of this analysis are reported 
in table 5. For the Japanese yen the forecast period is divided into six 
sub-samples of equal length, each containing approximately 50 obser-
vations. As can be seen from Table 5, there is some suggestion of non-
linearity of varying degrees across sub-samples: linearity is rejected in 
sub-samples 1, 2 and 5, while there appears to be very little evidence of 
non-linearity for sub-samples 3 and 4. Non-linear models are expected 
to perform better in periods characterised by non-linearity. However, 
a recent Monte Carlo study (Clements et al. 2003) has indicated that 
the data need to exhibit a significantly high degree of non-linearity for 
the Diebold-Mariano test to reveal that a SETAR model outperforms a 
linear AR specification.  

Application of the Diebold-Mariano test to distinct sub-samples 
yields the results summarised in table 6A, where values of normalised 
MSFE greater than one indicate the superiority of the benchmark AR 
model. The picture obtained from table 6A is only marginally more 
informative on the relative performance of the models than that 
obtained from the analysis over the full forecast sample. In particular, 
we observe that cases in which the SETAR model outperforms the 
linear model are still rare and, as expected, coincide with the sub-
periods characterised by more prominent non-linearity.  

With regard to the British pound, the multi-period evaluation 
was conducted over 15 sub-samples, each containing approximately 
100 observations. Again, only a minority of the cases indicated in 
table 6B show some gains from the non-linear models in terms of 
MSFEs. The most striking forecasting gains are obtained from the 
GARCH model in sub-samples S4 and S10, from the SETAR-2 model 
in sub-samples S9 and S10 and from the SETAR-3 model in sub-samples 
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TABLE 6A  

NORMALISED MSFE BY SUB-SAMPLES 

Number of steps-ahead Japanese yen  
1 2 3 4 5 

GARCH-M S 1.003 1.001 0.997 0.998 0.999 
 S1 1.017 1.011 1.007 1.007 1.006 
 S2 1.022 1.017 1.007 1.009* 1.006 
 S3 1.000 1.010 0.999 0.995 1.001 
 S4 1.009 1.010 1.009 1.005 1.003 
 S5 0.976 0.980 0.999 0.997 0.989** 
 S6 0.977 0.985 0.999 1.000 0.995 
SETAR-2 S 0.985 0.994 0.986 1.019** 0.984** 
 S1 0.957* 0.987 0.937** 1.040* 0.946** 
 S2 1.008 1.001 0.939** 1.010 1.024 
 S3 1.022 1.047 1.070** 1.000 0.974 
 S4 0.983 1.016 1.000 0.983 0.973 
 S5 0.929** 0.992 1.012 1.021 0.991 
 S6 1.010 1.012 1.012 1.024** 1.019 
SETAR-3 S 1.021 1.026** 1.001 1.011 0.987 
 S1 1.058 1.021 0.985 1.067** 0.930** 
 S2 1.017 1.056 0.889** 0.979 1.013 
 S3 1.038 1.007 1.053** 1.021 0.992 
 S4 1.032 1.002 0.990 0.995 0.997 
 S5 0.982 1.051** 1.039* 1.012 0.987 
 S6 0.995 1.034 1.031 1.016 1.006 

S refers to the whole forecasting period, S1, S2, S3, S4, S5 and S6 refer to the six sub-periods. 
*, ** denotes significance of the Diebold-Mariano test at 10% and 5% level of significance. 

TABLE 6B 

NORMALISED MSFE BY SUB-SAMPLES – BRITISH POUND LOG-DIFFERENCES 

Number of steps ahead British pound  
1 2 3 4 5 

GARCH S2 1.0014 1.0012 1.0010 1.0009 1.0011* 
 S4 0.9957** 0.9973* 0.9977** 0.9977** 0.9978** 
 S9 0.9996 1.0003** 1.0003 1.0000 1.0002 
 S10 0.9981** 0.9996** 0.9995** 0.9994** 0.9995* 
 S13 1.0002 0.9994 0.9991 0.9992* 0.9993 
 S14 0.9984** 0.9999 1.0001 0.9999 1.0001 
SETAR-2 S2 1.0060 1.0262 1.0138 0.9911 1.0007 
 S4 0.9969 1.0275 1.0274 0.9835 0.9939 
 S9 0.9851 0.9485** 1.0145* 0.9484 0.9950 
 S10 1.0043 0.9343** 1.0177** 0.9443* 0.9926 
 S13 0.9974 1.0035 1.0007 1.0203 1.0236* 
 S14 1.0014 0.9560** 1.0209 0.9966 0.9873 
SETAR-3 S2 0.9873 1.0273* 0.9980 0.9909* 1.0233** 
 S4 1.0161 1.0182 0.9891 0.9710** 1.0113 
 S9 0.9701 0.9879 1.0085 0.9843 1.0067 
 S10 0.9923 0.9374** 1.0357** 0.9856 1.0032 
 S13 1.0313* 1.0087 0.9901 1.0255 1.0328 
 S14 1.0014 0.9780 1.0024 1.0083 1.0036 

*, ** denotes significance at 10% and 5% level of the Diebold-Mariano test. 
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S2, S4 and S10. Unreported results of the linearity tests over distinct 
sub-samples showed the highest number of rejections in sub-samples 
S9 and S10, confirming, in part, the results obtained for the Japanese 
yen indicating that the few cases of forecasting gains from the non-
linear models coincide with periods of stronger non-linearity.  

Overall, the results in this section demonstrate that, even in the 
presence of in-sample evidence of SETAR type non-linearity, these 
kinds of models only rarely outperform the linear AR benchmark on 
MSFE comparisons, therefore supporting the conclusion that the AR 
model provides a simple and robust tool for point forecast.  

5.2. Interval forecasts evaluation 

In this section we extend the forecast comparison by evaluating the 
models in terms of their ability to produce interval forecasts. An 
interval forecast, or prediction interval, for a variable specifies the 
probability that the future outcome will fall within a stated interval. 
The lower and upper limits of the interval forecast are given as the 
corresponding percentiles. We use central intervals so that, for exam-
ple, the 90% prediction interval is formed by the 5th and 95th percen-
tiles. Evaluation of interval forecasts is conducted by means of the 
likelihood ratio test of correct conditional coverage, as recently pro-
posed by Christoffersen (1998). We are interested in detecting whether 
this comparison reveals gains to the non-linear models, particularly 
the GARCH models, which were not apparent on MSFE measures.  

Christoffersen (1998) shows that a conditional interval forecast 
correctly calibrated will provide a hit sequence It (for t=1, 2, …, T), 
with value 1 if the realisation is contained in the forecast interval, and 
0 otherwise, that is distributed i.i.d. Bernoulli, with desired success 
probability p. The likelihood ratio test statistic for correct conditional 
coverage combines a test of unconditional coverage, LRUC, with a test 
of independence. A sequence of interval forecasts is said to have cor-
rect unconditional coverage if E[It]=p, for all t. Denoting p the nomi-
nal coverage, n1 and n0 the realisations respectively inside and outside 
the forecast interval, and π=n1/(n0+n1) the sample proportion of 
successes, the test for unconditional coverage is given by: 
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This test does not have power against the alternative that the ze-
ros and ones are clustered in time-dependent fashion. As stressed by 
Christoffersen, a simple test for correct unconditional coverage is 
insufficient in the presence of higher-order moments dynamics (condi-
tional heteroscedasticity, for example). In order to overcome this 
limitation, Christoffersen proposes a test for independence and a joint 
test for independence and correct coverage (LRIND). 

The LR test for independence assumes a binary first-order 
Markov chain for the indicator function It with transition probability 
matrix given by: 
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where πij=Pr(It = jIt−1=i). Under independence πij=πj, i,j=0,1 where πj 
= Pr(It=j). Thus, under the null hypothesis the transition probability 
matrix is restricted to: 
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The πij and πi are estimated by their sample frequencies. The un-
restricted likelihood for the LR test is given by:  
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where nij is the number of times event i is followed by event j. LRIND is 
asymptotically χ2 with one degree of freedom under the null hypothe-
sis of independently distributed indicator function values. A combina-
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tion of these two tests will give a test of ‘correct conditional coverage’. 
The joint test (LRCC) is obtained as the sum of the two LR tests and is 
asymptotically χ2 distributed with two degrees of freedom.  

In our evaluation analysis of interval forecasts we have consid-
ered intervals with nominal coverage in the range 0.90-0.50. In table 7 
we present results for a selected choice of intervals corresponding to 
probabilities 90, 75 and 50%. This choice enables us to investigate the 
accuracy of the model forecasts over different regions of the distribu-
tion, for example a model that does well in predicting the 90% interval 
also implies correct forecasts of events in the 5% left and right tails of 
the distribution; it is also possible that some models do better than 
others in predicting the tails of the distribution, but worse in predict-
ing other aspects.  

The models considered for our evaluation are the AR, GARCH 
and SETAR-2 estimated for the weekly log-differences of the Japanese 
yen and for the daily log-differences of the British pound. We also 
obtained results for the SETAR-3 model, but they are omitted from 
the following discussion as they were similar to those obtained from 
the SETAR-2 model. Table 7 reports, for each nominal coverage (p), 
the actual unconditional coverage (π) and the P-values of the three LR 
tests presented above.  
The first set of results in table 7 refers to the Japanese yen (see panel 
A). The results reveal that for levels of coverage 90 and 75% the 
GARCH model is the only model to pass all three tests. The SETAR-2 
model shows similar performance to the GARCH model in terms of 
correct unconditional coverage at these intervals, but fails the inde-
pendence test. The worst performance is obtained from the AR 
model, which fails the correct conditional coverage test for all inter-
vals. We also observe that all the models fail to capture some aspects of 
the underlying data generating process, as indicated by the highly 
significant test for correct unconditional coverage at the 50% interval. 
In particular, all the models appear to generate interval forecasts with 
actual coverage (π) greater than the nominal coverage (p=0.50), that is, 
the interval forecasts corresponding to 50% probability are too large, 
as more than 50% observations actually fall into that interval. This 
result may be attributed either to an overestimate of the standard 
errors used in the calculation of the forecast intervals or to inappro-
priate error distribution (see, for examples of possible alternative 
distributions not pursued here, Ryden, Teräsvirta and Asbrink 1998). 
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In applications with exchange rates and other financial variables accu-
racy seems more important in predicting events in the tails of the 
distribution (large losses or gains) rather than values in the middle of 
the distribution (small losses or gains). The more accurate perform-
ance of the GARCH model at wider intervals (90 to 75%) implies 
correct forecasts of events in the tails of the distribution, which is an 
interesting result, suggesting that the GARCH model can be more 
useful, especially for risk management.  

In figure 2 we present plots of the 90% interval forecasts ob-
tained for the log-differences of the yen from the three competing 
models. As can be seen from the figure, the GARCH model gives 
interval forecasts that are wider in volatile periods and narrower in 
tranquil periods. In this case, observations outside the intervals are 
evenly spread over the periods, while in the case of the AR model, and 
to a lesser extent for the SETAR models, observations outside the 
intervals are clustered in volatile periods and largely absent from 
tranquil periods. Thus, a fixed width conditional confidence interval, 
such as that obtained from AR models, is not correctly calibrated, 
since it fails to widen when the conditional variance rises and narrow 
when the conditional variance falls. 

We now evaluate the interval forecasts generated by the three 
models for the daily log differences of the British pound, for which we 
present in table 7 different sets of results: for the entire ex post forecast 
period (Panel B) and for various distinct sub-periods (panels C and D). 
The results of the evaluation of forecast accuracy over the entire 
forecast period, consisting of 1532 observations, show that in terms of 
correct unconditional coverage, there is little to choose in the per-
formance of the three models, in that all the models pass the test for 
the 90% intervals, but fail at the other coverage rates. However, when 
we examine the independence property of the forecasts, only the 
GARCH model passes the test at all levels of coverage, which reflects 
the ability of GARCH model to capture higher-ordered moment 
dynamics, and confirms the results previously obtained for the weekly 
log differences of the yen. The AR and SETAR models fail the inde-
pendence and correct conditional coverage tests at all levels, while the 
GARCH model passes the correct conditional coverage test at the 90% 
interval, but fails at the 75 and 50% intervals, due to the highly signifi-
cant test for correct unconditional coverage. Summarising the results 
obtained so far, again the GARCH model appears to have an advantage 
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FIGURE 2 

DAILY BRITISH POUND SERIES 
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over the other two models in predicting the more extreme values (left 
and right 5% tails), although all the models produce inaccurate interval 
forecasts at the other coverage levels. 

The large number of daily observations has enabled us to articu-
late evaluation analysis for the British pound further by comparing the 
performance of the forecast models over distinct sub-periods. This 
analysis highlights some interesting features of the models in terms of 
the sensitivity of their forecast performance to the period considered 
and their ability to produce accurate interval forecasts at different 
levels of coverage. In the first stage, the multi-period evaluation is 
conducted by splitting the entire forecast period (1532 observations) 
into two broadly equal sub-periods, the first consisting of 700 observa-
tions, the second of the remaining 832 observations. These are then 
further divided into smaller sub-samples of approximately 100 obser-
vations each, for a total of 15 sub-samples. The results for the two 
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major sub-periods are set out in table 7, panel C, while in panel D we 
summarise the main findings for some selected smaller sub-periods.  

First of all it is interesting to observe that the performance of the 
models is sensitive to the period over which they are evaluated: more 
specifically, all the models perform overall better in the first half of 
the forecast period examined (first 700 observations). On the other 
hand, in the second half of the forecast period (last 832 observations), 
all the models fail the correct unconditional coverage test. This failure 
leads to strong rejection of the combined test for correct conditional 
coverage for the AR and SETAR models, while rejection is only 
marginal (P-value=0.064) for the GARCH 90% interval, since the 
GARCH as usual passes the independence test. As can be seen from 
figure 3, the behaviour of the series changes substantially in the second 
half of the forecast period, when the series exhibits less volatility than 
previously. All the models seem to be affected in the same way by this 
break in the variance: evaluation over the second half of the forecast 
period reveals that the actual coverage (π) is higher than the nominal 
level used to construct the forecast intervals. We conjecture that these 
results can be attributed mainly to over-estimated standard errors. 
This conjecture is supported by comparison of the standard deviation 
exhibited by the series in different sub-periods with the standard 
errors used by the models to construct the interval forecasts, averaged 
over the relevant sub-periods (see Table 8). 

We now turn our attention to panel D of table 7, where we re-
port some selected results of the evaluation of interval forecasts over a 
number of distinct smaller sub-periods, offering further support to our 
conjecture above. As can be seen, in periods S9, S10, S12 and S14, 
which are characterised by particularly low standard deviation of the 
series, all the models produce excessively wide interval forecasts. These 
results clearly reflect the deficiency of fixed width confidence intervals 
of the AR model and also the limitation of the two-regime interval 
width of the SETAR-2 model. With regard to the GARCH model, its 
inability to produce accurate forecast intervals in those specific periods 
of reduced volatility may be attributed to the highly persistent condi-
tional variance estimates which prevent immediate adjustments to the 
new volatility regime. In panel D we also present results for some 
selected sub-samples belonging to the first half of the forecast period 
(S3, S4 and S7), which highlight other interesting features of the mod-
els. In particular, we notice that while the GARCH produces accurate 
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interval forecasts throughout all the sub-samples, the AR and SETAR 
models are unable to perform well in sub-samples where the standard 
deviation of the observed series is either above or below its uncondi-
tional value of 0.006.  

6. Conclusions 

In this study we have compared the forecasting performance of alter-
native univariate time series models for the Japanese yen (weekly log-
differences) and the British pound (daily log-differences). Three non-
linear models, namely a two-regime SETAR, a three-regime SETAR 
and a GARCH model, were contrasted with simple linear alternatives 
(AR processes). 

The SETAR and GARCH models proved successful in describ-
ing non-linear features of the data. In particular, the SETAR models  
provided strong in-sample evidence for the existence of different 
regimes, in which the exchange rates log-differences exhibit quite 
different dynamics, while the GARCH models successfully captured 
the volatility clustering of the log-differenced series. 

The forecast performance of the models was assessed by means 
of different forecasting evaluation criteria. First, we evaluated the 
models in terms of their ability to produce point forecasts, by compar-
ing MSFEs over the entire forecasting period (1991.6-1997.7) and over 
different sub-samples. Differences in MSFE between models were 
evaluated by means of the Diebold and Mariano test. This analysis did 
not show significant forecast gains of the non-linear models over the 
linear benchmark, with only few exceptions coinciding with periods 
of more prominent non-linearity. These results support the conclusion 
that, even in the presence of in-sample non-linearity, AR models can 
provide a simple and robust tool for point forecasts. 

Next, the models were evaluated in terms of their ability to pro-
duce interval forecasts. Following Christoffersen (1998), for evaluation 
of the interval forecasts we computed LR tests for unconditional cover-
age and independence. These tests were then combined into joint tests 
of conditional coverage. Multi-period analysis showed that the results 
are somewhat sensitive to the period chosen for the evaluation of the 
models and also vary markedly with the level of coverage considered.  
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FIGURE 3 

DAILY BRITISH POUND LOG-DIFFERENCES 
FORECASTING PERIOD 1991.7-1997.7 
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A robust result emerging from the evaluation of interval fore-
casts revealed gains to the GARCH models, especially at the wider 
intervals, implying correct coverage of the tails of the distribution. 
This is an interesting finding, suggesting that the GARCH model can 
be more useful in practical applications, and especially for risk man-
agement. The analysis has also shown that the static interval forecasts 
from the AR model and the two regime interval forecasts from the 
SETAR model are clearly not good ‘conditional’ interval forecasts. 
The tests also revealed that all models failed to produce forecasts with 
correct coverage for narrower intervals (.50%), suggesting that some 
aspects of the underlying data generating process were not adequately 
captured by the models. However, for practical applications, particu-
larly with financial variables, where attention is typically confined to 
the tails of the distribution (large losses and gains), less accurate fore-
cast performance in the middle range of the distribution (small 
changes of the series) may be of minor importance.  

These results clearly reflect the fact that the forecasting models 
are all suboptimal, and it is therefore possible that some do better than 
others in predicting certain regions of the distribution, but worse in 
predicting other aspects. From all this we see pointers emerging for 
future research in various directions. For example, consideration of 
alternative error distributions might be a promising avenue to follow. 
It would also be interesting to see whether alternative types of non-
linear models not pursued here (Artificial Neural Networks, STAR, 
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Markov Switching) or some combination of forecasts from different 
models might yield better performance.  
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