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Abstract
The current study investigated the effect of sample size on the number of items that 
show differential functioning (DIF) and the number of distractors that also show 
differential functioning (DDF) using the Mantel-Haenszel procedure. Data came 
from a national 8th grade mathematics exam that is composed of 40 multiple-choice 
items that was administered to 40,000 examinees. Eight samples with 250, 500 
1250, 2500, 5000, 10000, 15000, and 20000 examinees were randomly selected. 
The findings of the current study indicated that increasing sample size increased the 
number of items detected with DIF and DDF. In addition, larger sample sizes are 
needed to detect items with nonuniform DIF and with negligible magnitude of DIF. 
Moreover, detecting DDF requires larger sample sizes as compared to the detection 
of DIF. Finally, sample size of 2,500 provided adequate number of items flagged with 
DIF (both types, and different magnitudes) and with DDF
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Introduction
Test developers and researchers are interested in developing 
tests with good psychometric properties that can be used in 
making better decisions related to individuals’ performance, 
achievement, or classification. The most important 
consideration in developing tests is validity, which indicates 
that the interpretations of test scores for proposed uses of 
tests are supported by theory or by some evidence (AERA 
et al., 2014). Various sources of evidence can be used in 
evaluating validity such as evidence based on test content, 
evidence based on internal structure, and evidence based on 
relations to other variables. 

Based on the internal structure of a test, evidence of validity 
can be collected to show whether some items may behave 
differently for different subgroups of test takers (e.g., males and 
females). Differential Item Functioning (DIF) occurs when 
the probability of the correct answer to a particular item is 
different for individuals who belong to two distinct groups but 
are similar in ability (Penfield & Camilli, 2007). If DIF exists 
for a given test item, this imply that one group of respondents 
(usually referred to as the reference group) may have an unfair 
advantage of obtaining the correct answer to this item as 
compared to another group of respondents (usually referred 
to as the focal group). In this case, this item would function 
in favor of the reference group or differently against the focal 
group (Walker, 2011). 

Several procedures were proposed in the literature in 
conducting DIF. Millsap (2011) categorized these procedures 
into two broad statistical frameworks: observed variable 
analysis and latent variable analysis. Examples of the observed 
variable analysis include the Mantel-Haenszel method 
(Holland & Thayer, 1988) and the logistic regression method 
(Swaminathan & Rogers, 1990). These types of analyses test 
DIF using an observed variable (i.e., sum scores or total scores) 
as the conditional variable. However, in the latent variable 
analysis item response are conditioned on the latent variable 
(i.e., the ability parameter). Similarly, there are many methods 
for detecting DIF under this framework, such as IRT methods 
(Lord, 1980) and multiple-group confirmatory factor analysis 
(Meredith, 1993). 

The Mantel-Haenszel procedure is a non-parametric 
approach in detecting DIF in multiple-choice items that has 
gain popularity due to its simplicity, yielding meaningful 
results even with small sample sizes as compared to other 
detection procedure, and in providing an effect size measure 
in addition to the test of significance (Clauser & Mazor, 
1998). Therefore, the present study investigated the effect of 
sample size on DIF when detected using the Mantel-Haenszel 
procedure. 

The Mantel-Haenszel (MH) procedure

In the MH procedure, observed total scores are used to match 
examinees from both groups, reference and focal groups. At 
each score level (j) of a dichotomous-scored item, a 2(group) x 
2 (item response) contingency table is created for each item as 
shown in Table 1. 

Tab. 1. A 2x2 contingency table for each test item under each level of the 
total test score (j) used in the calculation of the MH test statistic. 

Group
Item Score

Total
1 (correct) 0 (incorrect)

Reference Aj Bj Nrj

Focal Cj Dj Nfj

Total M1j M0j Tj

The MH statistic (Mantel & Haenszel, 1959) is distributed 
as chi-square with one degree of freedom, which tests the null 
hypothesis of no DIF against the alternative hypothesis:

     
,
    

for α≠1   ………………….. 
   

(1)  

The parameter α is called the common odds ratio, which is 
the ratio of the odds of correct response for the reference group 
over that of the focal group (Penfield, 2003). Its estimate is 
given by: 

             

ά
      

 ……………………….. (2)

Holland and Thayer (1988) proposed the use of the log of 
common odds ratio:

             ∆MH =  -2.35 ln ά     …………….. (3) 
This statistic is asymptotically normally distributed, with 

negative values indicating that the reference group found that 
item easier than did the focal group. In addition, ∆MH  can be 
used to interpret the practical significance of DIF. Absolute 
values of ∆MH less than 1 correspond to no or negligible DIF, 
equal to or more than 1 and less than 1.5 correspond to 
moderate DIF, and 1.5 or more correspond to high DIF (Zieky, 
1993). For example, a value of ∆MH=-1 means that the item 
was found to be more difficult for members of the focal group 
than for the comparable members of the reference group by an 
average of one ∆MH point. In other words, a value of ∆MH=-1 
corresponds to a value of ά =1.53 which means that the odds of 
answering the item correctly for the reference group are more 
than 50% higher than the odds of answering it correctly for the 
focal group after conditioning on ability (Zwick, 2012). 

Even though the MH procedure has shown to have high 
power in detecting uniform DIF, it has been shown that it was less 
powerful in detecting nonuniform DIF (Swaminathan & Rogers, 
1990). Uniform DIF results when there is no interaction between 
group membership and ability level. That is, the difference in the 
probabilities of a correct answer for the two groups of examinees is 
the same at all ability levels. However, when an interaction exists 
between group membership and ability level nonuniform DIF is 
said to occur. In other words, the difference in the probabilities of 
a correct answer for the two groups of examinees is not the same 
at all ability levels. In the odds ratio context, DIF exists when 
α≠1. If α remains constant across all ability levels then uniform 
DIF is present, but nonuniform DIF is present if α varies across 
the ability continuum (Penfield, 2003).

However, Penfield (2003) applied the Breslow-Day 
test of trend in odds ratio heterogeneity to the detection of 
nonuniform DIF. He proposed the use of both the Breslow-
Day test and the MH test such that the null hypothesis of no 
nonuniform DIF is retained if both tests lead to  decisions 
of retaining the null hypothesis, while the null hypothesis is 
rejected if either test rejected the null hypothesis. 
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Differential Distractor Functioning

Usually, DIF analysis are followed by conducting differential 
distractor functioning (DDF) in dichotomous items (Penfield, 
2008) and by differential step functioning in polytomous items 
(e.g., Akour et al., 2015). The existence of DIF in a multiple-
choice item does not indicate in which response option the 
DIF effect occurs. Therefore, past research (e.g., Green et al., 
1989; Penfield, 2008) proposed the framework of DDF which 
refers to the difference on probabilities of selecting each of the 
distractors for individuals who belong to two distinct groups 
but are similar in ability. 

Examining DDF can help in identifying the causes of DIF. 
If DDF effects were consistent across all distractors, this may 
signal that the cause of DIF resides in the correct response or 
the item stem. That is, there might be a biasing factor in the 
correct response which leads to a consistent difference between 
the two groups in the probability of selecting each of the 
distractors. This can guide the test reviewer in conducting a 
content review on the correct response option or the item stem. 
On the other hand, if substantial DDF effect was associated 
with only one distractor, this may signal that the cause of DIF 
resides in that distractor. This can guide the test reviewer in 
conducting a content review on the properties of the specific 
distractor that could make this distractor more attractive or 
unattractive to the disadvantaged group (Penfield, 2008). 

To examine DDF, several approaches have been suggested. 
For example, a log-linear approach (Green et al., 1989), the 
standardization method (Dorans et al., 1992), a mixture item 
response model (Bolt et al., 2001), and an odds ratio approach 
(Penfield, 2008). In the odds ratio approach, ability is divided 
into k ability strata. The conditional odds ratio across all strata 
of ability can be estimated using: 

             

ά

   

……………………..  (4)

Where R0k is the number of reference group members in 
the kth stratum who selected the correct response, Rjk is the 
number of reference group members in the kth stratum who 
selected the jth distractor, F0k is the number of focal group 
members in the kth stratum who selected the correct response, 
and Fjk is the number of focal group members in the kth 
stratum who selected the jth distractor. 

The natural logarithm of ά denoted by λ̂  is an estimator of 
the DDF effect associated with the jth contrast function. If the 
value of λ̂  is zero for a given distractor, then no DDF exists in that 
distractor. Values of λ̂  other than zero indicates the presence of 
DDF in that distractor, with positive values indicate that DDF is 
favoring the reference group, while negative values indicate that 
DDF is favoring the focal group. A Z test statistic can be formed 
by dividing λ̂  by its estimated standard error, which is distributed 
approximately as standard normal. This test statistic can be used 
to test the null hypothesis of no DDF for each distractor. 

Sample size and MH

Large sample sizes improve the detection rates of the MH 
procedure. However, the MH procedure in detecting DIF has an 

advantage of requiring smaller sample sizes to yield meaningful 
results as compared to other detection methods, e.g., IRT 
methods. Mazor et al., (1992) pointed out that some studies 
considered samples of size 250 as small, whereas they asserted that 
other studies suggested that the MH procedure would be well 
functioning for samples of size 100. However, in their study Mazor 
et al. (1992) found that when using samples of size 2000 the MH 
procedure missed 25 to 30% of the differentially functioning 
items. Moreover, more than 50% of the differentially functioning 
items were missed when using samples of size 500 or less. 

Using eight different sample sizes, Acar (2011) examined 
the number of detected DIF items using the hierarchical linear 
modeling procedure. Sample sizes started from 100 to, 11000 
examinees. This study revealed that the number of detected 
items increased as sample size increased. 

In a recent study, Ukanda et al. (2017) conducted a simulation 
study to examine the effectiveness of the MH in detecting DIF 
under three conditions of sample size (20, 60, and 1000), ability 
distribution, and test length. The findings of this study revealed 
that sample size had a significant effect on the detection of the 
three types of DIF items (A, B, and C) under the MH procedure. 
More DIF items were detected when sample size increased, while 
detecting more type C DIF items as compared to types A and B. 

Different studies detected DDF in different disciplines (e.g., 
Ozdemir & AlGhamdi ,2022; Deng, 2020; Terzi & Suh, 2015; 
Tsaousis, Sideridis & Al-Saawi, 2018; Koon, 2010; Wang, 2000; 
Green, Crone, & Folk, 1989). However, no study investigated 
the effect of sample size on DDF. Therefore, the purpose of the 
current study was to explore the effect of sample size on the 
detection of DIF and DDF in multiple-choice items using the 
MH procedure. 

Purpose of the current study

A good test depends on good items. One of the criteria of a 
good item is to be fair for distinct groups who are taking the 
test. Test developers are not only concerned with determining 
the type of the items, but also are concerned with determining 
the characteristics of the items that will be included in the test, 
such as: difficulty, discrimination, and to be free of DIF. The 
presence of DIF threatens validity, and thus infected items are 
candidates for removal. 

Since a good test is constructed from good items, a good 
multiple-choice item depends on good distractors. Therefore, it is 
a good practice to examine distractors for differential functioning. 
The characteristics of the items and distractors are affected by 
the size of the samples. Therefore, the aim of this study was to 
investigate the effect of the sample size on the number of items that 
show DIF, both nonuniform and uniform types, and the number 
of distractors that also show DDF using the MH procedure. 

Numerous studies in the literature (e.g., Acar, 2011; 
Ukanda et al., 2017) have examined the effect of sample 
size on the number of detected items with DIF. Such studies 
focused on uniform DIF and utilized simulated data. It is a 
good practice to have multiple evidence of the effect of sample 
size on the detection of DIF and DDF. Thus, the current study 
investigated whether using empirical data would support the 
findings of previous studies that relied on simulated data. It is 
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hoped that the current study would provide researchers with 
guidelines regarding the recommended sample size that can 
yield an adequate number of items detected with DIF and 
DDF. Additionally, it is hoped that this study would reveal if 
the detection of DIF requires similar sample sizes as compared 
to the detection of DDF, and if comparable sample sizes are 
required to detect both types of DIF, uniform and nonuniform.   

Method
Participants

The data for this study came from a national 8th grade 
mathematics exam that is composed of 40 multiple-choice 
items. This test was administered by the Ministry of Education 
in Jordan to, approximately, 40,000 examinees. Mazor et al., 
(1992) pointed out that some studies considered samples of 
size 250 as small. Therefore, in the current study we selected 
different sample sizes from the population of examines starting 
with a sample of size 250. Another sample sizes of 500, 1250, 
2500, 5000, 10000, 15000, and 20000 were also randomly 
selected from the same population. 

Data Analysis 

In the current study, we examined gender related DIF and 
DDF. Female students were considered as the focal group and 
male students were considered as the reference group. DIF and 
DDF analyses were conducted using the MH procedure. DIF 
analyses were conducted using the DIFAS computer program 
(Penfield, 2005), while the DDF analyses were conducted 
using the DDFS computer program (Penfield, 2010). 

For DIF detection, statistical significance tests are not 
considered satisfactory for the interpretation of the practical 
significance of DIF (Camilli, 2007). Therefore, ∆MH = -2.35 ln 
ά is an effect size measure that was used to supplement the chi-
square test of statistical significance to test the null hypothesis 
of no DIF. Positive values of ∆MH indicate that the item is 
favoring the focal group (i.e., females), whereas negative values 
indicate that the item is favoring the reference group (i.e., 
males). For the classification of the size of the effect size, we 
followed the three-category scheme proposed by Zieky (1993) 
and by Dorans and Holland (1993):
 - Type A items: Negligible DIF, where the MH chi-square 

test is not significant or where ∆MH is less than 1 in absolute 
value. 

 - Type B items: Moderate DIF, where the MH chi-square 
test is significant, and the effect size is between 1 and 1.5 
in absolute values. 

 - Type C items: Large DIF, where the MH chi-square test is 
significant, and the effect size is greater than 1.5 in absolute 
value. 
Dorans (as cited in Zwick, 2012) clarified the reasoning 

behind selecting the cutoffs of 1 and 1.5. He stated that a 
tolerated and a minimum undesirable difference in delta is 
1 point. However, a difference in delts of 2 points or more 

should be avoided. The value of 1.5 represents the lower limit 
of the delta difference of 2 (1.5 to 2.5). 

For the detection of nonuniform DIF, the Breslow-Day test 
of trend in odds ratio heterogeneity was used in addition to the 
MH test. The Breslow-Day test is a chi-square test with one 
degree of freedom. The null hypothesis of no nonuniform DIF 
is retained if both tests lead to decisions of retaining the null 
hypothesis, while the null hypothesis is rejected if either test 
rejected the null hypothesis. 

To examine DDF, the natural logarithm of the odds ratio 
was utilized. If the value of this natural logarithm is zero for a 
given distractor, then no DDF exists in that distractor. Values 
of other than zero indicates the presence of DDF in that 
distractor. Positive values indicate that DDF is favoring the 
reference group, while negative values indicate that DDF is 
favoring the focal group. The nominal level of 0.05 was used 
for all analyses. 

Results
The purpose of the current study was to examine the influence 
of sample size on the number of detected items with DIF 
and DDF according to students’ gender. The MH Common 
Log-Odds Ratio method was utilized on a multiple-choice 
national math test for eight different sample sizes ranging 
between 250 and 20,000. The results of the current study are 
presented below.

The effect of sample size on DIF

The number of items detected with DIF, number of items 
detected with each type of DIF, and the number of items 
detected with DIF with different magnitudes at different 
sample sizes are presented in Table 2 and figures 1 to 3. 

Tab. 2. Number of items showing DIF according to type and magnitude 
of DIF, and the number of items that show DDF at different sample sizes

Sample
size

Number of 
DIF items

Type of DIF Magnitude of DIF Number 
of items 

with 
DDF

uniform nonuniform Negligible moderate large

250 7 6 1 0 0 7 8
500 12 12 0 0 6 6 15
1250 12 12 0 0 6 6 16
2500 23 13 10 14 5 4 41
5000 26 14 12 15 8 3 52
10000 30 18 12 24 3 3 63
15000 34 14 20 26 4 4 70
20000 34 10 24 27 4 3 73

Table 2 and Figure 1 shows that as sample size increased, the 
number of detected items with DIF increased significantly (χ2 
= 35.7, df = 7, p < 0.001). The number of detected DIF items 
at sample size 20,000 was five times the number detected at the 
smallest sample size of 250. However, no gain was obtained in 
the number of detected items when sample size increased from 
15,000 to 20,000. 
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Fig. 1. Number of detected items with DIF across different sample sizes 

Fig. 2. Number of detected items with the two types of DIF across different sample sizes 

Fig. 3. Number of detected items with different magnitudes of DIF across different sample sizes 
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Regarding the number of items that were flagged with 
nonuniform DIF, Table 2 and Figure 2 indicate a significant 
increase as sample size increased from 250 to 20,000 (χ2 = 
24.7, df=5, p < 0.001). However, the number of items detected 
with uniform DIF did not increase significantly as sample size 
increased (χ2 = 6.8, df=7, p = 0.45). Therefore, larger samples 
sizes are needed to detect items with nonuniform DIF. 

Concerning the impact of sample size on the number of 
DIF detected items according to DIF magnitude  (negligible, 
moderate, and large), Table 2 and Figure 3 show that larger 
sample sizes are needed to detect items with negligible DIF. 
Increasing sample size did not significantly affected the number 
of detected items with moderate DIF (χ2 = 3.8, df = 6, p = 0.8) 
or those with large DIF (χ2 = 4, df = 7, p = 0.8). 

The effect of sample size on DDF

The number of items detected with DDF are presented in 
Table 2 and Figure 4 which show that the number of items 
flagged with DDF increased significantly as sample size 
increased (χ2 = 114.7, df = 7, p < 0.001). 

Even though larger sample sizes detected more items flagged 
with DIF and DDF, Figure 4 shows that the effect of sample 
size on the detection rate was more evident for DDF than for 
DIF. Therefore, detection of DDF requires larger sample sizes 
as compared to the detection of DIF. 

Discussion
The current study examined the relationship between sample 
size and the detection rate of multiple-choice items that exhibit 
DIF and DDF. Eight different sample sizes ranged from small 
sample with size of 250 to large one with size of 20,000 were 
utilized in this study. DIF and DDF analyses were conducted 
via the MH common log odds ratio test statistic. 

One of the main findings of the current study is that 
there was a positive relationship between sample size and the 
detection of items with DIF. Increasing sample size resulted in 
an increase in the number of items flagged with DIF. Larger 
sample sizes yielded more powerful test statistic. This finding 
aligns with the findings of previous research (e.g., Mazor et 
al., 1992 and Ukanda et al., 2017). The number of detected 
items with DIF doubled when the sample size also doubled 
(when sample size increased from 1,250 to 2,500 examinees). 
Therefore, the sample size of 2,500 examinees may be 
considered adequate for detecting most items with DIF. Those 
items which were not flagged with DIF at this sample size may 
be difficult or poorly discriminating items.

However, the finding concerning the number of items 
detected with nonuniform DIF was questionable for samples 
with size less than 2,500. Larger sample sizes are needed to 
detect non uniform DIF as compared to uniform DIF. It 
seems that sample size of 2,500 was also adequate in detecting 
uniform and nonuniform DIF. There were not much gain 
in the number of items detected with nonuniform DIF for 
samples with size larger than 2,500. 

Moreover, items with negligible magnitude of DIF started 
to be detected at sample size 2,500. Larger sample sizes resulted 
in more items detected with negligible amount of DIF. This is 
inconsistent with the findings of Ukanda et al. (2017) where 
larger sample sizes detected more items with large amount of 
DIF. According to the findings of the current study, there were 
not much gain in the number of items detected with moderate 
and large magnitudes of DIF for samples with size larger than 
2,500. 

In addition, more items flagged with DDF were also 
detected as sample size increase. However, as sample size 
increased the number of items detected with DDF was larger 
than that detected with DIF. The effect of sample size on DDF 
detection was more obvious than its effect on the detection of 
DIF. The number of items flagged with DDF increased by more 
than the double when the sample size increased from 1,250 to 
2,500. It seems that sample size of 2,500 is the smallest sample 

Fig. 4. Number of items detected with DIF and DDF across different sample sizes 
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size that enables test developers and practitioners to flag most 
items with DIF (uniform and nonuniform, and with different 
magnitudes of DIF), and with DDF.

The widespread use of all kinds of achievement and 
psychological tests in making decisions related to the 
classification of individuals and their success or failure, 
prompts test developers to pay attention to the fairness and 
invariance issues (Wiberg, 2007). Unfairness exists when 
there are differential performance between two groups on a 
given test item in the conditional probability of the correct 
answer (Penfield, 2008). Accordingly, the use of large samples 
would help test developers in detecting those items that exhibit 
DIF and DDF, and thus removing such items to enhance the 
validity of the interpretation made based on test scores. 

One limitation to the current study is that samples of size 
less than 250 was not used. In addition, only one method 
for DIF and DDF detection was used, the MH procedure. 
Therefore, the findings of the current study may not be 
generalizable to sample sizes smaller than 250 and/or to other 
methods used in DIF and DDF detection. It is recommended 
for future research to study the effect of smaller sample sizes on 
the detection of DDF, and using other methods of detection, 
such as the regression-based approaches. Furthermore, research 
needed to examine the effect of sample size on DIF and DDF 
according to some factors such as: type of test, types of groups 
used to detect DIF (other than male vs. female focus), item 
difficulty, item discrimination, and ability distributions.

Finally, the current study analyzed real data, but the 
generalizability of the results in terms of sample sizes needed 
to increase sensitivity need to be supplemented by some 
simulation results that consider specified levels of DIF and 
DDF and investigate sensitivity across simulated samples of 
the same sample sizes used for the actual data. 
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