Einstein Classical Program Revived
DOI:
https://doi.org/10.13133/2532-5876/17626Abstract
The Einstein Classical Program is well known: to prove that, at least in the domain of atomic physics, quantum mechanics can be recovered from a theory presenting some “realistic character’’. Here we address an extreme form of the program in which the realistic theory is just classical electrodynamics of point charges, and give concrete examples in which typical “quantum phenomena’’ are explained. Namely, spectral lines (in the case of ionic crystals) and chemical bond (in the case of the H2+ ion of the Hydrogen molecule). Additionally, an explanation is given of a phenomenon (existence of polaritons in ionic crystals), for which a quantum explanation is still lacking. Concerning the general objection that a classical theory would be impossible because of radiative collapse (radiation emission by accelerated charges), we illustrate how it is removed for charges in a medium, in virtue of the Wheeler-Feynman cancellation. The impact of such results for the general reductionistic program is also commented.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 andrea carati, Luigi Galgani
This work is licensed under a Creative Commons Attribution 3.0 Unported License.
Copyright Agreement with Authors
Before publication, after the acceptance of the manuscript, authors have to sign a Publication Agreement with Organisms. The authors retain all rights to the original work without any restrictions.
License for Published Contents
You are free to copy, distribute and transmit the work, and to adapt the work. You must attribute the work in the manner specified by the author or licensor (but not in any way that suggests that they endorse you or your use of the work).